स्थिर अवस्था (रसायन विज्ञान): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{other uses|Steady state (disambiguation)}}
{{other uses|Steady state (disambiguation)}}


[[रसायन विज्ञान]] में, एक [[स्थिर अवस्था]] एक ऐसी स्थिति है जिसमें सभी [[थर्मोडायनामिक चर]] चल रहे [[रासायनिक प्रक्रिया]] के बावजूद स्थिर होते हैं जो उन्हें बदलने का प्रयास करते हैं। एक संपूर्ण प्रणाली के स्थिर अवस्था में होने के लिए, यानी एक प्रणाली के सभी राज्य चर स्थिर होने के लिए, प्रणाली के माध्यम से एक प्रवाह होना चाहिए ([[द्रव्यमान संतुलन]] की तुलना करें)। इस तरह की प्रणाली का एक सरल उदाहरण एक बाथटब का मामला है जिसमें नल चल रहा है लेकिन नाली अनप्लग है: एक निश्चित समय के बाद, पानी एक ही दर से अंदर और बाहर बहता है, इसलिए जल स्तर (राज्य चर आयतन) स्थिर हो जाता है और सिस्टम स्थिर स्थिति में है।
[[रसायन विज्ञान]] में, [[स्थिर अवस्था]] एक ऐसी स्थिति है जिसमें सभी [[थर्मोडायनामिक चर]] चल रहे [[रासायनिक प्रक्रिया]] के बावजूद स्थिर होते हैं जो उन्हें बदलने का प्रयास करते हैं। संपूर्ण प्रणाली के स्थिर अवस्था में होने के लिए, यानी प्रणाली के सभी राज्य चर स्थिर होने के लिए, प्रणाली के माध्यम से एक प्रवाह होना चाहिए ([[द्रव्यमान संतुलन]] की तुलना करें)। इस तरह की प्रणाली का सरल उदाहरण एक बाथटब का मामला है जिसमें नल चल रहा है लेकिन नाली अनप्लग है: एक निश्चित समय के बाद, पानी एक ही दर से अंदर और बाहर बहता है, इसलिए जल स्तर (राज्य चर आयतन) स्थिर हो जाता है और सिस्टम स्थिर स्थिति में है।


स्थिर अवस्था अवधारणा [[रासायनिक संतुलन]] से भिन्न है। यद्यपि दोनों एक ऐसी स्थिति बना सकते हैं जहां रासायनिक संतुलन में एक प्रणाली में [[एकाग्रता]] नहीं बदलती है, शुद्ध प्रतिक्रिया दर शून्य है ([[उत्पाद (रसायन विज्ञान)]] [[अभिकारक]]ों में उसी दर पर परिवर्तित होता है जैसे अभिकारक उत्पादों में परिवर्तित होते हैं), जबकि ऐसी कोई सीमा मौजूद नहीं है स्थिर अवस्था की अवधारणा में। वास्तव में, स्थिर अवस्था के विकास के लिए [[रासायनिक प्रतिक्रिया]] का होना बिल्कुल भी आवश्यक नहीं है।
स्थिर अवस्था अवधारणा [[रासायनिक संतुलन]] से भिन्न है। यद्यपि दोनों ऐसी स्थिति बना सकते हैं जहां रासायनिक संतुलन में एक प्रणाली में [[एकाग्रता]] नहीं बदलती है, शुद्ध प्रतिक्रिया दर शून्य है ([[उत्पाद (रसायन विज्ञान)]] [[अभिकारक]]ों में उसी दर पर परिवर्तित होता है जैसे अभिकारक उत्पादों में परिवर्तित होते हैं), जबकि ऐसी कोई सीमा मौजूद नहीं है स्थिर अवस्था की अवधारणा में। वास्तव में, स्थिर अवस्था के विकास के लिए [[रासायनिक प्रतिक्रिया]] का होना बिल्कुल भी आवश्यक नहीं है।


स्थिर स्थिति शब्द का उपयोग ऐसी स्थिति का वर्णन करने के लिए भी किया जाता है जहां सिस्टम के कुछ, लेकिन सभी राज्य चर स्थिर नहीं होते हैं। ऐसी स्थिर अवस्था के विकास के लिए, सिस्टम को प्रवाह प्रणाली नहीं होना चाहिए। इसलिए, ऐसी स्थिर स्थिति एक बंद प्रणाली में विकसित हो सकती है जहां रासायनिक प्रतिक्रियाओं की एक श्रृंखला होती है। रासायनिक कैनेटीक्स में साहित्य आमतौर पर इस मामले को संदर्भित करता है, इसे 'स्थिर राज्य [[सन्निकटन]]' कहते हैं।
स्थिर स्थिति शब्द का उपयोग ऐसी स्थिति का वर्णन करने के लिए भी किया जाता है जहां सिस्टम के कुछ, लेकिन सभी राज्य चर स्थिर नहीं होते हैं। ऐसी स्थिर अवस्था के विकास के लिए, सिस्टम को प्रवाह प्रणाली नहीं होना चाहिए। इसलिए, ऐसी स्थिर स्थिति बंद प्रणाली में विकसित हो सकती है जहां रासायनिक प्रतिक्रियाओं की श्रृंखला होती है। रासायनिक कैनेटीक्स में साहित्य आमतौर पर इस मामले को संदर्भित करता है, इसे 'स्थिर राज्य [[सन्निकटन]]' कहते हैं।


