ध्वनिक तरंग समीकरण: Difference between revisions

From Vigyanwiki
(एक)
(P)
Line 1: Line 1:
{{More citations needed|date=February 2019}}
{{More citations needed|date=February 2019}}
भौतिकी में, [[ध्वनिक तरंग]] समीकरण एक भौतिक माध्यम रेम्प के माध्यम से ध्वनिक तरंगों के प्रचार को नियंत्रित करता है। एक स्थायी तरंग क्षेत्र। समीकरण का रूप द्वितीय कोटि का आंशिक अवकल समीकरण है। समीकरण [[ध्वनिक दबाव]] के विकास का वर्णन करता है <math>p</math> या [[कण वेग]] ''यू'' स्थिति ''एक्स'' और समय के एक समारोह के रूप में <math>t</math>. समीकरण का एक सरलीकृत (स्केलर) रूप केवल एक स्थानिक आयाम में ध्वनिक तरंगों का वर्णन करता है, जबकि अधिक सामान्य रूप तीन आयामों में तरंगों का वर्णन करता है। पूर्व-निर्धारित दिशा में तरंगों का प्रसार भी पहले क्रम के [[एक तरफ़ा तरंग समीकरण]] का उपयोग करके किया जा सकता है।
भौतिकी में, [[ध्वनिक तरंग]] समीकरण एक भौतिक माध्यम रेम्प के माध्यम से ध्वनिक तरंगों के प्रचार को नियंत्रित करता है। एक स्थायी तरंग क्षेत्र। समीकरण का रूप द्वितीय कोटि का आंशिक अवकल समीकरण है। समीकरण [[ध्वनिक दबाव]] के विकास का वर्णन करता है <math>p</math> या [[कण वेग]] '''''u''''' स्थिति '''''x''''' और समय के कार्य के रूप में <math>t</math>. समीकरण का सरलीकृत (स्केलर) रूप केवल स्थानिक आयाम में ध्वनिक तरंगों का वर्णन करता है, जबकि अधिक सामान्य रूप तीन आयामों में तरंगों का वर्णन करता है। पूर्व-निर्धारित दिशा में तरंगों का प्रसार भी प्रथम क्रम के [[एक तरफ़ा तरंग समीकरण]] का उपयोग करके किया जा सकता है।                    
हानिकारक मीडिया के लिए, आवृत्ति-निर्भर क्षीणन और चरण गति को ध्यान में रखने के लिए अधिक जटिल मॉडल लागू करने की आवश्यकता है। इस तरह के मॉडल में ध्वनिक तरंग समीकरण शामिल होते हैं जो भिन्नात्मक व्युत्पन्न शब्दों को शामिल करते हैं, [[ध्वनिक क्षीणन]] लेख या सर्वेक्षण पत्र भी देखें।<ref name="Nasholm2">S. P. Näsholm and S. Holm, "On a Fractional Zener Elastic Wave Equation," Fract. Calc. Appl. Anal. Vol. 16, No 1 (2013), pp. 26-50, DOI: 10.2478/s13540-013--0003-1 [https://arxiv.org/abs/1212.4024 Link to e-print]</ref>   भौतिकी में, ध्वनिक तरंग समीकरण एक भौतिक माध्यम रेम्प के माध्यम से ध्वनिक तरंगों के प्रचार को नियंत्रित करता है।                   
 
हानिकारक माध्यम के लिए, आवृत्ति-निर्भर क्षीणन और चरण गति को ध्यान में रखने के लिए अधिक जटिल प्रतिरूप लागू करने की आवश्यकता है। इस तरह के प्रतिरूप में ध्वनिक तरंग समीकरण शामिल हैं जो भिन्नात्मक व्युत्पन्न शब्दों को शामिल करते हैं, [[ध्वनिक क्षीणन]] लेख या सर्वेक्षण पत्र भी देखें।<ref name="Nasholm2">S. P. Näsholm and S. Holm, "On a Fractional Zener Elastic Wave Equation," Fract. Calc. Appl. Anal. Vol. 16, No 1 (2013), pp. 26-50, DOI: 10.2478/s13540-013--0003-1 [https://arxiv.org/abs/1212.4024 Link to e-print]</ref>                                                      
== एक आयाम में ==
== एक आयाम में ==


Line 9: Line 10:


:<math> { \partial^2 p  \over  \partial x ^2 }  -  {1 \over c^2} { \partial^2 p  \over  \partial t ^2 }  = 0  ,</math>
:<math> { \partial^2 p  \over  \partial x ^2 }  -  {1 \over c^2} { \partial^2 p  \over  \partial t ^2 }  = 0  ,</math>
कहां <math>p</math> ध्वनिक दबाव है (परिवेश दबाव से स्थानीय विचलन), और कहाँ <math>c</math> [[ध्वनि की गति]] है।<ref>[[Richard Feynman]], Lectures in Physics, Volume 1, Chapter 47: [https://feynmanlectures.caltech.edu/I_47.html Sound. The wave equation], Caltech 1963, 2006, 2013</ref>
जहाँ <math>p</math> ध्वनिक दबाव है (परिवेश दबाव से स्थानीय विचलन), और जहाँ <math>c</math> [[ध्वनि की गति]] है।<ref>[[Richard Feynman]], Lectures in Physics, Volume 1, Chapter 47: [https://feynmanlectures.caltech.edu/I_47.html Sound. The wave equation], Caltech 1963, 2006, 2013</ref>
=== समाधान ===
=== समाधान ===


बशर्ते कि गति <math>c</math> एक स्थिर है, आवृत्ति (फैलाव रहित मामला) पर निर्भर नहीं है, तो सबसे सामान्य समाधान है
बशर्ते कि <math>c</math> गति स्थिर है, आवृत्ति (फैलाव रहित मामला) पर निर्भर नहीं है, तो सबसे सामान्य समाधान है


:<math>p = f(c t - x) + g(c t + x)</math>
:<math>p = f(c t - x) + g(c t + x)</math>
कहां <math>f</math> और <math>g</math> कोई भी दो दो बार अवकलनीय फलन हैं। इसे मनमाना प्रोफ़ाइल के दो तरंगों के [[सुपरपोज़िशन सिद्धांत]] के रूप में चित्रित किया जा सकता है, एक (<math>f</math>) एक्स-अक्ष और अन्य (<math>g</math>) गति से x-अक्ष के नीचे <math>c</math>. एक साइनसोइडल तरंग का एक दिशा में यात्रा करने का विशेष मामला या तो चुनकर प्राप्त किया जाता है <math>f</math> या <math>g</math> एक साइनसॉइड होना, और दूसरा शून्य होना, देना
जहाँ <math>f</math> और <math>g</math> कोई भी दो दो बार अवकलनीय फलन हैं। इसे मनमाना प्रोफ़ाइल के दो तरंगों के [[सुपरपोज़िशन सिद्धांत]] के रूप में चित्रित किया जा सकता है, एक (<math>f</math>) x-अक्ष और अन्य (<math>g</math>) गति से -अक्ष के नीचे <math>c</math>. एक साइनसोइडल तरंग का दिशा में यात्रा करने का विशेष मामला या तो चुनकर प्राप्त किया जाता है <math>f</math> या <math>g</math> एक साइनसॉइड होने के लिए, और दूसरा शून्य होने के लिए, दे रहा है


:<math>p=p_0 \sin(\omega t \mp kx)</math>.
:<math>p=p_0 \sin(\omega t \mp kx)</math>.


कहां <math>\omega</math> तरंग की [[कोणीय आवृत्ति]] है और <math>k</math> इसकी [[तरंग संख्या]] है।
जहाँ <math>\omega</math> तरंग की [[कोणीय आवृत्ति]] है और <math>k</math> इसकी [[तरंग संख्या]] है।


=== व्युत्पत्ति ===
=== व्युत्पत्ति ===
[[File:Derivation of acoustic wave equation.png|400px|thumbnail|ध्वनिक तरंग समीकरण की व्युत्पत्ति]]तरंग समीकरण की व्युत्पत्ति में तीन चरण शामिल हैं: राज्य के समीकरण की व्युत्पत्ति, रैखिककृत एक-आयामी निरंतरता समीकरण, और रैखिककृत एक-आयामी बल समीकरण।
[[File:Derivation of acoustic wave equation.png|400px|thumbnail|ध्वनिक तरंग समीकरण की व्युत्पत्ति]]तरंग समीकरण की व्युत्पत्ति में तीन चरण शामिल हैं: अवस्था के समीकरण की व्युत्पत्ति, रैखिककृत एक-आयामी निरंतरता समीकरण, और रैखिककृत एक-आयामी बल समीकरण।


राज्य का समीकरण ([[आदर्श गैस कानून]])
अवस्था का समीकरण ([[आदर्श गैस कानून]])


:<math>PV=nRT</math>
:<math>PV=nRT</math>
Line 43: Line 44:


:<math>s = \frac{\rho - \rho_0}{\rho_0}</math>
:<math>s = \frac{\rho - \rho_0}{\rho_0}</math>
राज्य का रैखिक समीकरण बन जाता है
अवस्था का रैखिक समीकरण बन जाता है


:<math>p = B s\,</math> जहां पी ध्वनिक दबाव है (<math>P-P_0</math>).
:<math>p = B s\,</math> जहां P ध्वनिक दबाव है (<math>P-P_0</math>).


