समूह संरचना और पसंद का स्वयंसिद्ध: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[Image:Ernst Zermelo.jpeg|110px|thumb|right|1904 में [[अर्नेस्ट ज़र्मेलो]] ने अच्छी क्रम वाली प्रमेय को साबित किया, जिसे चयनित स्वयंसिद्ध सिद्धान्त के रूप में जाना जाता था।]]गणित में [[समूह (गणित)|समूह]] एक ऐसा समुच्चय होता है जिसमें बाइनरी संक्रिया होती है जिसे गुणा कहा जाता है जो स्वयंसिद्ध समूहों का अनुसरण करती है। चयनित स्वयंसिद्ध [[ZFC|जेडएफसी]] समुच्चय सिद्धांत एक स्वयंसिद्ध सिद्धान्त है जो यह प्रदर्शित करता है कि प्रत्येक समुच्चय को सुव्यवस्थित किया जा सकता है।
[[Image:Ernst Zermelo.jpeg|110px|thumb|right|1904 में [[अर्नेस्ट ज़र्मेलो]] ने अपेक्षाकृत अच्छी क्रम वाली प्रमेय को सिद्ध किया, जिसे चयनित स्वयंसिद्ध सिद्धान्त के रूप में जाना जाता था।]]गणित में [[समूह (गणित)|समूह]] एक ऐसा समुच्चय होता है जिसमें बाइनरी संक्रिया होती है जिसे गुणा कहा जाता है जो स्वयंसिद्ध समूहों का अनुसरण करती है। चयनित स्वयंसिद्ध [[ZFC|जेडएफसी]] समुच्चय सिद्धांत एक स्वयंसिद्ध सिद्धान्त है जो यह प्रदर्शित करता है कि प्रत्येक समुच्चय को सुव्यवस्थित किया जा सकता है।


जेडएफ समुच्चय सिद्धांत में अर्थात चयनित स्वयंसिद्ध के अतिरिक्त जेडएफसी मे निम्नलिखित कथन समतुल्य हैं:
जेडएफ समुच्चय सिद्धांत में अर्थात चयनित स्वयंसिद्ध के अतिरिक्त जेडएफसी सिद्धांत मे निम्नलिखित कथन समतुल्य हैं:


* प्रत्येक गैर-रिक्त समुच्चय {{math|''X''}} के लिए एक बाइनरी संक्रियक ({{math|•}}) सम्मिलित है जैसे कि {{math|(''X'', •)}} एक समूह है।<ref>A [[cancellative]] binary operation suffices, i.e. such that {{math|(''X'', •)}} is a cancellative [[Magma (algebra)|magma]]. See below.</ref>
* प्रत्येक गैर-रिक्त समुच्चय {{math|''X''}} के लिए एक बाइनरी संक्रियक ({{math|•}}) सम्मिलित है जैसे कि {{math|(''X'', •)}} एक समूह है।<ref>A [[cancellative]] binary operation suffices, i.e. such that {{math|(''X'', •)}} is a cancellative [[Magma (algebra)|magma]]. See below.</ref>
* चयनित स्वयंसिद्ध सिद्धांत सत्य है।
* चयनित स्वयंसिद्ध सिद्धांत सत्य है।


Line 12: Line 12:
माना X एक समुच्चय है और {{math|ℵ(''X'')}} {{math|''X''}} की हार्टोग्स संख्या है। यह अपेक्षाकृत सबसे कम गणना संख्या है जैसे कि {{math|ℵ(''X'')}} से {{math|''X''}} में कोई [[इंजेक्शन (गणित)|अंतःक्षेपण (गणित)]] नहीं है। यह चयनित स्वयंसिद्ध सिद्धान्त की धारणा के अतिरिक्त सम्मिलित है। प्रमाण की तकनीकी सरलता के लिए यहाँ माना कि {{math|''X''}} का कोई क्रमसूचक नहीं है। अर्थात माना कि {{math|•}} समूह में गुणन {{math|(''X'' ∪ ℵ(''X''), •)}} को दर्शाता है।
माना X एक समुच्चय है और {{math|ℵ(''X'')}} {{math|''X''}} की हार्टोग्स संख्या है। यह अपेक्षाकृत सबसे कम गणना संख्या है जैसे कि {{math|ℵ(''X'')}} से {{math|''X''}} में कोई [[इंजेक्शन (गणित)|अंतःक्षेपण (गणित)]] नहीं है। यह चयनित स्वयंसिद्ध सिद्धान्त की धारणा के अतिरिक्त सम्मिलित है। प्रमाण की तकनीकी सरलता के लिए यहाँ माना कि {{math|''X''}} का कोई क्रमसूचक नहीं है। अर्थात माना कि {{math|•}} समूह में गुणन {{math|(''X'' ∪ ℵ(''X''), •)}} को दर्शाता है।


