एडेल रिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 693: Line 693:
: '''प्रमेय-'''<ref>The general proof of this theorem for any global field is given in {{harvnb|Weil|1967|p=77.}}</ref> मान लीजिए <math>K</math> संख्या क्षेत्र है। स्थानों का परिमित समूह <math>S,</math> उपस्थित है, जिस प्रकार
: '''प्रमेय-'''<ref>The general proof of this theorem for any global field is given in {{harvnb|Weil|1967|p=77.}}</ref> मान लीजिए <math>K</math> संख्या क्षेत्र है। स्थानों का परिमित समूह <math>S,</math> उपस्थित है, जिस प्रकार
::<math>I_K= \left (I_{K,S} \times \prod_{v \notin S} O_v^\times \right ) K^\times= \left(\prod_{v \in S} K_v^\times \times \prod_{v \notin S} O_v^\times\right) K^\times.</math>
::<math>I_K= \left (I_{K,S} \times \prod_{v \notin S} O_v^\times \right ) K^\times= \left(\prod_{v \in S} K_v^\times \times \prod_{v \notin S} O_v^\times\right) K^\times.</math>
'''प्रमाण-''' किसी संख्या क्षेत्र का आदर्श वर्ग समूह परिमित होता है इसलिए मान लीजिए <math>\mathfrak{a}_1, \ldots, \mathfrak{a}_h</math> आदर्श बनो, वर्गों का प्रतिनिधित्व करो <math>\operatorname{Cl}_K.</math> ये आदर्श प्रधान आदर्शों की एक सीमित संख्या से उत्पन्न होते हैं <math>\mathfrak{p}_1, \ldots, \mathfrak{p}_n.</math> मान लीजिए <math>S</math> युक्त स्थानों का एक परिमित समूह हो <math>P_\infty</math> और इसके अनुरूप परिमित स्थान <math>\mathfrak{p}_1, \ldots, \mathfrak{p}_n.</math> समरूपता पर विचार करें:
'''प्रमाण-''' किसी संख्या क्षेत्र का आदर्श वर्ग समूह परिमित होता है इसलिए <math>\mathfrak{a}_1, \ldots, \mathfrak{a}_h</math> को आदर्श मान लें, जो <math>\operatorname{Cl}_K.</math> में वर्गों का प्रतिनिधित्व करते हैं। ये आदर्श प्रधान आदर्शों की परिमित संख्या <math>\mathfrak{p}_1, \ldots, \mathfrak{p}_n.</math> से उत्पन्न होते हैं। मान लीजिए <math>S</math>, <math>P_\infty</math> वाले स्थानों का परिमित समुच्चय है और <math>\mathfrak{p}_1, \ldots, \mathfrak{p}_n.</math> के संगत परिमित स्थान हैं। समरूपता पर विचार करें:


:<math>I_K/ \left(\prod_{v< \infty}O_v^\times \times \prod_{v | \infty}K_v^\times\right) \cong J_K,</math>
:<math>I_K/ \left(\prod_{v< \infty}O_v^\times \times \prod_{v | \infty}K_v^\times\right) \cong J_K,</math>

Revision as of 11:59, 29 May 2023

गणित में, वैश्विक क्षेत्र की एडेल रिंग (एडेलिक रिंग या एडेल्स की रिंग[1]) बीजगणितीय संख्या सिद्धांत की शाखा वर्ग क्षेत्र सिद्धांत का केंद्रीय उद्देश्य है। यह वैश्विक क्षेत्र के सभी पूर्ण मीट्रिक स्थान का प्रतिबंधित गुणनफल है और द्वैत टोपोलॉजिकल रिंग का उदाहरण है।

एडेल विशेष प्रकार के आइडल से प्राप्त होता है। इडेल फ्रांसीसी आइडेल से प्राप्त हुआ है और इसे फ्रांसीसी गणितज्ञ क्लाउड चेवेली द्वारा गढ़ा गया था। शब्द 'आदर्श तत्व' (संक्षिप्त: आईडी.ईएल) के लिए है। एडेल (फ्रेंच: एडेल) का अर्थ एडिटिव आइडल है (जो कि एडिटिव आईडीई तत्व है)।

