विशेष फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
विशेष फलन विशेष गणितीय कार्य हैं जिनके [[गणितीय विश्लेषण]], [[कार्यात्मक विश्लेषण|फलनात्मक विश्लेषण]], [[ज्यामिति]], भौतिकी, या अन्य अनुप्रयोगों में उनके महत्व के कारण अधिक या कम स्थापित नाम और अंकन होते हैं।
विशेष फलन विशेष गणितीय कार्य हैं जिनके [[गणितीय विश्लेषण]], [[कार्यात्मक विश्लेषण|फलनात्मक विश्लेषण]], [[ज्यामिति]], भौतिकी, या अन्य अनुप्रयोगों में उनके महत्व के कारण अधिक या कम स्थापित नाम और अंकन होते हैं।


शब्द सर्वसम्मति से परिभाषित किया गया है, और इस प्रकार एक सामान्य औपचारिक परिभाषा का अभाव है, लेकिन [[गणितीय कार्यों की सूची|गणितीय फलनों की सूची]] में ऐसे फलन शामिल हैं जिन्हें आमतौर पर विशेष के रूप में स्वीकार किया जाता है।
शब्द सर्वसम्मति से परिभाषित किया गया है, और इस प्रकार एक सामान्य औपचारिक परिभाषा का अभाव है, लेकिन [[गणितीय कार्यों की सूची|गणितीय फलनों की सूची]] में ऐसे फलन सम्मलित हैं जिन्हें सामान्यत: विशेष के रूप में स्वीकार किया जाता है।


== विशेष फलनों की सारणी ==
== विशेष फलनों की सारणी ==
कई विशेष फलन अवकल समीकरणों के समाधान या प्रारंभिक फलनों के [[अभिन्न]] अंग के रूप में प्रकट होते हैं। इसलिए, समाकल की तालिका<ref name="Zwillinger_2014">{{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |editor-link2=Victor Hugo Moll |translator=Scripta Technica, Inc. |title=इंटीग्रल्स, सीरीज़ और उत्पादों की तालिका|publisher=[[Academic Press, Inc.]] |date=2015 |orig-year=October 2014 |edition=8 |language=en |isbn=978-0-12-384933-5 |lccn=2014010276 <!-- |url=https://books.google.com/books?id=NjnLAwAAQBAJ |access-date=2016-02-21-->|title-link=Gradshteyn and Ryzhik}}</ref> में आमतौर पर विशेष फलनों का विवरण और विशेष फलनों की तालिकाएँ शामिल होती हैं। रेफरी नाम = आइरीन >
कई विशेष फलन अवकल समीकरणों के समाधान या प्रारंभिक फलनों के [[अभिन्न]] अंग के रूप में प्रकट होते हैं। इसलिए, समाकल की तालिका<ref name="Zwillinger_2014">{{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |editor-link2=Victor Hugo Moll |translator=Scripta Technica, Inc. |title=इंटीग्रल्स, सीरीज़ और उत्पादों की तालिका|publisher=[[Academic Press, Inc.]] |date=2015 |orig-year=October 2014 |edition=8 |language=en |isbn=978-0-12-384933-5 |lccn=2014010276 <!-- |url=https://books.google.com/books?id=NjnLAwAAQBAJ |access-date=2016-02-21-->|title-link=Gradshteyn and Ryzhik}}</ref> में सामान्यत: विशेष फलनों का विवरण और विशेष फलनों की तालिकाएँ सम्मलित होती हैं। रेफरी नाम = आइरीन >
{{cite book
{{cite book
   | last1 = अब्रामोवित्ज़
   | last1 = अब्रामोवित्ज़
Line 14: Line 14:
   | publisher = अमेरिकी वाणिज्य विभाग, राष्ट्रीय मानक ब्यूरो
   | publisher = अमेरिकी वाणिज्य विभाग, राष्ट्रीय मानक ब्यूरो
  | url = https://archive.org/details/handbookofmathem1964abra
  | url = https://archive.org/details/handbookofmathem1964abra
}}<nowiki></ref></nowiki> में सबसे महत्वपूर्ण समाकल शामिल हैं; कम से कम, विशेष फलनों का अभिन्न प्रतिनिधित्व। क्योंकि विभेदक समीकरणों की समरूपता भौतिकी और गणित दोनों के लिए आवश्यक है, विशेष फलनों का सिद्धांत [[Index.php?title=लाई-समूह|लाई-समूह]] और [[Index.php?title=लाई बीजगणित|लाई बीजगणित]] के सिद्धांत के साथ-साथ [[गणितीय भौतिकी]] में कुछ विषयों से निकटता से संबंधित है।
}}<nowiki></ref></nowiki> में सबसे महत्वपूर्ण समाकल सम्मलित हैं; कम से कम, विशेष फलनों का अभिन्न प्रतिनिधित्व। क्योंकि विभेदक समीकरणों की समरूपता भौतिकी और गणित दोनों के लिए आवश्यक है, विशेष फलनों का सिद्धांत [[Index.php?title=लाई-समूह|लाई-समूह]] और [[Index.php?title=लाई बीजगणित|लाई बीजगणित]] के सिद्धांत के साथ-साथ [[गणितीय भौतिकी]] में कुछ विषयों से निकटता से संबंधित है।