किसी भी {{math|''x'' ∈ ''X''}} के लिए {{math|α ∈ ℵ(''X'')}} जैसे कि {{math|''x'' • α ∈ ℵ(''X'')}} का मान नहीं है। और {{math|''y'' ∈ ''X''}} जैसे है कि {{math|''y'' • α ∈ ''X''}} सबके लिए {{math|α ∈ ℵ(''X'')}} है लेकिन [[प्राथमिक समूह सिद्धांत]] द्वारा {{math|''y'' • α}} सभी से भिन्न हैं क्योंकि α श्रेणी {{math|ℵ(''X'')}} से अधिक है। इस प्रकार {{math|''y''}} {{math|ℵ(''X'')}} से {{math|''X''}} में एक अनुक्रम है। यह असंभव है क्योंकि {{math|ℵ(''X'')}} एक ऐसी गणना संख्या है जिससे {{math|''X''}} में कोई अनुक्रम सम्मिलित नहीं होता है।
किसी भी {{math|''x'' ∈ ''X''}} के लिए {{math|α ∈ ℵ(''X'')}} जैसे कि {{math|''x'' • α ∈ ℵ(''X'')}} का मान नहीं है। और {{math|''y'' ∈ ''X''}} जैसे है कि {{math|''y'' • α ∈ ''X''}} सबके लिए {{math|α ∈ ℵ(''X'')}} है लेकिन [[प्राथमिक समूह सिद्धांत]] द्वारा {{math|''y'' • α}} सभी से भिन्न हैं क्योंकि α श्रेणी {{math|ℵ(''X'')}} से अधिक है। इस प्रकार {{math|''y''}} {{math|ℵ(''X'')}} से {{math|''X''}} में एक अनुक्रम है। यह असंभव है क्योंकि {{math|ℵ(''X'')}} एक ऐसी गणना संख्या है। जिससे {{math|''X''}} में कोई अनुक्रम सम्मिलित नहीं होता है।


अब {{math|''X''}} के मानचित्र {{math|''j''}} को {{math|ℵ(''X'') × ℵ(''X'')}} में परिभाषित करें जो कि {{math|''x'' ∈ ''X''}} को कम से कम {{math|(α, β) ∈ ℵ(''X'') × ℵ(''X'')}} दारा [[ लेक्सिकोग्राफिक ऑर्डर |लेक्सिकोग्राफिक अनुक्रम]] से संतुष्ट करता है जैसे कि {{math|1=''x'' • α = β}} उपरोक्त तर्क से मानचित्र {{math|''j''}} सम्मिलित है और अद्वितीय है क्योंकि सुव्यवस्थित समुच्चय के उपसमुच्चय का कम से कम तत्व अद्वितीय हैं। यह प्राथमिक समूह सिद्धांत अनुक्रम द्वारा है।
अब {{math|''X''}} के मानचित्र {{math|''j''}} को {{math|ℵ(''X'') × ℵ(''X'')}} में परिभाषित करें जो कि {{math|''x'' ∈ ''X''}} को कम से कम {{math|(α, β) ∈ ℵ(''X'') × ℵ(''X'')}} दारा [[ लेक्सिकोग्राफिक ऑर्डर |लेक्सिकोग्राफिक अनुक्रम]] से संतुष्ट करता है जैसे कि {{math|1=''x'' • α = β}} उपरोक्त तर्क से मानचित्र {{math|''j''}} सम्मिलित है और अद्वितीय है क्योंकि सुव्यवस्थित समुच्चय के उपसमुच्चय का कम से कम तत्व अद्वितीय हैं। यह प्राथमिक समूह सिद्धांत अनुक्रम द्वारा है।


