स्टोचैस्टिक कैलकुलस: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Calculus on stochastic processes}} {{No footnotes|date=August 2011}} {{Calculus |Specialized}} स्टोचैस्टिक कैलकुलस ग...")
 
(text)
Line 1: Line 1:
{{Short description|Calculus on stochastic processes}}
{{Short description|Calculus on stochastic processes}}
{{No footnotes|date=August 2011}}
{{Calculus |Specialized}}
{{Calculus |Specialized}}
स्टोचैस्टिक कैलकुलस गणित की एक शाखा है जो स्टोकेस्टिक प्रक्रियाओं पर काम करती है। यह स्टोकास्टिक प्रक्रियाओं के संबंध में स्टोकास्टिक प्रक्रियाओं के [[अभिन्न]] अंग के लिए एकीकरण के एक सतत सिद्धांत को परिभाषित करने की अनुमति देता है। यह क्षेत्र [[द्वितीय विश्व युद्ध]] के दौरान [[जापानी लोग]]ों के गणितज्ञ कियोसी इटो द्वारा बनाया और शुरू किया गया था।
'''स्टोचैस्टिक कैलकुलस''' गणित की शाखा है जो स्टोकेस्टिक प्रक्रियाओं (प्रसम्भाव्‍य प्रक्रम) पर काम करती है। यह स्टोकास्टिक प्रक्रियाओं के [[अभिन्न|समाकलन]] के लिए एकीकरण के सतत सिद्धांत को परिभाषित करने की अनुमति देता है। यह क्षेत्र [[द्वितीय विश्व युद्ध]] के दौरान [[जापानी लोग]] के गणितज्ञ कियोसी आईटीओ द्वारा बनाया और शुरू किया गया था।


सबसे प्रसिद्ध [[अनेक संभावनाओं में से चुनी हूई प्रक्रिया]] जिसके लिए स्टोचैस्टिक कैलकुलस लागू किया जाता है, [[वीनर प्रक्रिया]] ([[नॉर्बर्ट वीनर]] के सम्मान में नामित) है, जिसका उपयोग [[एक प्रकार कि गति]] के मॉडलिंग के लिए किया जाता है जैसा कि 1900 में [[लुइस बैचलर]] और 1905 में [[अल्बर्ट आइंस्टीन]] द्वारा और अन्य भौतिक [[प्रसार]] प्रक्रियाओं में वर्णित है। यादृच्छिक बलों के अधीन कणों के स्थान में। 1970 के दशक से, स्टॉक की कीमतों और बॉन्ड ब्याज दरों के समय में विकास को मॉडल करने के लिए [[वित्तीय गणित]] और [[अर्थशास्त्र]] में वीनर प्रक्रिया को व्यापक रूप से लागू किया गया है।
सबसे प्रसिद्ध [[अनेक संभावनाओं में से चुनी हूई प्रक्रिया|स्टोचैस्टिक प्रक्रिया]] जिसके लिए स्टोचैस्टिक कैलकुलस लागू किया जाता है, [[वीनर प्रक्रिया]] ([[नॉर्बर्ट वीनर]] के सम्मान में नामित) है, जिसका उपयोग [[एक प्रकार कि गति|ब्राउनियन गति]] के मॉडलिंग के लिए किया जाता है जैसा कि 1900 में [[लुइस बैचलर]] और 1905 में [[अल्बर्ट आइंस्टीन]] द्वारा और यादृच्छिक बलों के अधीन कणों के स्थान में अन्य भौतिक [[प्रसार|विसरण]] प्रक्रियाओं में वर्णित है। 1970 के दशक से, स्टॉक की कीमतों और बॉन्ड ब्याज दरों के समय में विकास को मॉडल करने के लिए [[वित्तीय गणित]] और [[अर्थशास्त्र]] में वीनर प्रक्रिया को व्यापक रूप से लागू किया गया है।


