कार्यात्मक विधेय: Difference between revisions
m (Abhishek moved page कार्यात्मक विधेय to कार्यात्मक प्रतीक without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
[[औपचारिक तर्क]] और गणित की संबंधित शाखाओं में, कार्यात्मक विधेय, या कार्य प्रतीक, एक तार्किक प्रतीक है जिसे किसी वस्तुवाचक शब्द पर लागू किया जा सकता है जिससे एक और वस्तुवाचक शब्द प्राप्त किया जा सके। कार्यात्मक विधेयों को कभी-कभी आरेखण के रूप में भी जाना जाता है, परन्तु यह शब्द गणित में अतिरिक्त अर्थों के साथ उपयोग होता है। किसी प्रतिरूप में, एक कार्यात्मक विधेय को एक फलन द्वारा प्रतिरूपित किया जाता है। | [[औपचारिक तर्क]] और गणित की संबंधित शाखाओं में, कार्यात्मक विधेय, या कार्य प्रतीक, एक तार्किक प्रतीक है जिसे किसी वस्तुवाचक शब्द पर लागू किया जा सकता है जिससे एक और वस्तुवाचक शब्द प्राप्त किया जा सके। कार्यात्मक विधेयों को कभी-कभी आरेखण के रूप में भी जाना जाता है, परन्तु यह शब्द गणित में अतिरिक्त अर्थों के साथ उपयोग होता है। किसी प्रतिरूप में, एक कार्यात्मक विधेय को एक फलन द्वारा प्रतिरूपित किया जाता है। | ||
विशेष रूप से, एक [[औपचारिक भाषा]] में प्रतीक ''F'' एक कार्यात्मक प्रतीक है, यदि भाषा में किसी वस्तु का प्रतिनिधित्व करने वाला कोई प्रतीक '' | विशेष रूप से, एक [[औपचारिक भाषा]] में प्रतीक ''F'' एक कार्यात्मक प्रतीक है, यदि भाषा में किसी वस्तु का प्रतिनिधित्व करने वाला कोई प्रतीक ''X'' दिया गया है तो ''F''(''X'') पुनः एक प्रतीक है जो उस भाषा में किसी वस्तु का प्रतिनिधित्व करता है। लिखे गए तर्क में, ''F'' ''क्षेत्र'' टाइप T और ''उपक्षेत्र'' टाइप यू के साथ एक कार्यात्मक प्रतीक है, यदि कोई प्रतीक ''X'' दिया गया है जो टाइप T, ''F' की वस्तु का प्रतिनिधित्व करता है। '(''X'') यू प्रकार के एक वस्तु का प्रतिनिधित्व करने वाला एक प्रतीक है।'' इसी प्रकार एक से अधिक चर के फलन प्रतीकों को परिभाषित कर सकते हैं, एक से अधिक चर के कार्यों के अनुरूप; [[0 (संख्या)|0]] चर में एक फलन प्रतीक केवल एक [[तार्किक स्थिरांक]] प्रतीक है। | ||
अब एक आधिकारिक भाषा के प्रारूप पर विचार करें, जहां प्रकार T और U को समुच्चय [T] और [U] द्वारा प्रतिरूपित किया जाता है और प्रत्येक चिह्न X प्रकार T का, [T] में [X] एक तत्व है जहाँ समुच्चय F समुच्चय के द्वारा प्रतिरूपित किया जा सकता है। | अब एक आधिकारिक भाषा के प्रारूप पर विचार करें, जहां प्रकार T और U को समुच्चय [T] और [U] द्वारा प्रतिरूपित किया जाता है और प्रत्येक चिह्न X प्रकार T का, [T] में [X] एक तत्व है जहाँ समुच्चय F समुच्चय के द्वारा प्रतिरूपित किया जा सकता है। | ||
:<math>[F]:=\big\{([X],[F(X)]):[X]\in[\mathbf{T}]\big\},</math> | :<math>[F]:=\big\{([X],[F(X)]):[X]\in[\mathbf{T}]\big\},</math> | ||