सरल प्रणालियों में स्थिर अवस्था को राज्य चर द्वारा धीरे-धीरे कम या बढ़ते हुए संपर्क किया जाता है जब तक कि वे अपने स्थिर राज्य मूल्य तक नहीं पहुंच जाते। अधिक जटिल प्रणालियों में राज्य चर सैद्धांतिक स्थिर अवस्था के आसपास उतार-चढ़ाव कर सकते हैं या तो हमेशा के लिए (एक [[सीमा चक्र]]) या धीरे-धीरे करीब और करीब आ रहे हैं। यह सैद्धांतिक रूप से स्थिर अवस्था तक पहुँचने में अनंत समय लेता है, ठीक उसी तरह जैसे रासायनिक संतुलन तक पहुँचने में अनंत समय लगता है।
सरल प्रणालियों में स्थिर अवस्था को राज्य चर द्वारा धीरे-धीरे कम या बढ़ते हुए संपर्क किया जाता है जब तक कि वे अपने स्थिर राज्य मूल्य तक नहीं पहुंच जाते। अधिक जटिल प्रणालियों में राज्य चर सैद्धांतिक स्थिर अवस्था के आसपास उतार-चढ़ाव कर सकते हैं या तो हमेशा के लिए (एक [[सीमा चक्र]]) या धीरे-धीरे करीब और करीब आ रहे हैं। यह सैद्धांतिक रूप से स्थिर अवस्था तक पहुँचने में अनंत समय लेता है, ठीक उसी तरह जैसे रासायनिक संतुलन तक पहुँचने में अनंत समय लगता है।


हालाँकि, दोनों अवधारणाएँ अक्सर उपयोग किए जाने वाले सन्निकटन हैं क्योंकि ये अवधारणाएँ पर्याप्त गणितीय सरलीकरण प्रदान करती हैं। इन अवधारणाओं का उपयोग किया जा सकता है या नहीं, अंतर्निहित धारणाओं की त्रुटि पर निर्भर करता है। इसलिए, सैद्धांतिक दृष्टिकोण से एक स्थिर स्थिति के बावजूद, निरंतर चालकों की आवश्यकता होती है (उदाहरण के लिए निरंतर प्रवाह दर और प्रवाह में निरंतर सांद्रता), गैर-निरंतर चालकों के साथ एक प्रणाली के लिए स्थिर स्थिति मानकर पेश की गई त्रुटि नगण्य हो सकती है यदि स्थिर अवस्था में काफी तेजी से संपर्क किया जाता है (अपेक्षाकृत बोलना)।
हालाँकि, दोनों अवधारणाएँ अक्सर उपयोग किए जाने वाले सन्निकटन हैं क्योंकि ये अवधारणाएँ पर्याप्त गणितीय सरलीकरण प्रदान करती हैं। इन अवधारणाओं का उपयोग किया जा सकता है या नहीं, अंतर्निहित धारणाओं की त्रुटि पर निर्भर करता है। इसलिए, सैद्धांतिक दृष्टिकोण से स्थिर स्थिति के बावजूद, निरंतर चालकों की आवश्यकता होती है (उदाहरण के लिए निरंतर प्रवाह दर और प्रवाह में निरंतर सांद्रता), गैर-निरंतर चालकों के साथ प्रणाली के लिए स्थिर स्थिति मानकर पेश की गई त्रुटि नगण्य हो सकती है यदि स्थिर अवस्था में काफी तेजी से संपर्क किया जाता है (अपेक्षाकृत बोलना)।


'''व्यवहार में यह पर्याप्त है कि गठन और विनाश की दर लगभग समान है, जिसका अर्थ है कि मध्यवर्ती की एकाग्रता की भिन्नता की शुद्ध दर गठन और विनाश की तुलना में छोटी है, और मध्यवर्ती की एकाग्रता केवल धीरे-धीरे बदलती है, समान अभिकारकों और उत्पादों के लिए (नीचे दिए गए आंकड़ों में समीकरण और हरे निशान देखें)।'''
'''व्यवहार में यह पर्याप्त है कि गठन और विनाश की दर लगभग समान है, जिसका अर्थ है कि मध्यवर्ती की एकाग्रता की भिन्नता की शुद्ध दर गठन और विनाश की तुलना में छोटी है, और मध्यवर्ती की एकाग्रता केवल धीरे-धीरे बदलती है, समान अभिकारकों'''  