एडेल्स की रिंग आर्टिन पारस्परिकता नियम का वर्णन करने की अनुमति प्रदान करती है, जो परिमित क्षेत्रों पर द्विघात पारस्परिकता और अन्य पारस्परिक नियमों का सामान्यीकरण है। इसके अतिरिक्त, यह वेइल द्वारा शास्त्रीय प्रमेय है जिसे परिमित क्षेत्र के बीजगणितीय वक्र पर -बंडलों के रिडक्टिव समूह के लिए एडेल्स के संदर्भ में वर्णित किया जा सकता है। एडेल्स भी एडेलिक बीजगणितीय समूहों और एडिलिक वक्रों से संबंधित हैं।

किसी संख्या क्षेत्र के एडेल रिंग पर संख्याओं की ज्यामिति के अध्ययन को एडेलिक ज्यामिति कहते हैं।

परिभाषा

मान लीजिए वैश्विक क्षेत्र ( का परिमित विस्तार या परिमित क्षेत्र पर वक्र X/Fq का फलन क्षेत्र) है। की 'एडेल रिंग' उपवलय है-

जिसमें टुपल्स सम्मिलित हैं, जहाँ सभी के लिए उपवलय में स्थित है, किन्तु कई स्थानों (गणित) पर है। यहाँ सूचकांक वैश्विक क्षेत्र के सभी मूल्यांकनों (बीजगणित) पर है, उस मूल्यांकन पर पूर्णता है और संबंधित मूल्यांकन रिंग है।

प्रेरणा

एडेल्स की रिंग परिमेय संख्या पर विश्लेषण करने की तकनीकी समस्या को हल करती है। शास्त्रीय समाधान मानक मीट्रिक पूर्णता को पारित करना था और वहां विश्लेषणात्मक तकनीकों का उपयोग करना था। किन्तु, जैसा कि पश्चात में ज्ञात हुआ था कि यूक्लिडियन दूरी के अतिरिक्त और भी कई निरपेक्ष मान हैं, जो प्रत्येक अभाज्य संख्या के लिए है, जिसे ओस्ट्रोव्स्की के प्रमेय द्वारा वर्गीकृत किया गया था। यूक्लिडियन निरपेक्ष मान , कई अन्य में से केवल एक है, किन्तु एडेल्स की रिंग सभी मूल्यांकनों से सम्मति करना और उनका उपयोग करना संभव बनाती है। यह विश्लेषणात्मक तकनीकों को सक्षम करने का लाभ है, जबकि अभाज्यों के संबंध में सूचना को यथावत रखने के पश्चात उनकी संरचना प्रतिबंधित अनंत गुणनफल द्वारा एम्बेडेड है।

प्रतिबंधित गुणनफल क्यों?

प्रतिबंधित अनंत गुणनफल संख्या क्षेत्र को के अंदर जाली संरचना देने के लिए आवश्यक तकनीकी स्थिति है, जिससे एडेलिक सेटिंग में फूरियर विश्लेषण (हार्मोनिक विश्लेषण) के सिद्धांत का निर्माण संभव हो जाता है। यह बीजगणितीय संख्या सिद्धांत में उस स्थिति के अनुरूप है जहाँ बीजगणितीय संख्या क्षेत्र के पूर्णांकों की रिंग जाली के रूप में एम्बेड होती है।

फूरियर विश्लेषण के नए सिद्धांत की शक्ति के साथ, जॉन टेट (गणितज्ञ) एल-फलनों के विशेष वर्ग को प्रमाणित करने में सक्षम थे और डेडेकाइंड जीटा फंक्शन जटिल तल पर मेरोमॉर्फिक थे।

इस तकनीकी स्थिति के बने रहने का अन्य प्राकृतिक कारण वलयों के टेन्सर गुणनफल के रूप में एडेल्स के रिंग का निर्माण करके देखा जा सकता है। यदि रिंग के रूप में इंटीग्रल एडेल की रिंग को परिभाषित किया जाए