एक विमा में निरंतरता समीकरण (द्रव्यमान का संरक्षण) है
एक विमा में निरंतरता समीकरण (द्रव्यमान का संरक्षण) है
Line 62: Line 63:
:<math>\rho \frac{D u}{D t} + \frac{\partial P}{\partial x} = 0</math>,
:<math>\rho \frac{D u}{D t} + \frac{\partial P}{\partial x} = 0</math>,


कहां <math>D/Dt</math> संवहन व्युत्पन्न का प्रतिनिधित्व करता है। संवहन, पर्याप्त या भौतिक व्युत्पन्न, जो एक निश्चित बिंदु के बजाय माध्यम के साथ-साथ चलने वाले बिंदु पर व्युत्पन्न है।
जहाँ <math>D/Dt</math> संवहन व्युत्पन्न का प्रतिनिधित्व करता है। संवहन, पर्याप्त या भौतिक व्युत्पन्न, जो एक निश्चित बिंदु के बजाय माध्यम के साथ-साथ चलने वाले बिंदु पर व्युत्पन्न है।


चरों को रेखीय बनाना:
चरों को रेखीय बनाना:
Line 84: Line 85:


:<math> { \partial^2 p  \over  \partial x ^2 }  -  {1 \over c^2} { \partial^2 p  \over  \partial t ^2 }  = 0  </math>
:<math> { \partial^2 p  \over  \partial x ^2 }  -  {1 \over c^2} { \partial^2 p  \over  \partial t ^2 }  = 0  </math>
कहां <math>c = \sqrt{ \frac{B}{\rho_0 }}</math> प्रसार की गति है।
जहाँ <math>c = \sqrt{ \frac{B}{\rho_0 }}</math> प्रसार की गति है।


== तीन आयामों में ==
== तीन आयामों में ==
Line 93: Line 94:


:<math> \nabla ^2 p - {1 \over c^2} { \partial^2 p  \over  \partial t ^2 } = 0, </math>
:<math> \nabla ^2 p - {1 \over c^2} { \partial^2 p  \over  \partial t ^2 } = 0, </math>
कहां <math>\nabla ^2</math> [[लाप्लास ऑपरेटर]] है, <math>p</math> ध्वनिक दबाव (परिवेश दबाव से स्थानीय विचलन) है, और <math>c</math> ध्वनि की गति है।
जहाँ <math>\nabla ^2</math> [[लाप्लास ऑपरेटर]] है, <math>p</math> ध्वनिक दबाव (परिवेश दबाव से स्थानीय विचलन) है, और <math>c</math> ध्वनि की गति है।


एक समान दिखने वाली तरंग समीकरण लेकिन सदिश क्षेत्र के लिए कण वेग द्वारा दिया जाता है
एक समान दिखने वाली तरंग समीकरण लेकिन सदिश क्षेत्र के लिए कण वेग द्वारा दिया जाता है
Line 106: Line 107:
=== समाधान ===
=== समाधान ===


विभिन्न समन्वय प्रणालियों में चर#आंशिक अंतर समीकरणों को अलग करके निम्नलिखित समाधान प्राप्त किए जाते हैं। वे फेजर (साइन तरंगें) समाधान हैं, अर्थात् उनका एक अंतर्निहित समय-निर्भरता कारक है <math>e^{i\omega t}</math> कहां <math>\omega = 2 \pi f</math> कोणीय आवृत्ति है। द्वारा स्पष्ट समय निर्भरता दी गई है
विभिन्न समन्वय प्रणालियों में चर#आंशिक अंतर समीकरणों को अलग करके निम्नलिखित समाधान प्राप्त किए जाते हैं। वे फेजर (साइन तरंगें) समाधान हैं, अर्थात् उनका एक अंतर्निहित समय-निर्भरता कारक है <math>e^{i\omega t}</math> जहाँ <math>\omega = 2 \pi f</math> कोणीय आवृत्ति है। द्वारा स्पष्ट समय निर्भरता दी गई है
:<math>p(r,t,k) = \operatorname{Real}\left[p(r,k) e^{i\omega t}\right]</math>
:<math>p(r,t,k) = \operatorname{Real}\left[p(r,k) e^{i\omega t}\right]</math>
यहां <math> k = \omega/c \ </math> तरंग संख्या है।
यहां <math> k = \omega/c \ </math> तरंग संख्या है।