== रासायनिक कैनेटीक्स में स्थिर अवस्था सन्निकटन ==
== रासायनिक कैनेटीक्स में स्थिर अवस्था सन्निकटन ==


स्थिर स्थिति सन्निकटन,<ref>[http://goldbook.iupac.org/S05962.html IUPAC Gold Book definition of steady state]</ref> कभी-कभी स्थिर-राज्य सन्निकटन या [[मैक्स बोडेंस्टीन]] के अर्ध-स्थिर राज्य सन्निकटन कहा जाता है, इसमें एक [[प्रतिक्रिया तंत्र]] में प्रतिक्रिया के परिवर्तन की दर को शून्य के बराबर सेट करना शामिल होता है ताकि गतिज समीकरणों को मध्यवर्ती के गठन की दर निर्धारित करके सरल बनाया जा सके। इसके विनाश की दर के बराबर।
स्थिर स्थिति सन्निकटन,<ref>[http://goldbook.iupac.org/S05962.html IUPAC Gold Book definition of steady state]</ref> कभी-कभी स्थिर-राज्य सन्निकटन या [[मैक्स बोडेंस्टीन]] के अर्ध-स्थिर राज्य सन्निकटन कहा जाता है, इसमें [[प्रतिक्रिया तंत्र]] में प्रतिक्रिया के परिवर्तन की दर को शून्य के बराबर सेट करना शामिल होता है ताकि गतिज समीकरणों को मध्यवर्ती के गठन की दर निर्धारित करके सरल बनाया जा सके। इसके विनाश की दर के बराबर।


व्यवहार में यह पर्याप्त है कि गठन और विनाश की दर लगभग समान है, जिसका अर्थ है कि मध्यवर्ती की एकाग्रता की भिन्नता की शुद्ध दर गठन और विनाश की तुलना में छोटी है, और मध्यवर्ती की एकाग्रता केवल धीरे-धीरे बदलती है, समान अभिकारकों और उत्पादों के लिए (नीचे दिए गए आंकड़ों में समीकरण और हरे निशान देखें)।
व्यवहार में यह पर्याप्त है कि गठन और विनाश की दर लगभग समान है, जिसका अर्थ है कि मध्यवर्ती की एकाग्रता की भिन्नता की शुद्ध दर गठन और विनाश की तुलना में छोटी है, और मध्यवर्ती की एकाग्रता केवल धीरे-धीरे बदलती है, समान अभिकारकों और उत्पादों के लिए (नीचे दिए गए आंकड़ों में समीकरण और हरे निशान देखें)।
Line 22: Line 22:
इसका उपयोग [[दर समीकरण]]ों से उत्पन्न होने वाले [[अंतर समीकरण]]ों के समाधान की सुविधा प्रदान करता है, जिसमें सरलतम से परे अधिकांश तंत्रों के लिए बंद-रूप अभिव्यक्ति की कमी होती है। उदाहरण के लिए, [[माइकलिस-मेंटेन कैनेटीक्स]] में स्थिर अवस्था सन्निकटन लागू किया जाता है।
इसका उपयोग [[दर समीकरण]]ों से उत्पन्न होने वाले [[अंतर समीकरण]]ों के समाधान की सुविधा प्रदान करता है, जिसमें सरलतम से परे अधिकांश तंत्रों के लिए बंद-रूप अभिव्यक्ति की कमी होती है। उदाहरण के लिए, [[माइकलिस-मेंटेन कैनेटीक्स]] में स्थिर अवस्था सन्निकटन लागू किया जाता है।


एक उदाहरण के रूप में, स्थिर स्थिति सन्निकटन एक बंद प्रणाली में दो लगातार, अपरिवर्तनीय, सजातीय प्रथम क्रम प्रतिक्रियाओं पर लागू किया जाएगा। (विषम प्रतिक्रियाओं के लिए, सतहों पर प्रतिक्रियाएं देखें।) यह मॉडल, उदाहरण के लिए, [[रेडियोधर्मी क्षय]] की एक श्रृंखला के अनुरूप है {{chem2| ^{239}U -> ^{239}Np -> ^{239}Pu}}.
उदाहरण के रूप में, स्थिर स्थिति सन्निकटन एक बंद प्रणाली में दो लगातार, अपरिवर्तनीय, सजातीय प्रथम क्रम प्रतिक्रियाओं पर लागू किया जाएगा। (विषम प्रतिक्रियाओं के लिए, सतहों पर प्रतिक्रियाएं देखें।) यह मॉडल, उदाहरण के लिए, [[रेडियोधर्मी क्षय]] की श्रृंखला के अनुरूप है {{chem2| ^{239}U -> ^{239}Np -> ^{239}Pu}}.