प्रतीकात्मक संगणना इंजन आमतौर पर अधिकांश विशेष कार्यों को पहचानते हैं।
प्रतीकात्मक संगणना इंजन सामान्यत: अधिकांश विशेष कार्यों को पहचानते हैं।


=== विशेष फलनों के लिए प्रयुक्त संकेतन ===
=== विशेष फलनों के लिए प्रयुक्त संकेतन ===
Line 30: Line 30:
** <math>\operatorname{besselj}(n,x),</math>
** <math>\operatorname{besselj}(n,x),</math>
** <math>{\rm BesselJ}[n,x].</math>
** <math>{\rm BesselJ}[n,x].</math>
सदस्यताएँ अक्सर तर्कों को इंगित करने के लिए उपयोग की जाती हैं, आमतौर पर पूर्णांक। कुछ मामलों में, अर्धविराम (;) या यहां तक ​​कि बैकस्लैश (\) का उपयोग विभाजक के रूप में किया जाता है। इस मामले में, एल्गोरिथम भाषाओं में अनुवाद फलनों के नाम में अस्पष्टता # अस्पष्टता स्वीकार करता है और भ्रम पैदा कर सकता है।
सदस्यताएँ अधिकांशत: तर्कों को इंगित करने के लिए उपयोग की जाती हैं, सामान्यत: पूर्णांक। कुछ स्थितियों में, अर्धविराम (;) या यहां तक ​​कि बैकस्लैश (\) का उपयोग विभाजक के रूप में किया जाता है। इस मामले में, एल्गोरिथम भाषाओं में अनुवाद फलनों के नाम में अस्पष्टता # अस्पष्टता स्वीकार करता है और भ्रम पैदा कर सकता है।


सुपरस्क्रिप्ट न केवल घातांक, बल्कि एक फलन के संशोधन का संकेत दे सकते हैं। उदाहरण (विशेष रूप से त्रिकोणमितीय फलन और [[अतिशयोक्तिपूर्ण समारोह]] के साथ) में शामिल हैं:
सुपरस्क्रिप्ट न केवल घातांक, बल्कि एक फलन के संशोधन का संकेत दे सकते हैं। उदाहरण (विशेष रूप से त्रिकोणमितीय फलन और [[अतिशयोक्तिपूर्ण समारोह]] के साथ) में सम्मलित हैं:


* <math>\cos^3(x)</math> आमतौर पर मतलब है <math>(\cos(x))^3</math>
* <math>\cos^3(x)</math> सामान्यत: मतलब है <math>(\cos(x))^3</math>
* <math>\cos^2(x)</math> आम तौर पर है <math>(\cos(x))^2</math>, लेकिन कभी <math>\cos(\cos(x))</math> नहीं
* <math>\cos^2(x)</math> सामान्यत: है <math>(\cos(x))^2</math>, लेकिन कभी <math>\cos(\cos(x))</math> नहीं
* <math>\cos^{-1}(x)</math> आमतौर पर मतलब है <math>\arccos(x)</math>, ना हीं <math>(\cos(x))^{-1}</math>; यह आमतौर पर सबसे अधिक भ्रम पैदा करता है, क्योंकि इस सुपरस्क्रिप्ट का अर्थ दूसरों के साथ असंगत है।
* <math>\cos^{-1}(x)</math> सामान्यत: मतलब है <math>\arccos(x)</math>, ना हीं <math>(\cos(x))^{-1}</math>; यह सामान्यत: सबसे अधिक भ्रम पैदा करता है, क्योंकि इस सुपरस्क्रिप्ट का अर्थ दूसरों के साथ असंगत है।


=== विशेष फलनों का मूल्यांकन ===
=== विशेष फलनों का मूल्यांकन ===
अधिकांश विशेष फलनों को [[जटिल संख्या]] चर के फलन के रूप में माना जाता है। वे [[विश्लेषणात्मक कार्य|विश्लेषणात्मक फलन]] हैं; विलक्षणताओं और कट का वर्णन किया गया है; अंतर और अभिन्न प्रतिनिधित्व ज्ञात हैं और [[टेलर श्रृंखला]] या [[स्पर्शोन्मुख श्रृंखला]] का विस्तार उपलब्ध है। इसके अलावा, कभी-कभी अन्य विशेष फलनों के साथ संबंध भी होते हैं; एक जटिल विशेष फलन को सरल फलनों के संदर्भ में व्यक्त किया जा सकता है। मूल्यांकन के लिए विभिन्न अभ्यावेदन का उपयोग किया जा सकता है; किसी फलन का मूल्यांकन करने का सबसे आसान तरीका इसे टेलर श्रृंखला में विस्तारित करना है। हालाँकि, ऐसा प्रतिनिधित्व धीरे-धीरे अभिसरण कर सकता है या बिल्कुल नहीं।  कलनविधीय बभाषाओं में, [[पेड सन्निकटन]] आमतौर पर उपयोग किए जाते हैं, हालांकि वे जटिल तर्कों के मामले में खराब व्यवहार कर सकते हैं।
अधिकांश विशेष फलनों को [[जटिल संख्या]] चर के फलन के रूप में माना जाता है। वे [[विश्लेषणात्मक कार्य|विश्लेषणात्मक फलन]] हैं; विलक्षणताओं और कट का वर्णन किया गया है; अंतर और अभिन्न प्रतिनिधित्व ज्ञात हैं और [[टेलर श्रृंखला]] या [[स्पर्शोन्मुख श्रृंखला]] का विस्तार उपलब्ध है। इसके अतिरिक्त, कभी-कभी अन्य विशेष फलनों के साथ संबंध भी होते हैं; एक जटिल विशेष फलन को सरल फलनों के संदर्भ में व्यक्त किया जा सकता है। मूल्यांकन के लिए विभिन्न अभ्यावेदन का उपयोग किया जा सकता है; किसी फलन का मूल्यांकन करने का सबसे आसान तरीका इसे टेलर श्रृंखला में विस्तारित करना है। चूंकि, ऐसा प्रतिनिधित्व धीरे-धीरे अभिसरण कर सकता है या बिल्कुल नहीं।  कलनविधीय बभाषाओं में, [[पेड सन्निकटन]] सामान्यत: उपयोग किए जाते हैं, चूंकि वे जटिल तर्कों के मामले में खराब व्यवहार कर सकते हैं।