जो क्षेत्र [ | जो क्षेत्र [T] और उपक्षेत्र [यू] एक गणितीय फलन है। यह एक सुसंगत प्रतिरूप निर्मित करने के लिए [''F''(''X'')] = [''F''(''Y'')] होना चाहिए जब भी [''X''] = [Y] हो। | ||
== नए फलन प्रतीकों का परिचय == | == नए फलन प्रतीकों का परिचय == | ||
[[विधेय तर्क]] के समाधान में जो किसी को नए विधेय प्रतीकों को प्रस्तुत करने की अनुमति देता है, वह भी नए फलन प्रतीकों को प्रस्तुत करने में सक्षम होना चाहिए। यदि कार्यात्मक चिह्न F और G दिए गए हों, तो हम एक नया कार्यात्मक चिह्न F ∘ G प्रविष्ट कर सकते हैं, जो F और G का संयोजन होता है और सभी X के लिए (F ∘ G)(X) = F(G(X)) को पूरा करता है। बेशक, यदि F के क्षेत्र प्रकार G की उपक्षेत्र प्रकार के समान नहीं होती है, तो अभिलेखित तार्किक में यह समीकरण के दाहिने भाग का अर्थ नहीं बनता है, इसलिए इसके परिणामस्वरूप संयोजन के लिए यह आवश्यक होता है। | [[विधेय तर्क]] के समाधान में जो किसी को नए विधेय प्रतीकों को प्रस्तुत करने की अनुमति देता है, वह भी नए फलन प्रतीकों को प्रस्तुत करने में सक्षम होना चाहिए। यदि कार्यात्मक चिह्न F और G दिए गए हों, तो हम एक नया कार्यात्मक चिह्न F ∘ G प्रविष्ट कर सकते हैं, जो F और G का संयोजन होता है और सभी X के लिए (F ∘ G)(X) = F(G(X)) को पूरा करता है। बेशक, यदि F के क्षेत्र प्रकार G की उपक्षेत्र प्रकार के समान नहीं होती है, तो अभिलेखित तार्किक में यह समीकरण के दाहिने भाग का अर्थ नहीं बनता है, इसलिए इसके परिणामस्वरूप संयोजन के लिए यह आवश्यक होता है। | ||
विशेषतः, कुछ कार्यात्मक चिह्न स्वचालित रूप से प्राप्त होते हैं। अलिखित तर्क में, एक पहचान विधेय आईडी होती है जो सभी | विशेषतः, कुछ कार्यात्मक चिह्न स्वचालित रूप से प्राप्त होते हैं। अलिखित तर्क में, एक पहचान विधेय आईडी होती है जो सभी X के लिए आईडी (X) = X को संतुष्ट करती है। आलेखित तर्क में, एक पहचान प्रतिष्ठान id होती है जो सभी X के लिए id(X) = X को पूरा करती है। टाइप्ड तर्क में, किसी भी प्रकार T के दिए गए होने पर, एक पहचान प्रतिष्ठान idT होता है जिसका क्षेत्र और उपक्षेत्र T प्रकार का होता है; यह इस प्रकार के सभी X के लिए idT(X) = X को पूरा करता है। इसी प्रकार, यदि 'T', 'U' का उपप्रकार है, तो क्षेत्र प्रकार 'T' और उपक्षेत्र प्रकार 'U' का समावेशन विधेय है जो समान समीकरण को संतुष्ट करता है; पुराने से नए प्रकार के निर्माण के अन्य विधियों से जुड़े अतिरिक्त फलन प्रतीक हैं। | ||