यदि निम्नलिखित प्रतिक्रिया के लिए दर स्थिरांक हैं {{math|''k''{{sub|1}}}} और {{math|''k''{{sub|2}}}}; {{chem2|A -> B -> C}}, सिस्टम के लिए द्रव्यमान संतुलन के साथ दर समीकरणों के संयोजन से तीन युग्मित अंतर समीकरण प्राप्त होते हैं:
यदि निम्नलिखित प्रतिक्रिया के लिए दर स्थिरांक हैं {{math|''k''{{sub|1}}}} और {{math|''k''{{sub|2}}}}; {{chem2|A -> B -> C}}, सिस्टम के लिए द्रव्यमान संतुलन के साथ दर समीकरणों के संयोजन से तीन युग्मित अंतर समीकरण प्राप्त होते हैं:
Line 51: Line 51:
=== स्थिर अवस्था ===
=== स्थिर अवस्था ===


यदि स्थिर अवस्था सन्निकटन लागू किया जाता है, तो मध्यवर्ती की सांद्रता का व्युत्पन्न शून्य पर सेट हो जाता है। यह द्वितीय अवकल समीकरण को एक बीजगणितीय समीकरण में बदल देता है जिसे हल करना बहुत आसान है।
यदि स्थिर अवस्था सन्निकटन लागू किया जाता है, तो मध्यवर्ती की सांद्रता का व्युत्पन्न शून्य पर सेट हो जाता है। यह द्वितीय अवकल समीकरण को बीजगणितीय समीकरण में बदल देता है जिसे हल करना बहुत आसान है।


:<math chem> \frac{d[\ce B]}{dt} = 0 =  k_1 [\ce A] - k_2 [\ce B] \Rightarrow \; [\ce B] = \frac{k_1}{k_2} [\ce A].</math>
:<math chem> \frac{d[\ce B]}{dt} = 0 =  k_1 [\ce A] - k_2 [\ce B] \Rightarrow \; [\ce B] = \frac{k_1}{k_2} [\ce A].</math>
Line 63: Line 63:
[[Image:Consecutive reactions rate constants 1-10.JPG|thumb|एकाग्रता बनाम समय के लिए {{math|1=''k''{{sub|2}}/''k''{{sub|1}} = 10}<br>{{legend-line|solid green|Concentration of intermediate}}
[[Image:Consecutive reactions rate constants 1-10.JPG|thumb|एकाग्रता बनाम समय के लिए {{math|1=''k''{{sub|2}}/''k''{{sub|1}} = 10}<br>{{legend-line|solid green|Concentration of intermediate}}
{{legend-line|solid blue|Concentration of product}}
{{legend-line|solid blue|Concentration of product}}
{{legend-line|solid red|Concentration of substrate}}]]विश्लेषणात्मक और अनुमानित समाधानों की अब तुलना की जानी चाहिए ताकि यह तय किया जा सके कि यह स्थिर स्थिति सन्निकटन का उपयोग करने के लिए कब मान्य है। विश्लेषणात्मक समाधान अनुमानित एक में बदल जाता है <math> k_2 \gg k_1 ,</math> क्योंकि तब <math>e^{-k_2t} \ll e^{-k_1t}</math> और <math>k_2-k_1 \approx \; k_2.</math> इसलिए, यह स्थिर अवस्था सन्निकटन को तभी लागू करने के लिए मान्य है जब दूसरी प्रतिक्रिया पहले की तुलना में बहुत तेज हो ({{math|''k''{{sub|2}}/''k''{{sub|1}} > 10}} एक सामान्य मानदंड है), क्योंकि इसका मतलब है कि मध्यवर्ती धीरे-धीरे बनता है और आसानी से प्रतिक्रिया करता है इसलिए इसकी एकाग्रता कम रहती है।
{{legend-line|solid red|Concentration of substrate}}]]विश्लेषणात्मक और अनुमानित समाधानों की अब तुलना की जानी चाहिए ताकि यह तय किया जा सके कि यह स्थिर स्थिति सन्निकटन का उपयोग करने के लिए कब मान्य है। विश्लेषणात्मक समाधान अनुमानित एक में बदल जाता है <math> k_2 \gg k_1 ,</math> क्योंकि तब <math>e^{-k_2t} \ll e^{-k_1t}</math> और <math>k_2-k_1 \approx \; k_2.</math> इसलिए, यह स्थिर अवस्था सन्निकटन को तभी लागू करने के लिए मान्य है जब दूसरी प्रतिक्रिया पहले की तुलना में बहुत तेज हो ({{math|''k''{{sub|2}}/''k''{{sub|1}} > 10}} सामान्य मानदंड है), क्योंकि इसका मतलब है कि मध्यवर्ती धीरे-धीरे बनता है और आसानी से प्रतिक्रिया करता है इसलिए इसकी एकाग्रता कम रहती है।


ग्राफ विश्लेषणात्मक समाधान से गणना की गई दो मामलों में ए (लाल), बी (हरा) और सी (नीला) की सांद्रता दिखाते हैं।
ग्राफ विश्लेषणात्मक समाधान से गणना की गई दो मामलों में ए (लाल), बी (हरा) और सी (नीला) की सांद्रता दिखाते हैं।