== विशेष फलनों का इतिहास ==
== विशेष फलनों का इतिहास ==
Line 59: Line 59:
बीसवीं शताब्दी ने विशेष फलन सिद्धांत में रुचि की कई लहरें देखीं। क्लासिक [[व्हिटेकर और वाटसन]] (1902) पाठ्यपुस्तक ने [[Index.php?title=जटिल विश्लेषण|जटिल विश्लेषण]] का उपयोग करके सिद्धांत को एकीकृत करने की मांग की; बेसल फलन के सिद्धांत पर जी.एन. वॉटसन की पुस्तक ए ट्रीटीज ने एक महत्वपूर्ण प्रकार के लिए जहां तक ​​​​संभव हो तकनीकों को आगे बढ़ाया, विशेष रूप से अध्ययन किए जाने वाले अनंतस्पर्शी को स्वीकार किया था।
बीसवीं शताब्दी ने विशेष फलन सिद्धांत में रुचि की कई लहरें देखीं। क्लासिक [[व्हिटेकर और वाटसन]] (1902) पाठ्यपुस्तक ने [[Index.php?title=जटिल विश्लेषण|जटिल विश्लेषण]] का उपयोग करके सिद्धांत को एकीकृत करने की मांग की; बेसल फलन के सिद्धांत पर जी.एन. वॉटसन की पुस्तक ए ट्रीटीज ने एक महत्वपूर्ण प्रकार के लिए जहां तक ​​​​संभव हो तकनीकों को आगे बढ़ाया, विशेष रूप से अध्ययन किए जाने वाले अनंतस्पर्शी को स्वीकार किया था।


आर्थर एर्देली के संपादन के तहत बाद में [[बेटमैन पांडुलिपि परियोजना]] ने विश्वकोश बनने का प्रयास किया, और उस समय के आसपास आया जब इलेक्ट्रॉनिक संगणना सामने आ रही थी और सारणीकरण मुख्य मुद्दा नहीं रह गया था।
आर्थर एर्देली के संपादन के अनुसार बाद में [[बेटमैन पांडुलिपि परियोजना]] ने विश्वकोश बनने का प्रयास किया, और उस समय के आसपास आया जब इलेक्ट्रॉनिक संगणना सामने आ रही थी और सारणीकरण मुख्य मुद्दा नहीं रह गया था।


=== समकालीन सिद्धांत ===
=== समकालीन सिद्धांत ===
[[Index.php?title=लांबिक बहुपद|लांबिक बहुपद]] का आधुनिक सिद्धांत एक निश्चित लेकिन सीमित दायरे का है। [[खगोल]] विज्ञान और गणितीय भौतिकी में महत्वपूर्ण होने के लिए [[फेलिक्स क्लेन]] द्वारा देखी गई [[हाइपरज्यामितीय श्रृंखला]],<ref>{{cite book |last=Vilenkin |first=N.J.|author-link=Naum Ya. Vilenkin |date=1968 |title=विशेष कार्य और समूह प्रतिनिधित्व का सिद्धांत|url= |location=Providence, RI |publisher=[[American Mathematical Society]] |page=iii |isbn=978-0821815724}}</ref> एक जटिल सिद्धांत बन गया, जिसे बाद में वैचारिक व्यवस्था की आवश्यकता थी। लाई समूह, और विशेष रूप से उनके [[प्रतिनिधित्व सिद्धांत]], समझाते हैं कि एक क्षेत्रीय गोलाकार फलन सामान्य रूप से क्या हो सकता है; 1950 के बाद से शास्त्रीय सिद्धांत के पर्याप्त भागों को लाई समूहों के संदर्भ में पुनर्गठित किया जा सकता है। इसके अलावा, [[Index.php?title=बीजगणितीय साहचर्य|बीजगणितीय साहचर्य]] पर काम ने भी सिद्धांत के पुराने हिस्सों में रुचि को पुनर्जीवित किया। इयान जी मैकडोनाल्ड के अनुमानों ने विशिष्ट विशेष फलन अनुमान के साथ बड़े और सक्रिय नए क्षेत्रों को खोलने में मदद की। विशेष फलनों के स्रोत के रूप में [[अंतर समीकरण]] के अलावा अवकल समीकरण ने अपना स्थान लेना शुरू कर दिया है।
[[Index.php?title=लांबिक बहुपद|लांबिक बहुपद]] का आधुनिक सिद्धांत एक निश्चित लेकिन सीमित दायरे का है। [[खगोल]] विज्ञान और गणितीय भौतिकी में महत्वपूर्ण होने के लिए [[फेलिक्स क्लेन]] द्वारा देखी गई [[हाइपरज्यामितीय श्रृंखला]],<ref>{{cite book |last=Vilenkin |first=N.J.|author-link=Naum Ya. Vilenkin |date=1968 |title=विशेष कार्य और समूह प्रतिनिधित्व का सिद्धांत|url= |location=Providence, RI |publisher=[[American Mathematical Society]] |page=iii |isbn=978-0821815724}}</ref> एक जटिल सिद्धांत बन गया, जिसे बाद में वैचारिक व्यवस्था की आवश्यकता थी। लाई समूह, और विशेष रूप से उनके [[प्रतिनिधित्व सिद्धांत]], समझाते हैं कि एक क्षेत्रीय गोलाकार फलन सामान्य रूप से क्या हो सकता है; 1950 के बाद से शास्त्रीय सिद्धांत के पर्याप्त भागों को लाई समूहों के संदर्भ में पुनर्गठित किया जा सकता है। इसके अतिरिक्त, [[Index.php?title=बीजगणितीय साहचर्य|बीजगणितीय साहचर्य]] पर काम ने भी सिद्धांत के पुराने हिस्सों में रुचि को पुनर्जीवित किया। इयान जी मैकडोनाल्ड के अनुमानों ने विशिष्ट विशेष फलन अनुमान के साथ बड़े और सक्रिय नए क्षेत्रों को खोलने में मदद की। विशेष फलनों के स्रोत के रूप में [[अंतर समीकरण]] के अतिरिक्त अवकल समीकरण ने अपना स्थान लेना प्रारंभ कर दिया है।