तब एडेल्स की रिंग को समान रूप से परिभाषित किया जा सकता है-

इस रिंग में स्पष्ट तत्वों को देखने के पश्चात प्रतिबंधित गुणनफल संरचना पारदर्शी हो जाती है। अप्रतिबंधित गुणनफल के भीतर तत्व की छवि है-

गुणक , में स्थित होता है जब भी , का अभाज्य गुणनखंड नहीं होता है, किन्तु अधिक अभाज्य होते हैं।[2]


नाम की उत्पत्ति

स्थानीय वर्ग क्षेत्र सिद्धांत में, क्षेत्र की इकाइयों का समूह केंद्रीय भूमिका निभाता है। वैश्विक वर्ग क्षेत्र सिद्धांत में, आइडल वर्ग समूह यह भूमिका निभाता है। आइडल शब्द (French: idèle) फ्रांसीसी गणितज्ञ क्लॉड चेवेली (1909-1984) का आविष्कार है और आदर्श तत्व (संक्षिप्त: आईडी.ईएल.) का उपयोग है। शब्द एडेल (adèle) एडिटिव आइडल के लिए उपयोग किया जाता है।

एडेल रिंग का विचार सभी पूर्णताओं को देखना है। कार्तीय गुणन उचित उम्मीदवार हो सकता है। चूँकि, एडेल रिंग को प्रतिबंधित गुणनफल के साथ परिभाषित किया गया है। इसके दो कारण हैं:

  • के प्रत्येक तत्व के लिए मूल्यांकन परिमित संख्या के अतिरिक्त प्रायः सभी स्थानों के लिए शून्य है। इसलिए, वैश्विक क्षेत्र को प्रतिबंधित गुणनफल में एम्बेड किया जा सकता है।
  • प्रतिबंधित गुणनफल स्थानीय रूप से सघन स्थान है, जबकि कार्तीय गुणनफल नहीं है। इसलिए, कार्तीय गुणन के लिए हार्मोनिक विश्लेषण का कोई अनुप्रयोग नहीं हो सकता है। ऐसा इसलिए है क्योंकि सामान्य रूप से समूहों पर विश्लेषण में महत्वपूर्ण उपकरण, प्रत्येक माप के अस्तित्व (और विशिष्टता) को स्थानीय उपकरण सुनिश्चित करता है।

उदाहरण

परिमेय संख्याओं के लिए एडेल्स की रिंग

परिमेय K=Q में (Kν, Oν)=(Qp, Zp) के साथ प्रत्येक अभाज्य संख्या p के लिए मूल्यांकन है और Q=R के साथ अनंत मूल्यांकन ∞ है। इस प्रकार का अवयव, प्रत्येक p के लिए p-एडिक परिमेय के साथ वास्तविक संख्या है, जिनमें से सभी p-एडिक पूर्णांक हैं।

प्रक्षेपी रेखा के फंक्शन फील्ड के लिए एडेल्स की रिंग

दूसरा, परिमित क्षेत्र पर प्रक्षेपी रेखा का फलन क्षेत्र K=Fq(P1)=Fq(t) है। इसका मूल्यांकन X=P1 के बिंदु x के अनुरूप है, अर्थात SpecFq पर मानचित्र है-

उदाहरण के लिए, SpecFqP1 के रूप में q+1 बिंदु हैं। इस स्थिति में Oν= OX,x पर संरचना शीफ ​​का पूरा डंठल है (अर्थात x के औपचारिक पड़ोस पर कार्य करता है) और Kν=KXx इसका भिन्न क्षेत्र है।

परिमित क्षेत्र पर किसी भी निष्कोण वक्र X/Fq के लिए समान है, प्रतिबंधित गुणनफल x∈X के सभी बिंदुओं पर है।