इसके अतिरिक्त, एक उपयुक्त [[प्रमेय]] सिद्ध करने के उपरांत कार्यात्मक विधेय को परिभाषित किया जा सकता है। यदि आप एक [[औपचारिक प्रणाली]] में कार्य कर रहे हैं जो आपको प्रमेयों को सिद्ध करने के उपरांत नए प्रतीकों को प्रस्तुत करने की अनुमति नहीं देती है, तो आपको इससे बचने के लिए संबंध प्रतीकों का उपयोग करना होगा, जैसा कि अगले भाग में प्रदर्शित किया गया है। विशेष रूप से, यदि आप यह प्रमाणित कर सकते हैं कि प्रत्येक | इसके अतिरिक्त, एक उपयुक्त [[प्रमेय]] सिद्ध करने के उपरांत कार्यात्मक विधेय को परिभाषित किया जा सकता है। यदि आप एक [[औपचारिक प्रणाली]] में कार्य कर रहे हैं जो आपको प्रमेयों को सिद्ध करने के उपरांत नए प्रतीकों को प्रस्तुत करने की अनुमति नहीं देती है, तो आपको इससे बचने के लिए संबंध प्रतीकों का उपयोग करना होगा, जैसा कि अगले भाग में प्रदर्शित किया गया है। विशेष रूप से, यदि आप यह प्रमाणित कर सकते हैं कि प्रत्येक X के लिए, एक [[अद्वितीय (गणित)|अद्वितीय]] वाई उपलब्ध है जो P के शर्तो को संतुष्ट करता है, तो आप इसे इंगित करने के लिए एक फलन प्रतीक F प्रस्तुत कर सकते हैं। | ||
ध्यान दें कि P स्वयं एक संबंधपरक [[विधेय (तर्क)|विधेय]] होगा जिसमें X और Y दोनों सम्मिलित होंगे। तो यदि ऐसा कोई विधेय P और एक प्रमेय है: | ध्यान दें कि P स्वयं एक संबंधपरक [[विधेय (तर्क)|विधेय]] होगा जिसमें X और Y दोनों सम्मिलित होंगे। तो यदि ऐसा कोई विधेय P और एक प्रमेय है: | ||
: किसी प्रकार T के सभी X के लिए, कुछ अद्वितीय प्रकार U के Y के लिए P(X, Y) सत्य होता है। | : किसी प्रकार T के सभी X के लिए, कुछ अद्वितीय प्रकार U के Y के लिए P(X, Y) सत्य होता है। | ||
तो आप क्षेत्र प्रकार ' | तो आप क्षेत्र प्रकार 'T' और उपक्षेत्र प्रकार 'यू' का एक फलन प्रतीक F प्रस्तुत कर सकते हैं जो निम्नलिखित प्रमेयों को संतुष्ट करता है: | ||
: किसी प्रकार T के सभी X के लिए, एक प्रकार U के सभी Y के लिए, P(X, Y) तभी और उसी समय सत्य होता है जब Y = F(X) हो। | : किसी प्रकार T के सभी X के लिए, एक प्रकार U के सभी Y के लिए, P(X, Y) तभी और उसी समय सत्य होता है जब Y = F(X) हो। | ||
== कार्यात्मक विधेय के बिना करना == | == कार्यात्मक विधेय के बिना करना == | ||
विधेय तर्क के कई उपचार कार्यात्मक विधेय की अनुमति नहीं देते हैं, केवल संबंधपरक विधेय (तर्क) एस। | विधेय तर्क के कई उपचार कार्यात्मक विधेय की अनुमति नहीं देते हैं, केवल संबंधपरक विधेय (तर्क) एस। | ||
यह उपयोगी है, उदाहरण के लिए, | यह उपयोगी है, उदाहरण के लिए, धातु विज्ञान प्रमेय (जैसे गोडेल की अपूर्णता प्रमेय) को साबित करने के संदर्भ में, जहां कोई नए कार्यात्मक प्रतीकों (न ही उस मामले के लिए कोई अन्य नए प्रतीक) की शुरूआत की अनुमति नहीं देना चाहता है। | ||
लेकिन कार्यात्मक प्रतीकों को संबंधपरक प्रतीकों के साथ बदलने की एक विधि है जहां पूर्व हो सकता है; इसके अलावा, यह एल्गोरिथम है और इस प्रकार परिणाम के अधिकांश धातु संबंधी प्रमेयों को लागू करने के लिए उपयुक्त है। | लेकिन कार्यात्मक प्रतीकों को संबंधपरक प्रतीकों के साथ बदलने की एक विधि है जहां पूर्व हो सकता है; इसके अलावा, यह एल्गोरिथम है और इस प्रकार परिणाम के अधिकांश धातु संबंधी प्रमेयों को लागू करने के लिए उपयुक्त है। | ||