जब पहली प्रतिक्रिया तेज होती है तो यह मानना ​​मान्य नहीं है कि [बी] की भिन्नता बहुत छोटी है, क्योंकि [बी] न तो कम है और न ही स्थिर के करीब है: पहले ए तेजी से बी में बदल जाता है और बी जमा हो जाता है क्योंकि यह धीरे-धीरे गायब हो जाता है। जैसे-जैसे A की सांद्रता घटती है, इसके रूपांतरण की दर घटती जाती है, उसी समय B से C की प्रतिक्रिया की दर बढ़ती जाती है क्योंकि अधिक B बनता है, इसलिए एक अधिकतम तक पहुँच जाता है जब <math>t=\begin{cases}
जब पहली प्रतिक्रिया तेज होती है तो यह मानना ​​मान्य नहीं है कि [बी] की भिन्नता बहुत छोटी है, क्योंकि [बी] न तो कम है और न ही स्थिर के करीब है: पहले ए तेजी से बी में बदल जाता है और बी जमा हो जाता है क्योंकि यह धीरे-धीरे गायब हो जाता है। जैसे-जैसे A की सांद्रता घटती है, इसके रूपांतरण की दर घटती जाती है, उसी समय B से C की प्रतिक्रिया की दर बढ़ती जाती है क्योंकि अधिक B बनता है, इसलिए अधिकतम तक पहुँच जाता है जब <math>t=\begin{cases}
   \frac{\ln \left( \frac{k_{1}}{k_{2}} \right)}{k_{1}-k_{2}} & \, k_{1}\ne k_{2}  \\\\
   \frac{\ln \left( \frac{k_{1}}{k_{2}} \right)}{k_{1}-k_{2}} & \, k_{1}\ne k_{2}  \\\\
   \frac{1}{k_{1}} & \, k_{1} = k_{2}  \\
   \frac{1}{k_{1}} & \, k_{1} = k_{2}  \\
\end{cases}</math><br />तब से B की सांद्रता कम हो जाती है।
\end{cases}</math><br />तब से B की सांद्रता कम हो जाती है।


जब दूसरी प्रतिक्रिया तेज होती है, एक छोटी प्रेरण अवधि के बाद, जिसके दौरान स्थिर अवस्था सन्निकटन लागू नहीं होता है, B की सांद्रता कम रहती है (और पूर्ण अर्थ में कम या ज्यादा स्थिर) क्योंकि इसके गठन और गायब होने की दर लगभग बराबर होती है और स्थिर अवस्था सन्निकटन का उपयोग किया जा सकता है।
जब दूसरी प्रतिक्रिया तेज होती है, छोटी प्रेरण अवधि के बाद, जिसके दौरान स्थिर अवस्था सन्निकटन लागू नहीं होता है, B की सांद्रता कम रहती है (और पूर्ण अर्थ में कम या ज्यादा स्थिर) क्योंकि इसके गठन और गायब होने की दर लगभग बराबर होती है और स्थिर अवस्था सन्निकटन का उपयोग किया जा सकता है।


स्थिर स्थिति सन्निकटन के समान परिणाम प्राप्त करने के लिए संतुलन सन्निकटन का उपयोग कभी-कभी रासायनिक कैनेटीक्स में किया जा सकता है। इसमें यह मान लेना शामिल है कि मध्यवर्ती अभिकारकों के साथ रासायनिक संतुलन में तेजी से पहुंचता है। उदाहरण के लिए, माइकलिस-मेंटेन कैनेटीक्स को स्थिर अवस्था के बजाय संतुलन मानकर प्राप्त किया जा सकता है। सामान्य रूप से स्थिर अवस्था सन्निकटन को लागू करने की आवश्यकताएँ ढीली होती हैं: मध्यवर्ती की सांद्रता केवल कम और अधिक या कम स्थिर होने की आवश्यकता होती है (जैसा कि देखा गया है, यह केवल उन दरों के साथ करना है जिस पर यह प्रकट होता है और गायब हो जाता है) लेकिन यह है संतुलन में होना आवश्यक नहीं है।
स्थिर स्थिति सन्निकटन के समान परिणाम प्राप्त करने के लिए संतुलन सन्निकटन का उपयोग कभी-कभी रासायनिक कैनेटीक्स में किया जा सकता है। इसमें यह मान लेना शामिल है कि मध्यवर्ती अभिकारकों के साथ रासायनिक संतुलन में तेजी से पहुंचता है। उदाहरण के लिए, माइकलिस-मेंटेन कैनेटीक्स को स्थिर अवस्था के बजाय संतुलन मानकर प्राप्त किया जा सकता है। सामान्य रूप से स्थिर अवस्था सन्निकटन को लागू करने की आवश्यकताएँ ढीली होती हैं: मध्यवर्ती की सांद्रता केवल कम और अधिक या कम स्थिर होने की आवश्यकता होती है (जैसा कि देखा गया है, यह केवल उन दरों के साथ करना है जिस पर यह प्रकट होता है और गायब हो जाता है) लेकिन यह है संतुलन में होना आवश्यक नहीं है।