== [[संख्या सिद्धांत]] में विशेष फलन ==
== [[संख्या सिद्धांत]] में विशेष फलन ==
Line 69: Line 69:
== आव्यूह तर्कों के विशेष फलन ==
== आव्यूह तर्कों के विशेष फलन ==
कई विशेष कार्यों के अनुरूप को सकारात्मक निश्चित आव्यूह के स्थान पर परिभाषित किया गया है, उनमें से घातांक फलन जो एटल सेलबर्ग, [6] बहुभिन्नरूपी गामा फलन, [7] और बेसेल कार्यों के प्रकार पर वापस जाता है।{{sfn|Terras|2016|pp=56ff}}
कई विशेष कार्यों के अनुरूप को सकारात्मक निश्चित आव्यूह के स्थान पर परिभाषित किया गया है, उनमें से घातांक फलन जो एटल सेलबर्ग, [6] बहुभिन्नरूपी गामा फलन, [7] और बेसेल कार्यों के प्रकार पर वापस जाता है।{{sfn|Terras|2016|pp=56ff}}
गणितीय फलनों के मानक और प्रौद्योगिकी डिजिटल पुस्तकालय के राष्ट्रीय संस्थान में आव्यूह तर्कों के कई विशेष फलनों को शामिल करने वाला एक खंड है।<ref>{{cite web|url=https://dlmf.nist.gov/35|title=मैट्रिक्स तर्क के अध्याय 35 कार्य|work=[[Digital Library of Mathematical Functions]]|author=[[Donald Richards (statistician)|D. St. P. Richards]]|date=n.d.|access-date=23 July 2022}}</ref>
गणितीय फलनों के मानक और प्रौद्योगिकी डिजिटल पुस्तकालय के राष्ट्रीय संस्थान में आव्यूह तर्कों के कई विशेष फलनों को सम्मलित करने वाला एक खंड है।<ref>{{cite web|url=https://dlmf.nist.gov/35|title=मैट्रिक्स तर्क के अध्याय 35 कार्य|work=[[Digital Library of Mathematical Functions]]|author=[[Donald Richards (statistician)|D. St. P. Richards]]|date=n.d.|access-date=23 July 2022}}</ref>





Revision as of 10:41, 24 May 2023

विशेष फलन विशेष गणितीय कार्य हैं जिनके गणितीय विश्लेषण, फलनात्मक विश्लेषण, ज्यामिति, भौतिकी, या अन्य अनुप्रयोगों में उनके महत्व के कारण अधिक या कम स्थापित नाम और अंकन होते हैं।