संबंधित धारणाएं

एडेल रिंग में इकाइयों के समूह को आइडल समूह कहा जाता है

उपसमूह K×⊆IK द्वारा आइडल्स के भागफल को आइडल वर्ग समूह कहा जाता है

इंटीग्रल एडेल उपवलय हैं


अनुप्रयोग

आर्टिन पारस्परिकता बताते हुए

आर्टिन पारस्परिकता नियम कहता है कि वैश्विक क्षेत्र के लिए,

जहां Kab, K का अधिकतम एबेलियन बीजगणितीय विस्तार है और का अर्थ समूह की अनंत पूर्णता है।

वक्र के पिकार्ड समूह का एडिलिक सूत्रीकरण

यदि X/Fq निष्कोण उचित वक्र है तो इसका पिकार्ड समूह है[3]

और इसका विभाजक समूह Div(X)=AK×/OK× है। इसी प्रकार, यदि G अर्धसरल बीजगणितीय समूह है (उदाहरण के लिए SLn, यह GLn के लिए भी मान्य है) तो वील एकरूपता का तात्पर्य है[4]

इसे G=Gm पर प्रयुक्त करने से पिकार्ड समूह पर परिणाम प्राप्त होता है।

टेट की थीसिस

AK पर टोपोलॉजी के लिए भागफल AK/K सघन है, जिससे कोई उस पर हार्मोनिक विश्लेषण कर सकता है। जॉन टी. टेट ने अपनी थीसिस संख्या क्षेत्रों में फूरियर विश्लेषण और हेके ज़ेटा फलनों में[5] एडेल रिंग और आइडल समूह पर फूरियर विश्लेषण का उपयोग करके डिरिचलेट एल-फलन के संबंध में परिणाम सिद्ध किए। इसलिए, एडेल रिंग और आइडल समूह को रीमैन जीटा फलन और अधिक सामान्य जीटा फलन और एल-फलन का अध्ययन करने के लिए प्रयुक्त किया गया है।

निष्कोण वक्र पर सेरे द्वैत सिद्ध करना

यदि X सम्मिश्र संख्याओं पर निष्कोण उचित वक्र है, तो C(X) फलन क्षेत्र के एडील्स को परिमित क्षेत्र स्तिथि के रूप में परिभाषित कर सकता है। जॉन टेट ने सिद्ध किया कि इस एडेल रिंग AC(X) के साथ कार्य करके X पर सेरे द्वैत का अनुमान लगाया जा सकता है[6]

जहाँ L, X पर रेखा बंडल है।

अंकन और मूलभूत परिभाषाएँ

वैश्विक क्षेत्र

इस पूर्ण लेख में, वैश्विक क्षेत्र है, जिसका अर्थ है कि यह या तो बीजगणितीय संख्या क्षेत्र है ( का परिमित विस्तार) या वैश्विक फलन क्षेत्र है ( अभाज्य और के लिए का परिमित विस्तार है)। परिभाषा के अनुसार वैश्विक क्षेत्र का परिमित विस्तार स्वयं में वैश्विक क्षेत्र है।

मूल्यांकन

के मूल्यांकन (बीजगणित) के लिए इसे के संबंध में की पूर्णता के लिए के रूप में अंकित किया जा सकता है। यदि असतत है, तो इसे के अधिकतम आदर्श के लिए और के मूल्यांकन रिंग के लिए लिखा जा सकता है। यदि यह प्रमुख आदर्श है जो समान तत्व को द्वारा निरूपित करता है। गैर-आर्किमिडीयन मूल्यांकन को या के रूप में लिखा जाता है और आर्किमिडीयन मूल्यांकन को के रूप में लिखा जाता है, तत्पश्चात मान लें कि सभी मूल्यांकन गैर-तुच्छ हैं।

मूल्यांकन और निरपेक्ष मानों के विभिन्न प्रमाण है। स्थिरांक को निश्चित करें, मूल्यांकन को निरपेक्ष मान दिया गया है, जिसे इस प्रकार परिभाषित किया गया है-