स्टोचैस्टिक कैलकुलस के मुख्य स्वाद हैं इटो कैलकुलस और इसके परिवर्तनशील रिश्तेदार [[ मॉडल गणना ]]। तकनीकी कारणों से आईटीओ इंटीग्रल प्रक्रियाओं के सामान्य वर्गों के लिए सबसे उपयोगी है, लेकिन संबंधित [[स्ट्रैटोनोविच अभिन्न]] समस्या निर्माण (विशेष रूप से इंजीनियरिंग विषयों में) में अक्सर उपयोगी होता है। स्ट्रैटोनोविच इंटीग्रल को इटो इंटीग्रल के संदर्भ में आसानी से व्यक्त किया जा सकता है। स्ट्रैटोनोविच इंटीग्रल का मुख्य लाभ यह है कि यह सामान्य [[श्रृंखला नियम]] का पालन करता है और इसलिए इटो के लेम्मा की आवश्यकता नहीं होती है। यह समस्याओं को एक समन्वय प्रणाली अपरिवर्तनीय रूप में व्यक्त करने में सक्षम बनाता है, जो आर के अलावा कई गुना पर स्टोकेस्टिक कलन विकसित करते समय अमूल्य है<sup>एन</sup>.
स्टोचैस्टिक कैलकुलस के मुख्य अनुमान हैं आईटीओ कैलकुलस और इसके परिवर्तनशील सम्बन्धी [[ मॉडल गणना | मल्लियाविन कैलकुलस]]। तकनीकी कारणों से आईटीओ इंटीग्रल प्रक्रियाओं के सामान्य वर्गों के लिए सबसे उपयोगी है, लेकिन संबंधित [[स्ट्रैटोनोविच अभिन्न|स्ट्रैटोनोविच समाकलन]] समस्या निर्माण (विशेष रूप से इंजीनियरिंग विषयों में) में अक्सर उपयोगी होता है। स्ट्रैटोनोविच इंटीग्रल को आईटीओ इंटीग्रल के संदर्भ में आसानी से व्यक्त किया जा सकता है। स्ट्रैटोनोविच इंटीग्रल का मुख्य लाभ यह है कि यह सामान्य [[श्रृंखला नियम]] का पालन करता है और इसलिए आईटीओ के लेम्मा की आवश्यकता नहीं होती है। यह समस्याओं को समन्वय प्रणाली अपरिवर्तनीय रूप में व्यक्त करने में सक्षम बनाता है, जो '''R'''<sup>''n''</sup> के अलावा कई गुना पर स्टोकेस्टिक कलन विकसित करते समय अमूल्य है। वर्चस्व अभिसरण प्रमेय स्ट्रैटोनोविच इंटीग्रल के लिए नहीं है; परिणामतः आईटीओ रूप में समाकलों को फिर से अभिव्यक्त किए बिना परिणामों को सिद्ध करना बहुत कठिन है।
वर्चस्व अभिसरण प्रमेय स्ट्रैटोनोविच इंटीग्रल के लिए नहीं है; परिणामतः इटो रूप में समाकलों को फिर से अभिव्यक्त किए बिना परिणामों को सिद्ध करना बहुत कठिन है।


== यह अभिन्न == है
== यह समाकलन == है
{{main|Itô calculus}}
{{main|Itô calculus}}


इटो इंटीग्रल स्टोचैस्टिक कैलकुलस के अध्ययन के लिए केंद्रीय है। अभिन्न <math>\int H\,dX</math> एक [[ s ]] एक्स और स्थानीय रूप से बंधी हुई 'प्रेडिक्टेबल' प्रक्रिया एच के लिए परिभाषित किया गया है। {{Citation needed|date=August 2011}}
आईटीओ इंटीग्रल स्टोचैस्टिक कैलकुलस के अध्ययन के लिए केंद्रीय है। समाकलन <math>\int H\,dX</math> एक [[ s ]] एक्स और स्थानीय रूप से बंधी हुई 'प्रेडिक्टेबल' प्रक्रिया एच के लिए परिभाषित किया गया है। {{Citation needed|date=August 2011}}


== स्ट्रैटोनोविच इंटीग्रल ==
== स्ट्रैटोनोविच इंटीग्रल ==
{{main|Stratonovich integral}}
{{main|Stratonovich integral}}


एक सेमीमार्टिंगेल का स्ट्रैटोनोविच अभिन्न <math>X</math> एक अन्य सेमीमार्टिंगेल वाई के खिलाफ इटो इंटीग्रल के रूप में परिभाषित किया जा सकता है
एक सेमीमार्टिंगेल का स्ट्रैटोनोविच समाकलन <math>X</math> एक अन्य सेमीमार्टिंगेल वाई के खिलाफ आईटीओ इंटीग्रल के रूप में परिभाषित किया जा सकता है


:<math> \int_0^t X_{s-} \circ d Y_s : = \int_0^t X_{s-} d Y_s + \frac{1}{2} \left [ X, Y\right]_t^c,</math>
:<math> \int_0^t X_{s-} \circ d Y_s : = \int_0^t X_{s-} d Y_s + \frac{1}{2} \left [ X, Y\right]_t^c,</math>

Revision as of 10:43, 26 May 2023

स्टोचैस्टिक कैलकुलस गणित की शाखा है जो स्टोकेस्टिक प्रक्रियाओं (प्रसम्भाव्‍य प्रक्रम) पर काम करती है। यह स्टोकास्टिक प्रक्रियाओं के समाकलन के लिए एकीकरण के सतत सिद्धांत को परिभाषित करने की अनुमति देता है। यह क्षेत्र द्वितीय विश्व युद्ध के दौरान जापानी लोग के गणितज्ञ कियोसी आईटीओ द्वारा बनाया और शुरू किया गया था।