अंत में {{math|''X''}} पर {{math|''x'' < ''y''}} यदि {{math|''j''(''x'') < ''j''(''y'')}} हो तो अनुक्रम को परिभाषित करें। यह इस प्रकार है कि प्रत्येक समुच्चय {{math|''X''}} को सुव्यवस्थित किया जा सकता है और इस प्रकार चयनित स्वयंसिद्ध सिद्धान्त सत्य है।<ref>{{harvnb|Hajnal|Kertész|1972}}</ref><ref>{{harvnb|Rubin|Rubin|1985|loc=p. 111}}</ref>
अंत में {{math|''X''}} पर {{math|''x'' < ''y''}} यदि {{math|''j''(''x'') < ''j''(''y'')}} हो तो अनुक्रम को परिभाषित करें। यह इस प्रकार है कि प्रत्येक समुच्चय {{math|''X''}} को सुव्यवस्थित किया जा सकता है। इस प्रकार चयनित स्वयंसिद्ध सिद्धान्त सत्य है।<ref>{{harvnb|Hajnal|Kertész|1972}}</ref><ref>{{harvnb|Rubin|Rubin|1985|loc=p. 111}}</ref>


ऊपर (i) में व्यक्त की गई महत्वपूर्ण विशेषता धारण करने के लिए और इसलिए संपूर्ण प्रमाण {{math|''X''}} के लिए एक निरस्त मैग्मा होने के लिए पर्याप्त है। उदाहरण एक अर्धसमूह निरस्तीकरण गुण यह सुनिश्चित करने के लिए पर्याप्त है कि {{math|''y'' • α}} सभी भिन्न हैं।<ref>{{harvnb|Hajnal|Kertész|1972}}</ref>
ऊपर (i) में व्यक्त की गई महत्वपूर्ण विशेषता का अनुकरण करने के लिए संपूर्ण प्रमाण {{math|''X''}} के लिए मैग्मा निरस्तीकरण पर्याप्त है। उदाहरण एक अर्धसमूह निरस्तीकरण का गुण यह सुनिश्चित करने के लिए पर्याप्त है कि {{math|''y'' • α}} सभी के लिए भिन्न हैं।<ref>{{harvnb|Hajnal|Kertész|1972}}</ref>


== चयनित स्वयंसिद्ध सिद्धान्त की समूह संरचना ==
== चयनित स्वयंसिद्ध सिद्धान्त की समूह संरचना ==
Line 25: Line 25:
मान लीजिए कि {{math|1=''f'' • ''g'' = ''f'' Δ ''g''}}, जहाँ {{math|Δ}} [[सममित अंतर]] को दर्शाता है। यह {{math|(''F'', •)}} को रिक्त समुच्चय वाले समूह में परिवर्तित कर देता है। {{math|Ø}} पहचान होने के कारण और प्रत्येक तत्व का अपना व्युत्क्रम ''f'' Δ ''f'' = Ø साहचर्य गुण होता है अर्थात {{math|1=(''f'' Δ ''g'') Δ ''h'' = ''f'' Δ (''g'' Δ ''h'')}} को संघ और समुच्चय अंतर के मूल गुणों का उपयोग करके सत्यापित किया जाता है। इस प्रकार {{math|''F''}} गुणन {{math|Δ}} वाला एक समूह है।
मान लीजिए कि {{math|1=''f'' • ''g'' = ''f'' Δ ''g''}}, जहाँ {{math|Δ}} [[सममित अंतर]] को दर्शाता है। यह {{math|(''F'', •)}} को रिक्त समुच्चय वाले समूह में परिवर्तित कर देता है। {{math|Ø}} पहचान होने के कारण और प्रत्येक तत्व का अपना व्युत्क्रम ''f'' Δ ''f'' = Ø साहचर्य गुण होता है अर्थात {{math|1=(''f'' Δ ''g'') Δ ''h'' = ''f'' Δ (''g'' Δ ''h'')}} को संघ और समुच्चय अंतर के मूल गुणों का उपयोग करके सत्यापित किया जाता है। इस प्रकार {{math|''F''}} गुणन {{math|Δ}} वाला एक समूह है।