इसके विपरीत, निरपेक्ष मान को मूल्यांकन के रूप में परिभाषित किया गया है-

का बीजगणितीय संख्या सिद्धांत के मूल्यांकन (या निरपेक्ष मान) के समतुल्य वर्ग का प्रतिनिधि है। गैर-आर्किमिडीयन मूल्यांकनों के अनुरूप स्थानों को परिमित कहा जाता है, यद्यपि आर्किमिडीयन मूल्यांकनों के अनुरूप स्थानों को अनंत कहा जाता है। वैश्विक क्षेत्र के अनंत स्थान परिमित समुच्चय बनाते हैं, जिसे द्वारा निरूपित किया जाता है।

को परिभाषित कीजिए और को इसकी इकाइयों का समूह मान लीजिए, तब

परिमित विस्तार

मान लीजिए वैश्विक क्षेत्र का परिमित विस्तार है। मान लीजिए , का स्थान है और , का स्थान है। यदि तक सीमित निरपेक्ष मान , के समतुल्य वर्ग में है, तो , के ऊपर स्थित होता है, जिसे द्वारा निरूपित किया जाता है और इसे इस प्रकार परिभाषित किया जाता है-

(ध्यान दें कि दोनों गुणनफल परिमित हैं।)

यदि , को में एम्बेड किया जा सकता है। इसलिए , में विकर्णीय रूप से सन्निहित है। इस एम्बेडिंग के साथ पर डिग्री का क्रमविनिमेय बीजगणित है-

एडेल रिंग

वैश्विक क्षेत्र निरूपित के परिमित एडेल के समुच्चय को के संबंध में के प्रतिबंधित गुणनफल के रूप में परिभाषित किया गया है-

यह प्रतिबंधित गुणनफल टोपोलॉजी से सुसज्जित है, जो प्रतिबंधित विवृत आयतों द्वारा उत्पन्न टोपोलॉजी है, जिसके निम्नलिखित रूप हैं:

जहाँ (परिमित) स्थानों का परिमित समुच्चय है और विवृत हैं। घटक के अनुसार जोड़ और गुणन के साथ भी वलय है।

वैश्विक क्षेत्र के एडेल रिंग को के गुणनफल के रूप में परिभाषित किया गया है, जो के अनंत स्थानों पर पूर्णता के गुणनफल के साथ है। अनंत स्थानों की संख्या परिमित है और पूर्णताएँ या तो अथवा हैं। संक्षेप में:

जोड़ और गुणन के साथ घटक के रूप में परिभाषित एडेल रिंग है। एडेल रिंग के तत्वों को का एडेल कहा जाता है। निम्नलिखित में इसे इस प्रकार लिखा गया है-

चूँकि यह सामान्यतः प्रतिबंधित गुणनफल नहीं है।

टिप्पणी- वैश्विक फलन क्षेत्रों में कोई अनंत स्थान नहीं है और इसलिए परिमित एडेल रिंग, एडेलिक रिंग के समतुल्य है।

लेम्मा- विकर्ण मानचित्र द्वारा दिए गए में का स्वाभाविक बन्धन है।

प्रमाण- यदि तब प्रायः सभी के लिए है, इससे ज्ञात होता है कि मानचित्र उचित रूप से परिभाषित है। यह अंतःक्षेपक भी है क्योंकि में का एम्बेडिंग सभी के लिए अंतःक्षेपक है।

टिप्पणी- विकर्ण मानचित्र के नीचे अपनी छवि के साथ को प्रमाणित करके इसे का उपसमूह माना जाता है। के तत्वों को का प्रमुख एडेल कहा जाता है।

परिभाषा- माना , के स्थानों का समुच्चय है। के -एडेल्स के समुच्चय को इस रूप में परिभाषित कीजिए-

इसके अतिरिक्त, यदि

तो परिणाम है-


परिमेय का एडेल रिंग

ओस्ट्रोव्स्की के प्रमेय द्वारा का स्थान है, -एडिक निरपेक्ष मान के तुल्यता वर्ग के साथ अभाज्य की पहचान करना संभव है और निरपेक्ष मान के तुल्यता वर्ग के साथ को इस प्रकार परिभाषित किया गया है-

स्थान के संबंध में की पूर्णता मूल्यांकन रिंग के साथ है। स्थान के लिए पूर्णता है। इस प्रकार-