Revision as of 10:25, 25 May 2023

रसायन विज्ञान में, स्थिर अवस्था एक ऐसी स्थिति है जिसमें सभी थर्मोडायनामिक चर चल रहे रासायनिक प्रक्रिया के बावजूद स्थिर होते हैं जो उन्हें बदलने का प्रयास करते हैं। संपूर्ण प्रणाली के स्थिर अवस्था में होने के लिए, यानी प्रणाली के सभी राज्य चर स्थिर होने के लिए, प्रणाली के माध्यम से एक प्रवाह होना चाहिए (द्रव्यमान संतुलन की तुलना करें)। इस तरह की प्रणाली का सरल उदाहरण एक बाथटब का मामला है जिसमें नल चल रहा है लेकिन नाली अनप्लग है: एक निश्चित समय के बाद, पानी एक ही दर से अंदर और बाहर बहता है, इसलिए जल स्तर (राज्य चर आयतन) स्थिर हो जाता है और सिस्टम स्थिर स्थिति में है।

स्थिर अवस्था अवधारणा रासायनिक संतुलन से भिन्न है। यद्यपि दोनों ऐसी स्थिति बना सकते हैं जहां रासायनिक संतुलन में एक प्रणाली में एकाग्रता नहीं बदलती है, शुद्ध प्रतिक्रिया दर शून्य है (उत्पाद (रसायन विज्ञान) अभिकारकों में उसी दर पर परिवर्तित होता है जैसे अभिकारक उत्पादों में परिवर्तित होते हैं), जबकि ऐसी कोई सीमा मौजूद नहीं है स्थिर अवस्था की अवधारणा में। वास्तव में, स्थिर अवस्था के विकास के लिए रासायनिक प्रतिक्रिया का होना बिल्कुल भी आवश्यक नहीं है।

स्थिर स्थिति शब्द का उपयोग ऐसी स्थिति का वर्णन करने के लिए भी किया जाता है जहां सिस्टम के कुछ, लेकिन सभी राज्य चर स्थिर नहीं होते हैं। ऐसी स्थिर अवस्था के विकास के लिए, सिस्टम को प्रवाह प्रणाली नहीं होना चाहिए। इसलिए, ऐसी स्थिर स्थिति बंद प्रणाली में विकसित हो सकती है जहां रासायनिक प्रतिक्रियाओं की श्रृंखला होती है। रासायनिक कैनेटीक्स में साहित्य आमतौर पर इस मामले को संदर्भित करता है, इसे 'स्थिर राज्य सन्निकटन' कहते हैं।

सरल प्रणालियों में स्थिर अवस्था को राज्य चर द्वारा धीरे-धीरे कम या बढ़ते हुए संपर्क किया जाता है जब तक कि वे अपने स्थिर राज्य मूल्य तक नहीं पहुंच जाते। अधिक जटिल प्रणालियों में राज्य चर सैद्धांतिक स्थिर अवस्था के आसपास उतार-चढ़ाव कर सकते हैं या तो हमेशा के लिए (एक सीमा चक्र) या धीरे-धीरे करीब और करीब आ रहे हैं। यह सैद्धांतिक रूप से स्थिर अवस्था तक पहुँचने में अनंत समय लेता है, ठीक उसी तरह जैसे रासायनिक संतुलन तक पहुँचने में अनंत समय लगता है।

हालाँकि, दोनों अवधारणाएँ अक्सर उपयोग किए जाने वाले सन्निकटन हैं क्योंकि ये अवधारणाएँ पर्याप्त गणितीय सरलीकरण प्रदान करती हैं। इन अवधारणाओं का उपयोग किया जा सकता है या नहीं, अंतर्निहित धारणाओं की त्रुटि पर निर्भर करता है। इसलिए, सैद्धांतिक दृष्टिकोण से स्थिर स्थिति के बावजूद, निरंतर चालकों की आवश्यकता होती है (उदाहरण के लिए निरंतर प्रवाह दर और प्रवाह में निरंतर सांद्रता), गैर-निरंतर चालकों के साथ प्रणाली के लिए स्थिर स्थिति मानकर पेश की गई त्रुटि नगण्य हो सकती है यदि स्थिर अवस्था में काफी तेजी से संपर्क किया जाता है (अपेक्षाकृत बोलना)।

व्यवहार में यह पर्याप्त है कि गठन और विनाश की दर लगभग समान है, जिसका अर्थ है कि मध्यवर्ती की एकाग्रता की भिन्नता की शुद्ध दर गठन और विनाश की तुलना में छोटी है, और मध्यवर्ती की एकाग्रता केवल धीरे-धीरे बदलती है, समान अभिकारकों