कोई भी समुच्चय जिसे एक समूह के साथ आपत्ति में प्रयुक्त किया जा सकता है, वह आपत्ति के माध्यम से एक समूह बन जाता है। यह दिखाया जा सकता है कि {{math|1={{abs|''X''}} = {{abs|''F''}}}} और इसलिए X और समूह {{math|(''F'', •)}} के बीच एक से एक तथ्य {{math|1=''n'' = 0,1,2, ...}} के लिए, {{math|''F''<sub>''n''</sub>}} को गणनांक के सभी उपसमुच्चयों से मिलकर {{math|''F''}} का उपसमुच्चय सम्मिलित है। माना कि तब {{math|''F''}}, {{math|''F''<sub>''n''</sub>}} का असंयुक्त संघ है। गणनांक N के {{math|''X''}} के उपसमुच्चय की संख्या {{math|''X''<sup>''n''</sup>}} अधिकतम है क्योंकि n तत्वों के साथ प्रत्येक उपसमुच्चय {{math|''X''}} के n क्षेत्र कार्तीय उत्पाद {{math|''X''<sup>''n''</sup>}} का एक तत्व है। इसलिए {{math|1={{abs|''F''<sub>''n''</sub>}} ≤ {{abs|''X''}}<sup>''n''</sup> = {{abs|''X''}}}} सभी के लिए ''n'' ('''C''') द्वारा ('''B''') भिन्न है।
कोई भी समुच्चय जिसे एक समूह के साथ आपत्ति में प्रयुक्त किया जा सकता है, वह आपत्ति के माध्यम से एक समूह बन जाता है। यह दिखाया जा सकता है कि {{math|1={{abs|''X''}} = {{abs|''F''}}}} और इसलिए X और समूह {{math|(''F'', •)}} के बीच एक से एक तथ्य {{math|1=''n'' = 0,1,2, ...}} के लिए, {{math|''F''<sub>''n''</sub>}} को गणनांक के सभी उपसमुच्चयों से मिलकर {{math|''F''}} का उपसमुच्चय सम्मिलित है। माना कि तब {{math|''F''}}, {{math|''F''<sub>''n''</sub>}} का असंयुक्त संघ है। गणनांक N के {{math|''X''}} के उपसमुच्चय की संख्या {{math|''X''<sup>''n''</sup>}} अधिकतम है क्योंकि n तत्वों के साथ प्रत्येक उपसमुच्चय {{math|''X''}} के n क्षेत्र कार्तीय उत्पाद {{math|''X''<sup>''n''</sup>}} का एक तत्व है। इसलिए {{math|1={{abs|''F''<sub>''n''</sub>}} ≤ {{abs|''X''}}<sup>''n''</sup> = {{abs|''X''}}}} सभी के लिए ''n'' ('''C''') द्वारा ('''B''') भिन्न है।


इन परिणामों को एक साथ रखने पर यह देखा जाता है कि {{math|1={{abs|''F''}} = {{abs|⋃<sub>''n'' ∈ ω</sub>''F''<sub>''n''</sub>}} ≤ ℵ<sub>0</sub> · {{abs|''X''}} = {{abs|''X''}}}} (A) और (C) द्वारा साथ ही {{math|{{abs|''F''}} ≥ {{abs|''X''}}}} क्योंकि F में सभी सिंगलटन हैं। इस प्रकार, |{{math|{{abs|''X''}} ≤ {{abs|''F''}}}} और {{math|{{abs|''F''}} ≤ {{abs|''X''}}}} इसलिए श्रोडर-बर्नस्टीन प्रमेय द्वारा {{math|1={{abs|''F''}} = {{abs|''X''}}}} इसका अर्थ यह है कि {{math|''X''}} और {{math|''F''}} के बीच एक आक्षेप j है। अंत में {{math|''x'', ''y'' ∈ ''X''}} के लिए {{math|1=''x'' • ''y'' = ''j''<sup>−1</sup>(''j''(''x'') Δ ''j''(''y''))}} को परिभाषित करें। यह {{math|(''X'', •)}} को समूह में परिवर्तित कर देता है। इसलिए प्रत्येक समुच्चय समूह संरचना को स्वीकृत करता है।
इन परिणामों को एक साथ रखने पर यह देखा जाता है कि {{math|1={{abs|''F''}} = {{abs|⋃<sub>''n'' ∈ ω</sub>''F''<sub>''n''</sub>}} ≤ ℵ<sub>0</sub> · {{abs|''X''}} = {{abs|''X''}}}} (A) और (C) द्वारा साथ ही {{math|{{abs|''F''}} ≥ {{abs|''X''}}}} क्योंकि F में सभी सिंगलटन हैं। इस प्रकार, |{{math|{{abs|''X''}} ≤ {{abs|''F''}}}} और {{math|{{abs|''F''}} ≤ {{abs|''X''}}}} इसलिए श्रोडर-बर्नस्टीन प्रमेय द्वारा {{math|1={{abs|''F''}} = {{abs|''X''}}}} इसका अर्थ यह है कि {{math|''X''}} और {{math|''F''}} के बीच एक आक्षेप j है। अंत में {{math|''x'', ''y'' ∈ ''X''}} के लिए {{math|1=''x'' • ''y'' = ''j''<sup>−1</sup>(''j''(''x'') Δ ''j''(''y''))}} को परिभाषित करें। यह {{math|(''X'', •)}} को समूह में परिवर्तित कर देता है। इसलिए प्रत्येक समुच्चय समूह संरचना को स्वीकृत करता है।