या संक्षेप में

में अनुक्रम का उपयोग करके प्रतिबंधित और अप्रतिबंधित गुणनफल टोपोलॉजी के मध्य अंतर को चित्रित किया जा सकता है-

लेम्मा- में निम्नलिखित अनुक्रम पर विचार करें,
गुणनफल टोपोलॉजी में यह अभिसरण करता है , किन्तु यह प्रतिबंधित गुणनफल टोपोलॉजी में अभिसरण नहीं करता है।

प्रमाण- गुणनफल टोपोलॉजी में अभिसरण प्रत्येक समन्वय में अभिसरण से युग्मित होता है, जो महत्वहीन है क्योंकि अनुक्रम स्थिर हो जाते हैं। अनुक्रम प्रतिबंधित गुणनफल टोपोलॉजी में परिवर्तित नहीं होता है। प्रत्येक एडेल के लिए और प्रत्येक प्रतिबंधित विवृत आयत के लिए इसमें के लिए है और इसलिए सभी के लिए है। परिणामस्वरूप प्रायः सभी के लिए है। इस विचार में, और सभी स्थानों के समुच्चय के परिमित उपसमुच्चय हैं।

संख्या क्षेत्रों के लिए वैकल्पिक परिभाषा

परिभाषा (अनंत पूर्णांक)- अनंत पूर्णांकों को आंशिक क्रम के साथ रिंग की अनंत पूर्णता के रूप में परिभाषित किया गया है। अर्थात,

लेम्मा-

प्रमाण- यह चीनी शेषफल प्रमेय द्वारा ज्ञात किया जाता है।

लेम्मा-

प्रमाण- टेंसर गुणनफल के सार्वभौमिक गुण का प्रयोग करें। -द्विरैखिक फलन को परिभाषित करें-

यह उचित रूप से परिभाषित है क्योंकि किसी दिए गए के लिए सह-अभाज्य के साथ केवल को विभाजित करने वाले कई अभाज्य हैं। मान लीजिए , -द्विरैखिक मानचित्र के साथ -मॉड्यूल है। यह स्थिति होनी चाहिए कि गुणक के माध्यम से विशिष्ट रूप से उपस्थित है अर्थात अद्वितीय -रैखिक मानचित्र उपस्थित है जैसे कि को निम्नानुसार परिभाषित किया जा सकता है: दिए गए के लिए और उपस्थित हैं जैसे कि सभी के लिए है। को परिभाषित करें। उचित रूप से परिभाषित है, -रैखिक को संतुष्ट करता है और इन गुणों के साथ यह अद्वितीय है।

परिणाम- को परिभाषित करें, जिसका परिणाम बीजगणितीय तुल्याकारिता होता है।

प्रमाण-

लेम्मा- संख्या क्षेत्र के लिए

टिप्पणी- का उपयोग करते हुए, जहां योग हैं, दाईं ओर गुणनफल टोपोलॉजी प्राप्त करता है और इस टोपोलॉजी को पर आइसोमोर्फिज्म के माध्यम से ट्रांसपोर्ट करता है।


परिमित विस्तार की एडेल रिंग

यदि परिमित विस्तार है, और वैश्विक क्षेत्र है। इस प्रकार परिभाषित किया गया है, और है। की पहचान के उपसमूह से की जा सकती है। मानचित्र और जहाँ, के लिए है, तब उपसमूह में है, यदि के लिए और के लिए , के समान स्थान के ऊपर स्थित है।

लेम्मा- यदि परिमित विस्तार है, तो बीजगणितीय और स्थैतिक रूप से है

इस समरूपता की सहायता से, समावेशन द्वारा दिया गया है

इसके अतिरिक्त, में मुख्य एडेल्स को मानचित्र के माध्यम से में मुख्य एडेल्स के उपसमूह के साथ पहचाना जा सकता है-

प्रमाण-[7] मान लीजिए , पर का आधार है। तब के लिए,

इसके अतिरिक्त, निम्नलिखित समरूपताएं हैं:

दूसरे के लिए मानचित्र का उपयोग करें:

जिसमें विहित एम्बेडिंग और है, प्रतिबंधित गुणनफल के संबंध में दोनों पक्षों को लिया जाता है-

परिणाम- योगात्मक समूहों के रूप में जहां दाईं ओर योग होता है।

में प्रधान एडेल्स के समुच्चय को के साथ प्रमाणित किया जाता है, जहां बाईं ओर सारांश होता है और को के उपसमुच्चय के रूप में माना जाता है।


सदिश-समष्टि और बीजगणित का एडेल रिंग

लेम्मा- मान लीजिए , के स्थानों का परिमित समुच्चय है और परिभाषित करें
को गुणनफल टोपोलॉजी से सुसज्जित करें और जोड़ और गुणन को घटक के अनुसार परिभाषित करें। तब स्थानीय रूप से सघन टोपोलॉजिकल रिंग है।

टिप्पणी- यदि , के स्थानों का अन्य परिमित समुच्चय है जिसमें है तो , का विवृत उपसमूह है।

अब, एडेल रिंग का वैकल्पिक लक्षण वर्णन प्रस्तुत किया जा सकता है। एडेल रिंग सभी समुच्चयों का संघ है-

समान रूप से सभी का समुच्चय है जिससे कि प्रायः सभी के लिए है। की टोपोलॉजी इस आवश्यकता से प्रेरित है कि सभी , के विवृत उपवलय है। इस प्रकार, स्थानीय रूप से सघन टोपोलॉजिकल रिंग है।

का स्थान निर्धारित करें। मान लीजिए , के स्थानों का परिमित समुच्चय है, जिसमें और समाविष्ट हैं।

तब:

इसके अतिरिक्त परिभाषित करें

जहाँ , युक्त सभी परिमित समुच्चयों के माध्यम से चलता है। तब मानचित्र के माध्यम से

उपर्युक्त पूर्ण प्रक्रिया के अतिरिक्त परिमित उपसमुच्चय के साथ है।

के निर्माण से वास्तविक एम्बेडिंग है: इसके अतिरिक्त, वास्तविक प्रक्षेपण उपस्थित है।


सदिश-समष्टि का एडेल रिंग

मान लीजिए , पर परिमित आयामी सदिश-समष्टि है और , पर का आधार है। के प्रत्येक स्थान के लिए-

के एडेल रिंग को इस रूप में परिभाषित किया गया है-

यह परिभाषा एडेल रिंग के वैकल्पिक विवरण पर आधारित है, जो उसी टोपोलॉजी से सुसज्जित टेंसर गुणनफल है जिसे संख्या क्षेत्रों के लिए एडेल रिंग की वैकल्पिक परिभाषा देते समय परिभाषित किया गया था। प्रतिबंधित गुणनफल टोपोलॉजी से सुसज्जित है। तब और स्वाभाविक रूप से मानचित्र के माध्यम से में एम्बेडेड है।

पर टोपोलॉजी की वैकल्पिक परिभाषा प्रदान की जा सकती है। सभी रेखीय मानचित्रों पर विचार करें। प्राकृतिक एम्बेडिंग और का उपयोग करके इन रैखिक मानचित्रों को तक विस्तारित करें। पर टोपोलॉजी अपरिष्कृत है जिसके लिए ये सभी विस्तार सतत हैं।

टोपोलॉजी को भिन्न रूप से परिभाषित किया जा सकता है। पर के आधार को निश्चित करने से समरूपता प्राप्त होती है। इसलिए आधार निश्चित करना समरूपता को प्रेरित करता है। बाईं ओर गुणनफल टोपोलॉजी के साथ आपूर्ति की जाती है और इस टोपोलॉजी को समरूपता के साथ दाईं ओर ले जाती है। टोपोलॉजी आधार पर निर्भर नहीं करती है, क्योंकि अन्य आधार दूसरे समरूपतावाद को परिभाषित करता है। दोनों समरूपताओं की रचना करके, रेखीय होमियोमॉर्फिज़्म प्राप्त किया जाता है जो दो टोपोलॉजी को स्थानांतरित करता है। अधिक औपचारिक रूप से