Revision as of 23:33, 5 June 2023

भौतिकी में, ध्वनिक तरंग समीकरण एक भौतिक माध्यम रेम्प के माध्यम से ध्वनिक तरंगों के प्रचार को नियंत्रित करता है। एक स्थायी तरंग क्षेत्र। समीकरण का रूप द्वितीय कोटि का आंशिक अवकल समीकरण है। समीकरण ध्वनिक दबाव के विकास का वर्णन करता है या कण वेग u स्थिति x और समय के कार्य के रूप में . समीकरण का सरलीकृत (स्केलर) रूप केवल स्थानिक आयाम में ध्वनिक तरंगों का वर्णन करता है, जबकि अधिक सामान्य रूप तीन आयामों में तरंगों का वर्णन करता है। पूर्व-निर्धारित दिशा में तरंगों का प्रसार भी प्रथम क्रम के एक तरफ़ा तरंग समीकरण का उपयोग करके किया जा सकता है।

हानिकारक माध्यम के लिए, आवृत्ति-निर्भर क्षीणन और चरण गति को ध्यान में रखने के लिए अधिक जटिल प्रतिरूप लागू करने की आवश्यकता है। इस तरह के प्रतिरूप में ध्वनिक तरंग समीकरण शामिल हैं जो भिन्नात्मक व्युत्पन्न शब्दों को शामिल करते हैं, ध्वनिक क्षीणन लेख या सर्वेक्षण पत्र भी देखें।[1]

एक आयाम में

समीकरण

तरंग समीकरण एक आयाम में एक स्थायी तरंग क्षेत्र का वर्णन करता है (स्थिति ) है

जहाँ ध्वनिक दबाव है (परिवेश दबाव से स्थानीय विचलन), और जहाँ ध्वनि की गति है।[2]

समाधान

बशर्ते कि गति स्थिर है, आवृत्ति (फैलाव रहित मामला) पर निर्भर नहीं है, तो सबसे सामान्य समाधान है

जहाँ और कोई भी दो दो बार अवकलनीय फलन हैं। इसे मनमाना प्रोफ़ाइल के दो तरंगों के सुपरपोज़िशन सिद्धांत के रूप में चित्रित किया जा सकता है, एक () x-अक्ष और अन्य () गति से -अक्ष के नीचे . एक साइनसोइडल तरंग का दिशा में यात्रा करने का विशेष मामला या तो चुनकर प्राप्त किया जाता है या एक साइनसॉइड होने के लिए, और दूसरा शून्य होने के लिए, दे रहा है

.

जहाँ तरंग की कोणीय आवृत्ति है और इसकी तरंग संख्या है।

व्युत्पत्ति

File:Derivation of acoustic wave equation.png
ध्वनिक तरंग समीकरण की व्युत्पत्ति

तरंग समीकरण की व्युत्पत्ति में तीन चरण शामिल हैं: अवस्था के समीकरण की व्युत्पत्ति, रैखिककृत एक-आयामी निरंतरता समीकरण, और रैखिककृत एक-आयामी बल समीकरण।

अवस्था का समीकरण (आदर्श गैस कानून)

रुद्धोष्म प्रक्रम में दाब P घनत्व के फलन के रूप में होता है के लिए रैखिक किया जा सकता है

जहाँ C कुछ स्थिर है। दबाव और घनत्व को उनके माध्य और कुल घटकों में तोड़ना और उस पर ध्यान देना :
.

एक तरल पदार्थ के लिए रुद्धोष्म बल्क मापांक के रूप में परिभाषित किया गया है

जो परिणाम देता है

.

संक्षेपण, एस, को किसी दिए गए परिवेश द्रव घनत्व के घनत्व में परिवर्तन के रूप में परिभाषित किया गया है।

अवस्था का रैखिक समीकरण बन जाता है

जहां P ध्वनिक दबाव है ().

एक विमा में निरंतरता समीकरण (द्रव्यमान का संरक्षण) है

.