== समूह संरचना के अतिरिक्त जेडएफ समुच्चय ==
== समूह संरचना के अतिरिक्त जेडएफ समुच्चय सिद्धान्त ==


जेडएफ समुच्चय एक ऐसा [[ आंतरिक मॉडल |आंतरिक मॉडल]] हैं जिनमें चयनित स्वयंसिद्ध सिद्धान्त विफल हो जाता है।<ref>{{harvnb|Cohen|1966}}</ref> ऐसे मॉडल में, ऐसे समुच्चय होते हैं जिन्हें अच्छी तरह से क्रमबद्ध नहीं किया जा सकता है। इन गैर-क्रमबद्ध समुच्चय को कॉल करें। माना कि X ऐसा कोई समुच्चय है। और समुच्चय {{math|''Y'' {{=}} ''X'' ∪ ℵ(''X'')}} पर विचार करें। यदि {{math|''Y''}} के पास एक समूह संरचना होती है तो पहले खंड में निर्माण द्वारा {{math|''X''}} को सुव्यवस्थित किया जा सकता है। यह विरोधाभास को दर्शाता है कि समुच्चय {{math|''Y''}} पर कोई समूह संरचना नहीं है।
जेडएफ समुच्चय एक ऐसा [[ आंतरिक मॉडल |आंतरिक मॉडल]] हैं जिनमें चयनित स्वयंसिद्ध सिद्धान्त विफल हो जाता है।<ref>{{harvnb|Cohen|1966}}</ref> ऐसे मॉडल में, ऐसे समुच्चय होते हैं जिन्हें अच्छी तरह से क्रमबद्ध नहीं किया जा सकता है। इन गैर-क्रमबद्ध समुच्चय को कॉल करें। माना कि X ऐसा कोई समुच्चय है। और समुच्चय {{math|''Y'' {{=}} ''X'' ∪ ℵ(''X'')}} पर विचार करें। यदि {{math|''Y''}} के पास एक समूह संरचना होती है तो पहले खंड में निर्माण द्वारा {{math|''X''}} को सुव्यवस्थित किया जा सकता है। यह विरोधाभास को दर्शाता है कि समुच्चय {{math|''Y''}} पर कोई समूह संरचना नहीं है।
Line 42: Line 42:
अब <math>a</math> के लिए <math>x\mapsto a\cdot x</math> द्वारा दिए गए क्रमचय पर विचार करें, जो कि तटस्थ तत्व नहीं है। ऐसे अपरिमित रूप से कई <math>x</math> हैं इसीलिए <math>a\cdot x=x</math> मे उनमें से कम से कम एक तटस्थ तत्व नहीं है। <math>x^{-1}</math> से गुणा करने पर यह पता चलता है कि वास्तव में एक पहचान तत्व है जो एक विरोधाभास है।
अब <math>a</math> के लिए <math>x\mapsto a\cdot x</math> द्वारा दिए गए क्रमचय पर विचार करें, जो कि तटस्थ तत्व नहीं है। ऐसे अपरिमित रूप से कई <math>x</math> हैं इसीलिए <math>a\cdot x=x</math> मे उनमें से कम से कम एक तटस्थ तत्व नहीं है। <math>x^{-1}</math> से गुणा करने पर यह पता चलता है कि वास्तव में एक पहचान तत्व है जो एक विरोधाभास है।