विशेष रूप से, यदि F का डोमेन प्रकार 'T' और [[कोडोमेन]] प्रकार 'U' है, तो इसे एक विधेय P प्रकार ('T', 'U') से बदला जा सकता है। | विशेष रूप से, यदि F का डोमेन प्रकार 'T' और [[कोडोमेन]] प्रकार 'U' है, तो इसे एक विधेय P प्रकार ('T', 'U') से बदला जा सकता है। | ||
सहज रूप से, P(X,Y) का अर्थ F(X) = Y है। | सहज रूप से, P(X,Y) का अर्थ F(X) = Y है। | ||
फिर जब भी किसी कथन में F(X) दिखाई दे, तो आप इसे 'U' प्रकार के नए प्रतीक Y से बदल सकते हैं और एक अन्य कथन P(X,Y) सम्मिलित कर सकते हैं। | फिर जब भी किसी कथन में F(X) दिखाई दे, तो आप इसे 'U' प्रकार के नए प्रतीक Y से बदल सकते हैं और एक अन्य कथन P(X,Y) सम्मिलित कर सकते हैं। | ||
Line 34: | Line 35: | ||
यह एक समस्या प्रतीत हो सकती है यदि आप एक प्रस्ताव [[स्कीमा (तर्क)]] निर्दिष्ट करना चाहते हैं जो केवल कार्यात्मक विधेय F पर लागू होता है; आप समय से पहले कैसे जानेंगे कि क्या यह उस शर्त को पूरा करता है? | यह एक समस्या प्रतीत हो सकती है यदि आप एक प्रस्ताव [[स्कीमा (तर्क)]] निर्दिष्ट करना चाहते हैं जो केवल कार्यात्मक विधेय F पर लागू होता है; आप समय से पहले कैसे जानेंगे कि क्या यह उस शर्त को पूरा करता है? | ||
स्कीमा का समतुल्य सूत्रीकरण प्राप्त करने के लिए, पहले F(X) के किसी भी रूप को एक नए चर Y के साथ बदलें। | स्कीमा का समतुल्य सूत्रीकरण प्राप्त करने के लिए, पहले F(X) के किसी भी रूप को एक नए चर Y के साथ बदलें। | ||
फिर संबंधित | फिर संबंधित X प्रस्तुत किए जाने के तुरंत बाद प्रत्येक वाई पर सार्वभौमिक रूप से मात्रा निर्धारित करें (यानी, X को मात्रा निर्धारित करने के बाद, या X मुक्त होने पर बयान की शुरुआत में), और पी (X, वाई) के साथ मात्रा को सुरक्षित रखें। | ||
अंत में, संपूर्ण कथन को ऊपर दिए गए कार्यात्मक विधेय के लिए अद्वितीयता की स्थिति का भौतिक सशर्त बनाएं। | अंत में, संपूर्ण कथन को ऊपर दिए गए कार्यात्मक विधेय के लिए अद्वितीयता की स्थिति का भौतिक सशर्त बनाएं। | ||
आइए एक उदाहरण के रूप में ज़र्मेलो-फ्रेंकेल सेट थ्योरी में | आइए एक उदाहरण के रूप में ज़र्मेलो-फ्रेंकेल सेट थ्योरी में प्रतिस्थापन की स्वयंसिद्ध स्कीमा लें। | ||
(यह उदाहरण | |||
(यह उदाहरण गणितीय प्रतीकों का उपयोग करता है।) | |||
यह स्कीमा बताता है (एक रूप में), किसी भी कार्यात्मक विधेय F के लिए एक चर में: | यह स्कीमा बताता है (एक रूप में), किसी भी कार्यात्मक विधेय F के लिए एक चर में: | ||