जहां यू द्रव का प्रवाह वेग है। फिर से समीकरण को रेखीयकृत किया जाना चाहिए और चर माध्य और चर घटकों में विभाजित हो जाते हैं।

पुनर्व्यवस्थित करना और ध्यान देना कि परिवेश घनत्व न तो समय और न ही स्थिति के साथ बदलता है और यह कि संघनन वेग से गुणा बहुत कम संख्या है:

यूलर का बल समीकरण (संवेग का संरक्षण) अंतिम आवश्यक घटक है। एक आयाम में समीकरण है:

,

जहाँ संवहन व्युत्पन्न का प्रतिनिधित्व करता है। संवहन, पर्याप्त या भौतिक व्युत्पन्न, जो एक निश्चित बिंदु के बजाय माध्यम के साथ-साथ चलने वाले बिंदु पर व्युत्पन्न है।

चरों को रेखीय बनाना:

.

छोटे शब्दों को पुनर्व्यवस्थित करने और उपेक्षा करने पर, परिणामी समीकरण रैखिककृत एक-आयामी यूलर समीकरण बन जाता है:

.

निरंतरता समीकरण के व्युत्पन्न समय और बल समीकरण के स्थानिक व्युत्पन्न के परिणामस्वरूप:

.

पहले को से गुणा करना , दोनों को घटाना, और स्थिति के रैखिक समीकरण को प्रतिस्थापित करना,

.

अंतिम परिणाम है

जहाँ प्रसार की गति है।

तीन आयामों में

समीकरण

फेनमैन[3] ध्वनि के लिए तीन आयामों में तरंग समीकरण की व्युत्पत्ति प्रदान करता है

जहाँ लाप्लास ऑपरेटर है, ध्वनिक दबाव (परिवेश दबाव से स्थानीय विचलन) है, और ध्वनि की गति है।

एक समान दिखने वाली तरंग समीकरण लेकिन सदिश क्षेत्र के लिए कण वेग द्वारा दिया जाता है

.

कुछ स्थितियों में, अमूर्त अदिश क्षेत्र वेग क्षमता के लिए तरंग समीकरण को हल करना अधिक सुविधाजनक होता है जिसका रूप होता है

और फिर समीकरणों (या परिभाषा, कण वेग के मामले में) द्वारा भौतिक मात्रा कण वेग और ध्वनिक दबाव प्राप्त करें:

,
.

समाधान

विभिन्न समन्वय प्रणालियों में चर#आंशिक अंतर समीकरणों को अलग करके निम्नलिखित समाधान प्राप्त किए जाते हैं। वे फेजर (साइन तरंगें) समाधान हैं, अर्थात् उनका एक अंतर्निहित समय-निर्भरता कारक है जहाँ कोणीय आवृत्ति है। द्वारा स्पष्ट समय निर्भरता दी गई है

यहां तरंग संख्या है।

कार्तीय निर्देशांक

.

बेलनाकार निर्देशांक

.

जहां हांकेल कार्यों के लिए स्पर्शोन्मुख सन्निकटन, जब , हैं

.

गोलाकार निर्देशांक

.

चुने हुए फूरियर सम्मेलन के आधार पर, इनमें से एक बाहरी यात्रा तरंग का प्रतिनिधित्व करता है और दूसरा एक गैर-भौतिक आंतरिक यात्रा तरंग का प्रतिनिधित्व करता है। आवक यात्रा समाधान तरंग केवल r = 0 पर होने वाली विलक्षणता के कारण अभौतिक है; भीतर की यात्रा करने वाली तरंगें मौजूद हैं।

यह भी देखें


इस पेज में लापता आंतरिक लिंक की सूची

  • आंशिक विभेदक समीकरण
  • भौतिक विज्ञान
  • खड़ी लहर
  • एडियाबेटिक प्रक्रिया
  • समान बल के खिलाफ किसी वस्तु का प्रतिरोध
  • सातत्य समीकरण
  • वेक्टर क्षेत्र
  • चरण (साइन तरंगें)
  • हैंकेल फ़ंक्शन
  • ध्वनि-विज्ञान

संदर्भ

  1. S. P. Näsholm and S. Holm, "On a Fractional Zener Elastic Wave Equation," Fract. Calc. Appl. Anal. Vol. 16, No 1 (2013), pp. 26-50, DOI: 10.2478/s13540-013--0003-1 Link to e-print
  2. Richard Feynman, Lectures in Physics, Volume 1, Chapter 47: Sound. The wave equation, Caltech 1963, 2006, 2013
  3. Richard Feynman, Lectures in Physics, Volume 1, 1969, Addison Publishing Company, Addison

श्रेणी:ध्वनिक समीकरण