ऐसे समुच्चय मे <math>X</math> का अस्तित्व समान होता है। उदाहरण के लिए कोहेन के पहले मॉडल में दिया गया है।<ref>{{Cite web|url=https://groups.google.com/forum/#!msg/sci.math/_1Qeebd0kV0/7bas3wCn6wYJ|title=विज्ञान गणित "किसी भी सेट पर समूह संरचना"|last=Dougherty|first=Randall|date=February 1, 2003}}</ref> हालांकि, अनंत डेडेकिंड-परिमित समुच्चय होना एक समूह संरचना को बाहर करने के लिए पर्याप्त नहीं है, क्योंकि यह समान है कि डेडेकिंड-परिमित घात समुच्चय के साथ अनंत डेडेकिंड-परिमित समुच्चय हैं।<ref>{{Cite web|url=https://mathoverflow.net/a/179438/|title=घातांक और डेडेकिंड-परिमित कार्डिनल|last=Karagila|first=Asaf|date=August 26, 2014|website=MathOverflow}}</ref>
ऐसे समुच्चय मे <math>X</math> का अस्तित्व समान होता है। उदाहरण के लिए जिसको कोहेन के पहले मॉडल में दिया गया है।<ref>{{Cite web|url=https://groups.google.com/forum/#!msg/sci.math/_1Qeebd0kV0/7bas3wCn6wYJ|title=विज्ञान गणित "किसी भी सेट पर समूह संरचना"|last=Dougherty|first=Randall|date=February 1, 2003}}</ref> हालांकि, अनंत डेडेकिंड-परिमित समुच्चय होना एक समूह संरचना को बाहर करने के लिए पर्याप्त नहीं है, क्योंकि यह समान है कि डेडेकिंड-परिमित घात समुच्चय के साथ अनंत डेडेकिंड-परिमित समुच्चय हैं।<ref>{{Cite web|url=https://mathoverflow.net/a/179438/|title=घातांक और डेडेकिंड-परिमित कार्डिनल|last=Karagila|first=Asaf|date=August 26, 2014|website=MathOverflow}}</ref>
==टिप्पणियाँ==
==टिप्पणियाँ==
{{reflist|3}}
{{reflist|3}}

Revision as of 09:33, 29 May 2023

1904 में अर्नेस्ट ज़र्मेलो ने अपेक्षाकृत अच्छी क्रम वाली प्रमेय को सिद्ध किया, जिसे चयनित स्वयंसिद्ध सिद्धान्त के रूप में जाना जाता था।

गणित में समूह एक ऐसा समुच्चय होता है जिसमें बाइनरी संक्रिया होती है जिसे गुणा कहा जाता है जो स्वयंसिद्ध समूहों का अनुसरण करती है। चयनित स्वयंसिद्ध जेडएफसी समुच्चय सिद्धांत एक स्वयंसिद्ध सिद्धान्त है जो यह प्रदर्शित करता है कि प्रत्येक समुच्चय को सुव्यवस्थित किया जा सकता है।

जेडएफ समुच्चय सिद्धांत में अर्थात चयनित स्वयंसिद्ध के अतिरिक्त जेडएफसी सिद्धांत मे निम्नलिखित कथन समतुल्य हैं:

  • प्रत्येक गैर-रिक्त समुच्चय X के लिए एक बाइनरी संक्रियक () सम्मिलित है जैसे कि (X, •) एक समूह है।[1]
  • चयनित स्वयंसिद्ध सिद्धांत सत्य है।

समूह संरचना का चयनित स्वयंसिद्ध से तात्पर्य

इस खंड में यह माना जाता है कि प्रत्येक समुच्चय X को समूह संरचना (X, •) से सिद्ध किया जा सकता है।

माना X एक समुच्चय है और ℵ(X) X की हार्टोग्स संख्या है। यह अपेक्षाकृत सबसे कम गणना संख्या है जैसे कि ℵ(X) से X में कोई अंतःक्षेपण (गणित) नहीं है। यह चयनित स्वयंसिद्ध सिद्धान्त की धारणा के अतिरिक्त सम्मिलित है। प्रमाण की तकनीकी सरलता के लिए यहाँ माना कि X का कोई क्रमसूचक नहीं है। अर्थात माना कि समूह में गुणन (X ∪ ℵ(X), •) को दर्शाता है।

किसी भी xX के लिए α ∈ ℵ(X) जैसे कि x • α ∈ ℵ(X) का मान नहीं है। और yX जैसे है कि y • α ∈ X सबके लिए α ∈ ℵ(X) है लेकिन प्राथमिक समूह सिद्धांत द्वारा y • α सभी से भिन्न हैं क्योंकि α श्रेणी ℵ(X) से अधिक है। इस प्रकार y ℵ(X) से X में एक अनुक्रम है। यह असंभव है क्योंकि ℵ(X) एक ऐसी गणना संख्या है। जिससे X में कोई अनुक्रम सम्मिलित नहीं होता है।