रासायनिक कैनेटीक्स में स्थिर अवस्था सन्निकटन

स्थिर स्थिति सन्निकटन,[1] कभी-कभी स्थिर-राज्य सन्निकटन या मैक्स बोडेंस्टीन के अर्ध-स्थिर राज्य सन्निकटन कहा जाता है, इसमें प्रतिक्रिया तंत्र में प्रतिक्रिया के परिवर्तन की दर को शून्य के बराबर सेट करना शामिल होता है ताकि गतिज समीकरणों को मध्यवर्ती के गठन की दर निर्धारित करके सरल बनाया जा सके। इसके विनाश की दर के बराबर।

व्यवहार में यह पर्याप्त है कि गठन और विनाश की दर लगभग समान है, जिसका अर्थ है कि मध्यवर्ती की एकाग्रता की भिन्नता की शुद्ध दर गठन और विनाश की तुलना में छोटी है, और मध्यवर्ती की एकाग्रता केवल धीरे-धीरे बदलती है, समान अभिकारकों और उत्पादों के लिए (नीचे दिए गए आंकड़ों में समीकरण और हरे निशान देखें)।

इसका उपयोग दर समीकरणों से उत्पन्न होने वाले अंतर समीकरणों के समाधान की सुविधा प्रदान करता है, जिसमें सरलतम से परे अधिकांश तंत्रों के लिए बंद-रूप अभिव्यक्ति की कमी होती है। उदाहरण के लिए, माइकलिस-मेंटेन कैनेटीक्स में स्थिर अवस्था सन्निकटन लागू किया जाता है।

उदाहरण के रूप में, स्थिर स्थिति सन्निकटन एक बंद प्रणाली में दो लगातार, अपरिवर्तनीय, सजातीय प्रथम क्रम प्रतिक्रियाओं पर लागू किया जाएगा। (विषम प्रतिक्रियाओं के लिए, सतहों पर प्रतिक्रियाएं देखें।) यह मॉडल, उदाहरण के लिए, रेडियोधर्मी क्षय की श्रृंखला के अनुरूप है 239U → 239Np → 239Pu.

यदि निम्नलिखित प्रतिक्रिया के लिए दर स्थिरांक हैं k1 और k2; A → B → C, सिस्टम के लिए द्रव्यमान संतुलन के साथ दर समीकरणों के संयोजन से तीन युग्मित अंतर समीकरण प्राप्त होते हैं:

प्रतिक्रिया दर

प्रजाति ए के लिए: प्रजाति बी के लिए:

यहां पहला (सकारात्मक) पद पहले चरण द्वारा बी के गठन का प्रतिनिधित्व करता है A → B, जिसकी दर प्रारंभिक अभिकारक ए पर निर्भर करती है। दूसरा (नकारात्मक) शब्द दूसरे चरण द्वारा बी की खपत का प्रतिनिधित्व करता है B → C, जिसकी दर उस चरण में अभिकारक के रूप में B पर निर्भर करती है।

प्रजाति सी के लिए:


विश्लेषणात्मक समाधान

इन समीकरणों के लिए विश्लेषणात्मक समाधान (यह मानते हुए कि A को छोड़कर प्रत्येक पदार्थ की प्रारंभिक सांद्रता शून्य है) हैं:[2]


स्थिर अवस्था

यदि स्थिर अवस्था सन्निकटन लागू किया जाता है, तो मध्यवर्ती की सांद्रता का व्युत्पन्न शून्य पर सेट हो जाता है। यह द्वितीय अवकल समीकरण को बीजगणितीय समीकरण में बदल देता है जिसे हल करना बहुत आसान है।

इसलिए, ताकि तब से प्रतिक्रिया मध्यवर्ती बी की एकाग्रता उसी समय के साथ बदलती है जैसे [ए] और उस अर्थ में स्थिर स्थिति में नहीं है।

वैधता

File:Consecutive reactions rate constants 2-1.JPG
1=k2/k1 = 0.5}
  Concentration of intermediate
  Concentration of product
  Concentration of substrate
File:Consecutive reactions rate constants 1-10.JPG
1=k2/k1 = 10}
  Concentration of intermediate
  Concentration of product
  Concentration of substrate

विश्लेषणात्मक और अनुमानित समाधानों की अब तुलना की जानी चाहिए ताकि यह तय किया जा सके कि यह स्थिर स्थिति सन्निकटन का उपयोग करने के लिए कब मान्य है। विश्लेषणात्मक समाधान अनुमानित एक में बदल जाता है क्योंकि तब और इसलिए, यह स्थिर अवस्था सन्निकटन को तभी लागू करने के लिए मान्य है जब दूसरी प्रतिक्रिया पहले की तुलना में बहुत तेज हो (k2/k1 > 10 सामान्य मानदंड है), क्योंकि इसका मतलब है कि मध्यवर्ती धीरे-धीरे बनता है और आसानी से प्रतिक्रिया करता है इसलिए इसकी एकाग्रता कम रहती है।