शब्द सर्वसम्मति से परिभाषित किया गया है, और इस प्रकार एक सामान्य औपचारिक परिभाषा का अभाव है, लेकिन गणितीय फलनों की सूची में ऐसे फलन सम्मलित हैं जिन्हें सामान्यत: विशेष के रूप में स्वीकार किया जाता है।

विशेष फलनों की सारणी

कई विशेष फलन अवकल समीकरणों के समाधान या प्रारंभिक फलनों के अभिन्न अंग के रूप में प्रकट होते हैं। इसलिए, समाकल की तालिका[1] में सामान्यत: विशेष फलनों का विवरण और विशेष फलनों की तालिकाएँ सम्मलित होती हैं। रेफरी नाम = आइरीन > अब्रामोवित्ज़, मिल्टन; स्टेगन, आइरीन ए. (1964). गणितीय कार्यों की पुस्तिका. अमेरिकी वाणिज्य विभाग, राष्ट्रीय मानक ब्यूरो.</ref> में सबसे महत्वपूर्ण समाकल सम्मलित हैं; कम से कम, विशेष फलनों का अभिन्न प्रतिनिधित्व। क्योंकि विभेदक समीकरणों की समरूपता भौतिकी और गणित दोनों के लिए आवश्यक है, विशेष फलनों का सिद्धांत लाई-समूह और लाई बीजगणित के सिद्धांत के साथ-साथ गणितीय भौतिकी में कुछ विषयों से निकटता से संबंधित है।

प्रतीकात्मक संगणना इंजन सामान्यत: अधिकांश विशेष कार्यों को पहचानते हैं।

विशेष फलनों के लिए प्रयुक्त संकेतन

स्थापित अंतर्राष्ट्रीय संकेतन वाले फलन साइन हैं (), कोज्या (), घातांक प्रफलन (), और त्रुटि फलन ( या ).

कुछ विशेष फलनों में कई अंकन होते हैं:

  • प्राकृतिक लघुगणक को निरूपित किया जा सकता है , , , या संदर्भ के आधार पर।
  • त्रिकोणमितीय फलन#स्पर्शरेखा फलन को निरूपित किया जा सकता है , , या ( मुख्य रूप से रूसी भाषा और बल्गेरियाई भाषा साहित्य में प्रयोग किया जाता है)।
  • आर्कटैंजेंट को निरूपित किया जा सकता है , , , या .
  • बेसेल फलनों को निरूपित किया जा सकता है

सदस्यताएँ अधिकांशत: तर्कों को इंगित करने के लिए उपयोग की जाती हैं, सामान्यत: पूर्णांक। कुछ स्थितियों में, अर्धविराम (;) या यहां तक ​​कि बैकस्लैश (\) का उपयोग विभाजक के रूप में किया जाता है। इस मामले में, एल्गोरिथम भाषाओं में अनुवाद फलनों के नाम में अस्पष्टता # अस्पष्टता स्वीकार करता है और भ्रम पैदा कर सकता है।

सुपरस्क्रिप्ट न केवल घातांक, बल्कि एक फलन के संशोधन का संकेत दे सकते हैं। उदाहरण (विशेष रूप से त्रिकोणमितीय फलन और अतिशयोक्तिपूर्ण समारोह के साथ) में सम्मलित हैं:

  • सामान्यत: मतलब है
  • सामान्यत: है , लेकिन कभी नहीं
  • सामान्यत: मतलब है , ना हीं ; यह सामान्यत: सबसे अधिक भ्रम पैदा करता है, क्योंकि इस सुपरस्क्रिप्ट का अर्थ दूसरों के साथ असंगत है।