अब X के मानचित्र j को ℵ(X) × ℵ(X) में परिभाषित करें जो कि xX को कम से कम (α, β) ∈ ℵ(X) × ℵ(X) दारा लेक्सिकोग्राफिक अनुक्रम से संतुष्ट करता है जैसे कि x • α = β उपरोक्त तर्क से मानचित्र j सम्मिलित है और अद्वितीय है क्योंकि सुव्यवस्थित समुच्चय के उपसमुच्चय का कम से कम तत्व अद्वितीय हैं। यह प्राथमिक समूह सिद्धांत अनुक्रम द्वारा है।

अंत में X पर x < y यदि j(x) < j(y) हो तो अनुक्रम को परिभाषित करें। यह इस प्रकार है कि प्रत्येक समुच्चय X को सुव्यवस्थित किया जा सकता है। इस प्रकार चयनित स्वयंसिद्ध सिद्धान्त सत्य है।[2][3]

ऊपर (i) में व्यक्त की गई महत्वपूर्ण विशेषता का अनुकरण करने के लिए संपूर्ण प्रमाण X के लिए मैग्मा निरस्तीकरण पर्याप्त है। उदाहरण एक अर्धसमूह निरस्तीकरण का गुण यह सुनिश्चित करने के लिए पर्याप्त है कि y • α सभी के लिए भिन्न हैं।[4]

चयनित स्वयंसिद्ध सिद्धान्त की समूह संरचना

किसी भी गैर-रिक्त परिमित समुच्चय में किसी भी तत्व द्वारा उत्पन्न चक्रीय समूह के रूप में एक समूह संरचना होती है। चयनित स्वयंसिद्ध सिद्धान्त की धारणा के अंतर्गत प्रत्येक अनंत समुच्चय X एक अद्वितीय गणना संख्या से लैस |X| है जो एलेफ संख्या के बराबर है।[5] चयनित स्वयंसिद्ध सिद्धान्त का उपयोग करके, कोई भी यह प्रदर्शित कर सकता है कि समुच्चय के किसी भी समूह S के लिए |S| ≤ |S| × sup { |s| : sS} तथा इसके अतिरिक्त तर्स्की के प्रमेय द्वारा चयनित स्वयंसिद्ध सिद्धान्त के एक और समकक्ष |X|n = |X| सभी परिमित n (B) के लिए प्रदर्शित है। माना कि X एक अनंत समुच्चय है और F, X के सभी परिमित उपसमुच्चयों के समुच्चय को निरूपित करता है।[6] f, gF के लिए F पर एक प्राकृतिक गुणन है।

मान लीजिए कि fg = f Δ g, जहाँ Δ सममित अंतर को दर्शाता है। यह (F, •) को रिक्त समुच्चय वाले समूह में परिवर्तित कर देता है। Ø पहचान होने के कारण और प्रत्येक तत्व का अपना व्युत्क्रम f Δ f = Ø साहचर्य गुण होता है अर्थात (f Δ g) Δ h = f Δ (g Δ h) को संघ और समुच्चय अंतर के मूल गुणों का उपयोग करके सत्यापित किया जाता है। इस प्रकार F गुणन Δ वाला एक समूह है।

कोई भी समुच्चय जिसे एक समूह के साथ आपत्ति में प्रयुक्त किया जा सकता है, वह आपत्ति के माध्यम से एक समूह बन जाता है। यह दिखाया जा सकता है कि |X| = |F| और इसलिए X और समूह (F, •) के बीच एक से एक तथ्य n = 0,1,2, ... के लिए, Fn को गणनांक के सभी उपसमुच्चयों से मिलकर F का उपसमुच्चय सम्मिलित है। माना कि तब F, Fn का असंयुक्त संघ है। गणनांक N के X के उपसमुच्चय की संख्या Xn अधिकतम है क्योंकि n तत्वों के साथ प्रत्येक उपसमुच्चय X के n क्षेत्र कार्तीय उत्पाद Xn का एक तत्व है। इसलिए |Fn| ≤ |X|n = |X| सभी के लिए n (C) द्वारा (B) भिन्न है।

इन परिणामों को एक साथ रखने पर यह देखा जाता है कि |F| = |n ∈ ωFn| ≤ ℵ0 · |X| = |X| (A) और (C) द्वारा साथ ही |F| ≥ |X| क्योंकि F में सभी सिंगलटन हैं। इस प्रकार, ||X| ≤ |F| और |F| ≤ |X| इसलिए श्रोडर-बर्नस्टीन प्रमेय द्वारा |F| = |X| इसका अर्थ यह है कि X और F के बीच एक आक्षेप j है। अंत में x, yX के लिए xy = j−1(j(x) Δ j(y)) को परिभाषित करें। यह (X, •) को समूह में परिवर्तित कर देता है। इसलिए प्रत्येक समुच्चय समूह संरचना को स्वीकृत करता है।