सबसे प्रसिद्ध स्टोचैस्टिक प्रक्रिया जिसके लिए स्टोचैस्टिक कैलकुलस लागू किया जाता है, वीनर प्रक्रिया (नॉर्बर्ट वीनर के सम्मान में नामित) है, जिसका उपयोग ब्राउनियन गति के मॉडलिंग के लिए किया जाता है जैसा कि 1900 में लुइस बैचलर और 1905 में अल्बर्ट आइंस्टीन द्वारा और यादृच्छिक बलों के अधीन कणों के स्थान में अन्य भौतिक विसरण प्रक्रियाओं में वर्णित है। 1970 के दशक से, स्टॉक की कीमतों और बॉन्ड ब्याज दरों के समय में विकास को मॉडल करने के लिए वित्तीय गणित और अर्थशास्त्र में वीनर प्रक्रिया को व्यापक रूप से लागू किया गया है।

स्टोचैस्टिक कैलकुलस के मुख्य अनुमान हैं आईटीओ कैलकुलस और इसके परिवर्तनशील सम्बन्धी मल्लियाविन कैलकुलस। तकनीकी कारणों से आईटीओ इंटीग्रल प्रक्रियाओं के सामान्य वर्गों के लिए सबसे उपयोगी है, लेकिन संबंधित स्ट्रैटोनोविच समाकलन समस्या निर्माण (विशेष रूप से इंजीनियरिंग विषयों में) में अक्सर उपयोगी होता है। स्ट्रैटोनोविच इंटीग्रल को आईटीओ इंटीग्रल के संदर्भ में आसानी से व्यक्त किया जा सकता है। स्ट्रैटोनोविच इंटीग्रल का मुख्य लाभ यह है कि यह सामान्य श्रृंखला नियम का पालन करता है और इसलिए आईटीओ के लेम्मा की आवश्यकता नहीं होती है। यह समस्याओं को समन्वय प्रणाली अपरिवर्तनीय रूप में व्यक्त करने में सक्षम बनाता है, जो Rn के अलावा कई गुना पर स्टोकेस्टिक कलन विकसित करते समय अमूल्य है। वर्चस्व अभिसरण प्रमेय स्ट्रैटोनोविच इंटीग्रल के लिए नहीं है; परिणामतः आईटीओ रूप में समाकलों को फिर से अभिव्यक्त किए बिना परिणामों को सिद्ध करना बहुत कठिन है।

== यह समाकलन == है

आईटीओ इंटीग्रल स्टोचैस्टिक कैलकुलस के अध्ययन के लिए केंद्रीय है। समाकलन एक s एक्स और स्थानीय रूप से बंधी हुई 'प्रेडिक्टेबल' प्रक्रिया एच के लिए परिभाषित किया गया है।[citation needed]

स्ट्रैटोनोविच इंटीग्रल

एक सेमीमार्टिंगेल का स्ट्रैटोनोविच समाकलन एक अन्य सेमीमार्टिंगेल वाई के खिलाफ आईटीओ इंटीग्रल के रूप में परिभाषित किया जा सकता है

जहां [एक्स, वाई]tc X के निरंतर भागों की द्विघात भिन्नता को दर्शाता है और वाई वैकल्पिक संकेतन

स्ट्रैटोनोविच इंटीग्रल को निरूपित करने के लिए भी प्रयोग किया जाता है।

अनुप्रयोग

स्टोचैस्टिक कैलकुलस का एक महत्वपूर्ण अनुप्रयोग गणितीय वित्त में है, जिसमें संपत्ति की कीमतों को अक्सर स्टोचैस्टिक अंतर समीकरण का पालन करने के लिए माना जाता है। उदाहरण के लिए, ब्लैक-स्कोल्स मॉडल कीमतों के विकल्प जैसे कि वे एक ज्यामितीय ब्राउनियन गति का पालन करते हैं, अवसरों और जोखिमों को स्टोकेस्टिक कैलकुलस लागू करने से दर्शाते हैं।

यह भी देखें

  • यह कलन है
  • यह लेम्मा है
  • स्ट्रैटोनोविच इंटीग्रल
  • सेमीमार्टिंगेल
  • वीनर प्रक्रिया


संदर्भ

  • Fima C Klebaner, 2012, Introduction to Stochastic Calculus with Application (3rd Edition). World Scientific Publishing, ISBN 9781848168312
  • Szabados, T. S.; Székely, B. Z. (2008). "Stochastic Integration Based on Simple, Symmetric Random Walks". Journal of Theoretical Probability. 22: 203. arXiv:0712.3908. doi:10.1007/s10959-007-0140-8. Preprint