ग्राफ विश्लेषणात्मक समाधान से गणना की गई दो मामलों में ए (लाल), बी (हरा) और सी (नीला) की सांद्रता दिखाते हैं।

जब पहली प्रतिक्रिया तेज होती है तो यह मानना ​​मान्य नहीं है कि [बी] की भिन्नता बहुत छोटी है, क्योंकि [बी] न तो कम है और न ही स्थिर के करीब है: पहले ए तेजी से बी में बदल जाता है और बी जमा हो जाता है क्योंकि यह धीरे-धीरे गायब हो जाता है। जैसे-जैसे A की सांद्रता घटती है, इसके रूपांतरण की दर घटती जाती है, उसी समय B से C की प्रतिक्रिया की दर बढ़ती जाती है क्योंकि अधिक B बनता है, इसलिए अधिकतम तक पहुँच जाता है जब
तब से B की सांद्रता कम हो जाती है।

जब दूसरी प्रतिक्रिया तेज होती है, छोटी प्रेरण अवधि के बाद, जिसके दौरान स्थिर अवस्था सन्निकटन लागू नहीं होता है, B की सांद्रता कम रहती है (और पूर्ण अर्थ में कम या ज्यादा स्थिर) क्योंकि इसके गठन और गायब होने की दर लगभग बराबर होती है और स्थिर अवस्था सन्निकटन का उपयोग किया जा सकता है।

स्थिर स्थिति सन्निकटन के समान परिणाम प्राप्त करने के लिए संतुलन सन्निकटन का उपयोग कभी-कभी रासायनिक कैनेटीक्स में किया जा सकता है। इसमें यह मान लेना शामिल है कि मध्यवर्ती अभिकारकों के साथ रासायनिक संतुलन में तेजी से पहुंचता है। उदाहरण के लिए, माइकलिस-मेंटेन कैनेटीक्स को स्थिर अवस्था के बजाय संतुलन मानकर प्राप्त किया जा सकता है। सामान्य रूप से स्थिर अवस्था सन्निकटन को लागू करने की आवश्यकताएँ ढीली होती हैं: मध्यवर्ती की सांद्रता केवल कम और अधिक या कम स्थिर होने की आवश्यकता होती है (जैसा कि देखा गया है, यह केवल उन दरों के साथ करना है जिस पर यह प्रकट होता है और गायब हो जाता है) लेकिन यह है संतुलन में होना आवश्यक नहीं है।

उदाहरण

प्रतिक्रियाH2 + Br2 → 2 HBr निम्नलिखित तंत्र है:

Br2 → 2Br k1 Initiation
Br + H2 → HBr + H k2 Propagation
H + Br2 → HBr + Br k3 Propagation
H + HBr → H2 + Br k4 Inhibition
2Br → Br2 k5 Breaking

प्रत्येक प्रजाति की दर हैं:

इन समीकरणों को हल नहीं किया जा सकता है, क्योंकि प्रत्येक के मान समय के साथ बदलते हैं। उदाहरण के लिए, पहले समीकरण में [Br] की सांद्रता है, [H2] और [Br2], जो समय पर निर्भर करता है, जैसा कि उनके संबंधित समीकरणों में देखा जा सकता है।

दर समीकरणों को हल करने के लिए स्थिर अवस्था सन्निकटन का उपयोग किया जा सकता है। इस अभिक्रिया के अभिकारक हैं H2 और Br2, मध्यवर्ती H और Br हैं, और उत्पाद HBr है।

समीकरणों को हल करने के लिए, मध्यवर्ती की दरों को स्थिर अवस्था सन्निकटन में 0 पर सेट किया गया है:

H की प्रतिक्रिया दर से, k2[Br][H2] − k3[H][Br2] − k4[H][HBr] = 0, इसलिए Br की प्रतिक्रिया दर को सरल बनाया जा सकता है:

HBr की प्रतिक्रिया दर को बदलते हुए भी सरल बनाया जा सकता है k2[Br][H2] − k4[H][Br] को k3[H][Br2], क्योंकि दोनों मान बराबर हैं।

समीकरण 1 से H की सांद्रता को पृथक किया जा सकता है:

इस मध्यवर्ती की सांद्रता कम होती है और समय के साथ अभिकारकों और उत्पाद की सांद्रता की तरह बदलती है। इसे देने के लिए अंतिम अंतर समीकरण में डाला गया है

समीकरण को सरल करने से होता है

प्रयोगात्मक रूप से देखी गई दर है

प्रयोगात्मक दर कानून स्थिर राज्य सन्निकटन के साथ प्राप्त दर के समान है, यदि है और है .

यह भी देखें

नोट्स और संदर्भ

  1. IUPAC Gold Book definition of steady state
  2. P. W. Atkins and J. de Paula, Physical Chemistry (8th edition, W.H.Freeman 2006), p.811 ISBN 0-7167-8759-8

बाहरी संबंध