समूह संरचना के अतिरिक्त जेडएफ समुच्चय सिद्धान्त

जेडएफ समुच्चय एक ऐसा आंतरिक मॉडल हैं जिनमें चयनित स्वयंसिद्ध सिद्धान्त विफल हो जाता है।[7] ऐसे मॉडल में, ऐसे समुच्चय होते हैं जिन्हें अच्छी तरह से क्रमबद्ध नहीं किया जा सकता है। इन गैर-क्रमबद्ध समुच्चय को कॉल करें। माना कि X ऐसा कोई समुच्चय है। और समुच्चय Y = X ∪ ℵ(X) पर विचार करें। यदि Y के पास एक समूह संरचना होती है तो पहले खंड में निर्माण द्वारा X को सुव्यवस्थित किया जा सकता है। यह विरोधाभास को दर्शाता है कि समुच्चय Y पर कोई समूह संरचना नहीं है।

यदि एक समुच्चय ऐसा है कि इसे समूह संरचना से संपन्न नहीं किया जा सकता है तो यह आवश्यक रूप से गैर-क्रमबद्ध है। अन्यथा दूसरे खंड में निर्माण समूह संरचना उत्पन्न करता है। हालाँकि ये गुण समतुल्य नहीं हैं। अर्थात्, यह उन समुच्चयों के लिए संभव है जिन्हें समूह संरचना के लिए सुव्यवस्थित नहीं किया जा सकता है।

उदाहरण के लिए यदि कोई समुच्चय है तो में एक समूह संरचना होती है। जिसमें समूह संचालन के रूप में सममित अंतर होता है। यदि को सुव्यवस्थित नहीं किया जा सकता है, लेकिन को सुव्यवस्थित किया जा सकता है। समुच्चय का एक मुख्य उदाहरण है जो समूह संरचना नहीं ले सकता है जो समुच्चय के निम्न दो गुणों के साथ है:

  1. अनंत डेडेकिंड-परिमित समुच्चय है। दूसरे शब्दों में का कोई गणना योग्य अपरिमित उपसमुच्चय नहीं है।
  2. यदि को परिमित समुच्चयों में विभाजित किया जाता है, तो उनमें से बहुत से को छोड़कर सभी एकल उपसमुच्चय हैं।

यह देखने के लिए कि इन दोनों का संयोजन एक समूह संरचना को स्वीकृत नहीं कर सकता है। ध्यान दें कि इस प्रकार के समुच्चय के किसी भी क्रमपरिवर्तन में केवल परिमित कक्षाएँ होनी चाहिए, और उनमें से लगभग सभी आवश्यक रूप से सिंगलटन हैं। जिसका अर्थ है कि अधिकांश तत्व क्रमचय द्वारा स्थानांतरित नहीं होते हैं।

अब के लिए द्वारा दिए गए क्रमचय पर विचार करें, जो कि तटस्थ तत्व नहीं है। ऐसे अपरिमित रूप से कई हैं इसीलिए मे उनमें से कम से कम एक तटस्थ तत्व नहीं है। से गुणा करने पर यह पता चलता है कि वास्तव में एक पहचान तत्व है जो एक विरोधाभास है।

ऐसे समुच्चय मे का अस्तित्व समान होता है। उदाहरण के लिए जिसको कोहेन के पहले मॉडल में दिया गया है।[8] हालांकि, अनंत डेडेकिंड-परिमित समुच्चय होना एक समूह संरचना को बाहर करने के लिए पर्याप्त नहीं है, क्योंकि यह समान है कि डेडेकिंड-परिमित घात समुच्चय के साथ अनंत डेडेकिंड-परिमित समुच्चय हैं।[9]

टिप्पणियाँ

  1. A cancellative binary operation suffices, i.e. such that (X, •) is a cancellative magma. See below.
  2. Hajnal & Kertész 1972
  3. Rubin & Rubin 1985, p. 111
  4. Hajnal & Kertész 1972
  5. Jech 2002, Lemma 5.2
  6. Adkins & Weintraub 1992
  7. Cohen 1966
  8. Dougherty, Randall (February 1, 2003). "विज्ञान गणित "किसी भी सेट पर समूह संरचना"".
  9. Karagila, Asaf (August 26, 2014). "घातांक और डेडेकिंड-परिमित कार्डिनल". MathOverflow.

संदर्भ