:<math>\forall A, \exists B, \forall C, C \in A \rightarrow F(C)\in B.</math> सबसे पहले, हमें F(C) को किसी अन्य चर D से बदलना होगा: | :<math>\forall A, \exists B, \forall C, C \in A \rightarrow F(C)\in B.</math> सबसे पहले, हमें F(C) को किसी अन्य चर D से बदलना होगा: | ||
Line 53: | Line 55: | ||
{{Mathematical logic}} | {{Mathematical logic}} | ||
{{DEFAULTSORT:Functional Predicate}} | {{DEFAULTSORT:Functional Predicate}} | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 24/05/2023]] | [[Category:Created On 24/05/2023]] |
Revision as of 15:21, 1 June 2023
औपचारिक तर्क और गणित की संबंधित शाखाओं में, कार्यात्मक विधेय, या कार्य प्रतीक, एक तार्किक प्रतीक है जिसे किसी वस्तुवाचक शब्द पर लागू किया जा सकता है जिससे एक और वस्तुवाचक शब्द प्राप्त किया जा सके। कार्यात्मक विधेयों को कभी-कभी आरेखण के रूप में भी जाना जाता है, परन्तु यह शब्द गणित में अतिरिक्त अर्थों के साथ उपयोग होता है। किसी प्रतिरूप में, एक कार्यात्मक विधेय को एक फलन द्वारा प्रतिरूपित किया जाता है।
विशेष रूप से, एक औपचारिक भाषा में प्रतीक F एक कार्यात्मक प्रतीक है, यदि भाषा में किसी वस्तु का प्रतिनिधित्व करने वाला कोई प्रतीक X दिया गया है तो F(X) पुनः एक प्रतीक है जो उस भाषा में किसी वस्तु का प्रतिनिधित्व करता है। लिखे गए तर्क में, F क्षेत्र टाइप T और उपक्षेत्र टाइप यू के साथ एक कार्यात्मक प्रतीक है, यदि कोई प्रतीक X दिया गया है जो टाइप T, F' की वस्तु का प्रतिनिधित्व करता है। '(X) यू प्रकार के एक वस्तु का प्रतिनिधित्व करने वाला एक प्रतीक है। इसी प्रकार एक से अधिक चर के फलन प्रतीकों को परिभाषित कर सकते हैं, एक से अधिक चर के कार्यों के अनुरूप; 0 चर में एक फलन प्रतीक केवल एक तार्किक स्थिरांक प्रतीक है।
अब एक आधिकारिक भाषा के प्रारूप पर विचार करें, जहां प्रकार T और U को समुच्चय [T] और [U] द्वारा प्रतिरूपित किया जाता है और प्रत्येक चिह्न X प्रकार T का, [T] में [X] एक तत्व है जहाँ समुच्चय F समुच्चय के द्वारा प्रतिरूपित किया जा सकता है।
जो क्षेत्र [T] और उपक्षेत्र [यू] एक गणितीय फलन है। यह एक सुसंगत प्रतिरूप निर्मित करने के लिए [F(X)] = [F(Y)] होना चाहिए जब भी [X] = [Y] हो।
नए फलन प्रतीकों का परिचय
विधेय तर्क के समाधान में जो किसी को नए विधेय प्रतीकों को प्रस्तुत करने की अनुमति देता है, वह भी नए फलन प्रतीकों को प्रस्तुत करने में सक्षम होना चाहिए। यदि कार्यात्मक चिह्न F और G दिए गए हों, तो हम एक नया कार्यात्मक चिह्न F ∘ G प्रविष्ट कर सकते हैं, जो F और G का संयोजन होता है और सभी X के लिए (F ∘ G)(X) = F(G(X)) को पूरा करता है। बेशक, यदि F के क्षेत्र प्रकार G की उपक्षेत्र प्रकार के समान नहीं होती है, तो अभिलेखित तार्किक में यह समीकरण के दाहिने भाग का अर्थ नहीं बनता है, इसलिए इसके परिणामस्वरूप संयोजन के लिए यह आवश्यक होता है।