विशेष फलनों का मूल्यांकन

अधिकांश विशेष फलनों को जटिल संख्या चर के फलन के रूप में माना जाता है। वे विश्लेषणात्मक फलन हैं; विलक्षणताओं और कट का वर्णन किया गया है; अंतर और अभिन्न प्रतिनिधित्व ज्ञात हैं और टेलर श्रृंखला या स्पर्शोन्मुख श्रृंखला का विस्तार उपलब्ध है। इसके अतिरिक्त, कभी-कभी अन्य विशेष फलनों के साथ संबंध भी होते हैं; एक जटिल विशेष फलन को सरल फलनों के संदर्भ में व्यक्त किया जा सकता है। मूल्यांकन के लिए विभिन्न अभ्यावेदन का उपयोग किया जा सकता है; किसी फलन का मूल्यांकन करने का सबसे आसान तरीका इसे टेलर श्रृंखला में विस्तारित करना है। चूंकि, ऐसा प्रतिनिधित्व धीरे-धीरे अभिसरण कर सकता है या बिल्कुल नहीं। कलनविधीय बभाषाओं में, पेड सन्निकटन सामान्यत: उपयोग किए जाते हैं, चूंकि वे जटिल तर्कों के मामले में खराब व्यवहार कर सकते हैं।

विशेष फलनों का इतिहास

शास्त्रीय सिद्धांत

जबकि त्रिकोणमिति को संहिताबद्ध किया जा सकता है - जैसा कि अठारहवीं शताब्दी के विशेषज्ञ गणितज्ञों के लिए पहले से ही स्पष्ट था (यदि पहले नहीं था) - उन्नीसवीं शताब्दी के बाद से विशेष फलनों के पूर्ण और एकीकृत सिद्धांत की खोज जारी है। 1800-1900 में विशेष फलन सिद्धांत का उच्च बिंदु अण्डाकार फलनों का सिद्धांत था; ग्रंथ जो अनिवार्य रूप से पूर्ण थे, जैसे कि जूल्स टैनरी और जूल्स मोल्क,[citation needed] सिद्धांत की सभी बुनियादी पहचानों के लिए हैंडबुक के रूप में लिखा जा सकता है। वे जटिल विश्लेषण की तकनीकों पर आधारित थे।

उस समय से यह माना जाएगा कि विश्लेषणात्मक फलन सिद्धांत, जो पहले से ही त्रिकोणमितीय और घातीय फलनों को एकीकृत कर चुका था, एक मौलिक उपकरण था। सदी के अंत में भी गोलाकार हार्मोनिकस की बहुत विस्तृत चर्चा हुई।

बदलती और निश्चित प्रेरणाएँ

बेशक एक व्यापक सिद्धांत की इच्छा जिसमें ज्ञात विशेष फलनों के जितना संभव हो उतना बौद्धिक अपील है, लेकिन यह अन्य प्रेरणाओं को ध्यान देने योग्य है। लंबे समय तक, विशेष फलन लागू गणित के विशेष प्रांत में थे; भौतिक विज्ञान और अभियांत्रिकी के अनुप्रयोगों ने फलनों के सापेक्ष महत्व को निर्धारित किया। इलेक्ट्रॉनिक अभिकलन से पहले, परिचित लघुगणक तालिकाओं के लिए, तैयार लुक-अप के लिए मानों की विस्तारित तालिकाओं की श्रमसाध्य संगणना द्वारा एक विशेष फलन के महत्व की पुष्टि की गई थी। (बैबेज का डिफरेंस इंजन ऐसी तालिकाओं की गणना करने का एक प्रयास था।) इस उद्देश्य के लिए, मुख्य तकनीकें हैं:-

इसके विपरीत, कोई कह सकता है, शुद्ध गणित के हितों के विशिष्ट दृष्टिकोण हैं: विषम विश्लेषण, विश्लेषणात्मक निरंतरता और जटिल विमान में मोनोड्रोमी, और पंक्तियों में अंतहीन सूत्रों के अग्रभाग के पीछे समरूपता सिद्धांतों और अन्य संरचना की खोज। वास्तव में, इन दृष्टिकोणों के बीच कोई वास्तविक विरोध नहीं है।

बीसवीं सदी

बीसवीं शताब्दी ने विशेष फलन सिद्धांत में रुचि की कई लहरें देखीं। क्लासिक व्हिटेकर और वाटसन (1902) पाठ्यपुस्तक ने जटिल विश्लेषण का उपयोग करके सिद्धांत को एकीकृत करने की मांग की; बेसल फलन के सिद्धांत पर जी.एन. वॉटसन की पुस्तक ए ट्रीटीज ने एक महत्वपूर्ण प्रकार के लिए जहां तक ​​​​संभव हो तकनीकों को आगे बढ़ाया, विशेष रूप से अध्ययन किए जाने वाले अनंतस्पर्शी को स्वीकार किया था।

