इंटरटेम्पोरल सीएपीएम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 41: Line 41:
जहाँ <math>r_f</math> जोखिम मुक्त पुनरावृत्ति है। पहले क्रमबद्ध शर्त के रूप में हैं,
जहाँ <math>r_f</math> जोखिम मुक्त पुनरावृत्ति है। पहले क्रमबद्ध शर्त के रूप में हैं,
:<math> J_W(\alpha_i-r_f)+J_{WW}W \sum_{j=1}^n w^*_j \sigma_{ij} + J_{WX} \sigma_{iX}=0 \quad i=1,2,\ldots,n</math>
:<math> J_W(\alpha_i-r_f)+J_{WW}W \sum_{j=1}^n w^*_j \sigma_{ij} + J_{WX} \sigma_{iX}=0 \quad i=1,2,\ldots,n</math>
मैट्रिक्स रूप में, हमारे पास है
आव्यूह रूप में, हमारे पास है
:<math> (\alpha - r_f {\mathbf 1}) = \frac{-J_{WW}}{J_W} \Omega w^* W + \frac{-J_{WX}}{J_W} cov_{rX} </math>
:<math> (\alpha - r_f {\mathbf 1}) = \frac{-J_{WW}}{J_W} \Omega w^* W + \frac{-J_{WX}}{J_W} cov_{rX} </math>
जहाँ <math>\alpha</math> अपेक्षित रिटर्न का सदिश होता है, तो <math> \Omega </math> रिटर्न का [[सहप्रसरण|कोवेरीअन्स]] , <math> {\mathbf 1}</math> एकता सदिश <math> cov_{rX} </math> रिटर्न और स्टेट चर के बीच कोवेरीअन्स इष्टतम भार के रूप में हैं:
जहाँ <math>\alpha</math> अपेक्षित रिटर्न का सदिश होता है, तो <math> \Omega </math> आव्यूह रिटर्न का [[सहप्रसरण|कोवेरीअन्स]] , <math> {\mathbf 1}</math> एकता सदिश <math> cov_{rX} </math> और स्टेट चर के बीच कोवेरीअन्स इष्टतम भार के रूप में होता हैं


:<math> {\mathbf w^*} = \frac{-J_W}{J_{WW} W}\Omega^{-1}(\alpha - r_f {\mathbf 1}) - \frac{J_{WX}}{J_{WW}W}\Omega^{-1} cov_{rX}</math>
:<math> {\mathbf w^*} = \frac{-J_W}{J_{WW} W}\Omega^{-1}(\alpha - r_f {\mathbf 1}) - \frac{J_{WX}}{J_{WW}W}\Omega^{-1} cov_{rX}</math>

Revision as of 09:19, 31 May 2023

गणितीय वित्त के अंतर्गत इंटरटेम्पोरल कैपिटल एसेट प्राइसिंग मॉडल या आईसीएपीएम रॉबर्ट सी. मर्टन द्वारा प्रदान किए गए सीएपीएम का विकल्प है। यह गुणधर्म के साथ एक रेखीय कारक मॉडल के रूप में है, जो भविष्य के रिटर्न लाभ या आय के वितरण में परिवर्तन का पूर्वानुमान करता है।

आईसीएपीएम में निवेशक एक से अधिक अनिश्चितताओं का सामना करने पर आजीवन उपभोग निर्णयों को हल कर रहे हैं। आईसीएपीएम और मानक सीएपीएम. के बीच मुख्य अंतर एक अतिरिक्तक स्थिति के रूप में है, जो इस तथ्य को स्वीकार करते हैं कि निवेशक खपत में कमी या भविष्य के निवेश के अवसरों में होने वाले परिवर्तनों के विरूद्ध बचाव करते हैं।

निरंतर समय संस्करण

रॉबर्ट सी मर्टन[1] संतुलन में एक सतत समय बाजार के रूप में मानता है। स्टेट चर (X) एक वीनर प्रक्रिया का अनुसरण करता है।

निवेशक अपने वॉन न्यूमैन-मॉर्गनस्टर्न उपयोगिता प्रमेय को अधिकतम रूप में करता है।

जहां T समय क्षितिज के रूप में है और B[W(T),T] वेल्थ की उपयोगिता W से है।

वेल्थ (W) पर निवेशक की निम्नलिखित बाधाएँ होती है। माना वेल्थ i में निवेश किया भार के रूप में है तब,

जहाँ वेल्थ पर वापसी i के रूप में वेल्थ में परिवर्तन है।

हम समस्या को हल करने के लिए गतिशील प्रोग्रामिंग का उपयोग कर सकते हैं। उदाहरण के लिए, यदि हम असतत समय की समस्याओं की एक श्रृंखला पर विचार करते हैं।

यहाँ, एक टेलर श्रृंखला इस रूप में है,

जहाँ t और t+dt के बीच का मान है।

यह मानते हुए कि रिटर्न एक वीनर प्रक्रिया का पालन करता है।

साथ में,

फिर दूसरे और उच्च क्रम की शर्तों को अस्वीकृत करता है।

इष्टतम नियंत्रण का उपयोग करके, हम समस्या को पुन: स्थापित कर सकते है।

वेल्थ बाधा के अधीन पहले कहा गया हैं।

इटो लेम्मा का उपयोग करके हम फिर से लिख सकते हैं।

और अपेक्षित मूल्य के रूप में होते है

कुछ बीजगणित के बाद[2] हमारे पास निम्नलिखित उद्देश्य फलन के रूप में है,

जहाँ जोखिम मुक्त पुनरावृत्ति है। पहले क्रमबद्ध शर्त के रूप में हैं,

आव्यूह रूप में, हमारे पास है

जहाँ अपेक्षित रिटर्न का सदिश होता है, तो आव्यूह रिटर्न का कोवेरीअन्स , एकता सदिश और स्टेट चर के बीच कोवेरीअन्स इष्टतम भार के रूप में होता हैं

ध्यान दें कि इंटरटेम्पोरल मॉडल पूंजी परिवेल्थ मूल्य निर्धारण मॉडल सीएपीएम के समान भार प्रदान करता है और इस प्रकार अपेक्षित रिटर्न को निम्नानुसार व्यक्त किया जा सकता है

जहां m मार्केट पोर्टफोलियो के रूप में है और h स्टेट वेरिएबल को हेज करने के लिए पोर्टफोलियो है।

यह भी देखें

संदर्भ

  1. Merton, Robert (1973). "एक इंटरटेम्पोरल कैपिटल एसेट प्राइसिंग मॉडल". Econometrica. 41 (5): 867–887. doi:10.2307/1913811. JSTOR 1913811.
  2. :
  • Merton, R.C., (1973), An Intertemporal Capital Asset Pricing Model. Econometrica 41, Vol. 41, No. 5. (Sep., 1973), pp. 867–887
  • "Multifactor Portfolio Efficiency and Multifactor Asset Pricing" by Eugene F. Fama, (The Journal of Financial and Quantitative Analysis), Vol. 31, No. 4, Dec., 1996