विशेषतः, कुछ कार्यात्मक चिह्न स्वचालित रूप से प्राप्त होते हैं। अलिखित तर्क में, एक पहचान विधेय आईडी होती है जो सभी X के लिए आईडी (X) = X को संतुष्ट करती है। आलेखित तर्क में, एक पहचान प्रतिष्ठान id होती है जो सभी X के लिए id(X) = X को पूरा करती है। टाइप्ड तर्क में, किसी भी प्रकार T के दिए गए होने पर, एक पहचान प्रतिष्ठान idT होता है जिसका क्षेत्र और उपक्षेत्र T प्रकार का होता है; यह इस प्रकार के सभी X के लिए idT(X) = X को पूरा करता है। इसी प्रकार, यदि 'T', 'U' का उपप्रकार है, तो क्षेत्र प्रकार 'T' और उपक्षेत्र प्रकार 'U' का समावेशन विधेय है जो समान समीकरण को संतुष्ट करता है; पुराने से नए प्रकार के निर्माण के अन्य विधियों से जुड़े अतिरिक्त फलन प्रतीक हैं।
इसके अतिरिक्त, एक उपयुक्त प्रमेय सिद्ध करने के उपरांत कार्यात्मक विधेय को परिभाषित किया जा सकता है। यदि आप एक औपचारिक प्रणाली में कार्य कर रहे हैं जो आपको प्रमेयों को सिद्ध करने के उपरांत नए प्रतीकों को प्रस्तुत करने की अनुमति नहीं देती है, तो आपको इससे बचने के लिए संबंध प्रतीकों का उपयोग करना होगा, जैसा कि अगले भाग में प्रदर्शित किया गया है। विशेष रूप से, यदि आप यह प्रमाणित कर सकते हैं कि प्रत्येक X के लिए, एक अद्वितीय वाई उपलब्ध है जो P के शर्तो को संतुष्ट करता है, तो आप इसे इंगित करने के लिए एक फलन प्रतीक F प्रस्तुत कर सकते हैं।
ध्यान दें कि P स्वयं एक संबंधपरक विधेय होगा जिसमें X और Y दोनों सम्मिलित होंगे। तो यदि ऐसा कोई विधेय P और एक प्रमेय है:
- किसी प्रकार T के सभी X के लिए, कुछ अद्वितीय प्रकार U के Y के लिए P(X, Y) सत्य होता है।
तो आप क्षेत्र प्रकार 'T' और उपक्षेत्र प्रकार 'यू' का एक फलन प्रतीक F प्रस्तुत कर सकते हैं जो निम्नलिखित प्रमेयों को संतुष्ट करता है:
- किसी प्रकार T के सभी X के लिए, एक प्रकार U के सभी Y के लिए, P(X, Y) तभी और उसी समय सत्य होता है जब Y = F(X) हो।
कार्यात्मक विधेय के बिना करना
विधेय तर्क के कई उपचार कार्यात्मक विधेय की अनुमति नहीं देते हैं, केवल संबंधपरक विधेय (तर्क) एस। यह उपयोगी है, उदाहरण के लिए, धातु विज्ञान प्रमेय (जैसे गोडेल की अपूर्णता प्रमेय) को साबित करने के संदर्भ में, जहां कोई नए कार्यात्मक प्रतीकों (न ही उस मामले के लिए कोई अन्य नए प्रतीक) की शुरूआत की अनुमति नहीं देना चाहता है। लेकिन कार्यात्मक प्रतीकों को संबंधपरक प्रतीकों के साथ बदलने की एक विधि है जहां पूर्व हो सकता है; इसके अलावा, यह एल्गोरिथम है और इस प्रकार परिणाम के अधिकांश धातु संबंधी प्रमेयों को लागू करने के लिए उपयुक्त है।
विशेष रूप से, यदि F का डोमेन प्रकार 'T' और कोडोमेन प्रकार 'U' है, तो इसे एक विधेय P प्रकार ('T', 'U') से बदला जा सकता है।