आर्थर एर्देली के संपादन के अनुसार बाद में बेटमैन पांडुलिपि परियोजना ने विश्वकोश बनने का प्रयास किया, और उस समय के आसपास आया जब इलेक्ट्रॉनिक संगणना सामने आ रही थी और सारणीकरण मुख्य मुद्दा नहीं रह गया था।

समकालीन सिद्धांत

लांबिक बहुपद का आधुनिक सिद्धांत एक निश्चित लेकिन सीमित दायरे का है। खगोल विज्ञान और गणितीय भौतिकी में महत्वपूर्ण होने के लिए फेलिक्स क्लेन द्वारा देखी गई हाइपरज्यामितीय श्रृंखला,[2] एक जटिल सिद्धांत बन गया, जिसे बाद में वैचारिक व्यवस्था की आवश्यकता थी। लाई समूह, और विशेष रूप से उनके प्रतिनिधित्व सिद्धांत, समझाते हैं कि एक क्षेत्रीय गोलाकार फलन सामान्य रूप से क्या हो सकता है; 1950 के बाद से शास्त्रीय सिद्धांत के पर्याप्त भागों को लाई समूहों के संदर्भ में पुनर्गठित किया जा सकता है। इसके अतिरिक्त, बीजगणितीय साहचर्य पर काम ने भी सिद्धांत के पुराने हिस्सों में रुचि को पुनर्जीवित किया। इयान जी मैकडोनाल्ड के अनुमानों ने विशिष्ट विशेष फलन अनुमान के साथ बड़े और सक्रिय नए क्षेत्रों को खोलने में मदद की। विशेष फलनों के स्रोत के रूप में अंतर समीकरण के अतिरिक्त अवकल समीकरण ने अपना स्थान लेना प्रारंभ कर दिया है।

संख्या सिद्धांत में विशेष फलन

संख्या सिद्धांत में, कुछ विशेष फलनों का पारंपरिक रूप से अध्ययन किया गया है, जैसे कि विशेष डिरिचलेट श्रृंखला और मॉड्यूलर रूप। विशेष फलन सिद्धांत के लगभग सभी पहलुओं को वहां प्रतिबिंबित किया गया है, साथ ही साथ कुछ नए भी, जैसे कि मॉन्स्टरस मूनशाइन सिद्धांत से निकला है।

आव्यूह तर्कों के विशेष फलन

कई विशेष कार्यों के अनुरूप को सकारात्मक निश्चित आव्यूह के स्थान पर परिभाषित किया गया है, उनमें से घातांक फलन जो एटल सेलबर्ग, [6] बहुभिन्नरूपी गामा फलन, [7] और बेसेल कार्यों के प्रकार पर वापस जाता है।[3] गणितीय फलनों के मानक और प्रौद्योगिकी डिजिटल पुस्तकालय के राष्ट्रीय संस्थान में आव्यूह तर्कों के कई विशेष फलनों को सम्मलित करने वाला एक खंड है।[4]


शोधकर्ता


यह भी देखें

संदर्भ

  1. Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. Zwillinger, Daniel; Moll, Victor Hugo (eds.). इंटीग्रल्स, सीरीज़ और उत्पादों की तालिका (in English). Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. ISBN 978-0-12-384933-5. LCCN 2014010276.
  2. Vilenkin, N.J. (1968). विशेष कार्य और समूह प्रतिनिधित्व का सिद्धांत. Providence, RI: American Mathematical Society. p. iii. ISBN 978-0821815724.
  3. Terras 2016, pp. 56ff.
  4. D. St. P. Richards (n.d.). "मैट्रिक्स तर्क के अध्याय 35 कार्य". Digital Library of Mathematical Functions. Retrieved 23 July 2022.


ग्रन्थसूची


बाहरी कड़ियाँ

श्रेणी: गणित का इतिहास