सहज रूप से, P(X,Y) का अर्थ F(X) = Y है। फिर जब भी किसी कथन में F(X) दिखाई दे, तो आप इसे 'U' प्रकार के नए प्रतीक Y से बदल सकते हैं और एक अन्य कथन P(X,Y) सम्मिलित कर सकते हैं। समान कटौती करने में सक्षम होने के लिए, आपको एक अतिरिक्त प्रस्ताव की आवश्यकता है:
- 'T' प्रकार के सभी X के लिए, 'U' प्रकार के कुछ अद्वितीय (गणित) Y के लिए, P(X,Y)।
(बेशक, यह वही प्रस्ताव है जिसे पिछले खंड में एक नया फलन प्रतीक प्रस्तुत करने से पहले एक प्रमेय के रूप में सिद्ध किया जाना था।)
क्योंकि कार्यात्मक विधेय का उन्मूलन कुछ उद्देश्यों और संभव दोनों के लिए सुविधाजनक है, औपचारिक तर्क के कई उपचार फलन प्रतीकों के साथ स्पष्ट रूप से व्यवहार नहीं करते हैं, बल्कि इसके बजाय केवल संबंध प्रतीकों का उपयोग करते हैं; इसके बारे में सोचने का एक और तरीका यह है कि एक कार्यात्मक विधेय एक विशेष प्रकार का विधेय है, विशेष रूप से वह जो उपरोक्त प्रस्ताव को संतुष्ट करता है। यह एक समस्या प्रतीत हो सकती है यदि आप एक प्रस्ताव स्कीमा (तर्क) निर्दिष्ट करना चाहते हैं जो केवल कार्यात्मक विधेय F पर लागू होता है; आप समय से पहले कैसे जानेंगे कि क्या यह उस शर्त को पूरा करता है? स्कीमा का समतुल्य सूत्रीकरण प्राप्त करने के लिए, पहले F(X) के किसी भी रूप को एक नए चर Y के साथ बदलें। फिर संबंधित X प्रस्तुत किए जाने के तुरंत बाद प्रत्येक वाई पर सार्वभौमिक रूप से मात्रा निर्धारित करें (यानी, X को मात्रा निर्धारित करने के बाद, या X मुक्त होने पर बयान की शुरुआत में), और पी (X, वाई) के साथ मात्रा को सुरक्षित रखें। अंत में, संपूर्ण कथन को ऊपर दिए गए कार्यात्मक विधेय के लिए अद्वितीयता की स्थिति का भौतिक सशर्त बनाएं।
आइए एक उदाहरण के रूप में ज़र्मेलो-फ्रेंकेल सेट थ्योरी में प्रतिस्थापन की स्वयंसिद्ध स्कीमा लें।
(यह उदाहरण गणितीय प्रतीकों का उपयोग करता है।) यह स्कीमा बताता है (एक रूप में), किसी भी कार्यात्मक विधेय F के लिए एक चर में:
- सबसे पहले, हमें F(C) को किसी अन्य चर D से बदलना होगा:
- बेशक, यह कथन सही नहीं है; D को C के ठीक बाद परिमाणित किया जाना चाहिए:
- इस परिमाणीकरण की रक्षा के लिए हमें अभी भी P का परिचय देना चाहिए:
- यह लगभग सही है, लेकिन यह बहुत से विधेय पर लागू होता है; हम वास्तव में क्या चाहते हैं:
- प्रतिस्थापन की स्वयंसिद्ध स्कीमा का यह संस्करण अब एक औपचारिक भाषा में उपयोग के लिए उपयुक्त है जो नए फलन प्रतीकों के परिचय की अनुमति नहीं देता है। वैकल्पिक रूप से, कोई मूल कथन को ऐसी औपचारिक भाषा में एक कथन के रूप में व्याख्या कर सकता है; यह अंत में दिए गए बयान के लिए केवल एक संक्षिप्त नाम था।
यह भी देखें
- समारोह प्रतीक (तर्क)
- तार्किक संयोजक
- तार्किक स्थिरांक