जहां योग है। की स्तिथि में उपरोक्त परिभाषा परिमित विस्तार के एडेल रिंग के परिणामों के अनुरूप है।[8]


बीजगणित का एडेल रिंग

मान लीजिए , पर परिमित-विमीय बीजगणित है। विशेष रूप से , पर परिमित-आयामी सदिश-समष्टि है। परिणामस्वरूप, और को परिभाषित किया गया है। चूँकि और पर गुणन है, पर गुणन को निम्न द्वारा परिभाषित किया जा सकता है-

परिणाम के रूप में, बीजगणित है जिसकी इकाई अधिक है। मान लीजिए , का परिमित उपसमुच्चय है, जिसमें , का आधार है। किसी परिमित स्थान के लिए, को में द्वारा उत्पन्न -मॉड्यूल के रूप में परिभाषित किया गया है। स्थानों के प्रत्येक परिमित समुच्चय के लिए, परिभाषित करें,

परिमित समुच्चय है जिससे कि , का विवृत उपवलय है यदि है। इसके अतिरिक्त इन सभी उपवलयों का संघ है और लिए उपरोक्त परिभाषा एडेल रिंग के अनुरूप है।

एडेल रिंग पर ट्रेस और मानदंड

मान लीजिए परिमित विस्तार है। चूँकि उपरोक्त लेम्मा से और , की व्याख्या के संवृत उपवलय के रूप में की जा सकती है। इस एम्बेडिंग के लिए को अंकित करें, स्पष्ट रूप से के ऊपर के सभी स्थानों के लिए और किसी भी के लिए अंकित करें।

मान लीजिए वैश्विक क्षेत्रों का टॉवर है। तब:

इसके अतिरिक्त, मुख्य एडेल्स तक ही परिमित है, वास्तविक अन्तःक्षेपण है।

मान लीजिए क्षेत्र विस्तार का आधार है। तब प्रत्येक को के रूप में लिखा जा सकता है जहाँ अद्वितीय हैं। मानचित्र सतत है। समीकरणों के माध्यम से के आधार पर परिभाषित करें-

अब, के ट्रेस और मानदंड को परिभाषित करें-

ये रैखिक मानचित्र के ट्रेस और निर्धारक हैं

वे एडेल रिंग पर सतत मानचित्र हैं, और वे सामान्य समीकरणों को पूर्ण करते हैं:

इसके अतिरिक्त, के लिए और क्षेत्र विस्तार के ट्रेस और मानदंड के समान हैं। क्षेत्रों के टावर के लिए, परिणाम है:

इसके अतिरिक्त, यह सिद्ध किया जा सकता है कि:[9]


एडेल रिंग के गुण

प्रमेय-[10] स्थानों के प्रत्येक समुच्चय के लिए स्थानीय रूप से सघन टोपोलॉजिकल रिंग है।

टिप्पणी- उपरोक्त परिणाम सदिश-समष्टि और के ऊपर बीजगणित के एडेल रिंग के लिए भी प्रयुक्त होते हैं।

प्रमेय-[11] असतत है और में सहसंबद्ध है विशेष रूप से, , में संवृत है।

प्रमाण- स्तिथि को सिद्ध करो। असतत है, यह के अस्तित्व को दर्शाने के लिए पर्याप्त है, जिसमें कोई अन्य परिमेय संख्या नहीं है। सामान्य स्तिथि अनुवाद के माध्यम से होती है।

, का विवृत प्रतिवेश है। ऐसा आशय किया जाता है कि मान लीजिए तब और सभी के लिए है और इसलिए इसके अतिरिक्त, और है। सघनता के लिए, परिभाषित करें:

में प्रत्येक तत्व का में प्रतिनिधि है, अर्थात प्रत्येक के लिए उपस्थित है जैसे मान लीजिए एकपक्षीय है और के लिए अभाज्य संख्या है। तब और के साथ उपस्थित है। को से प्रतिस्थापित करें और को अभाज्य मान लें। तब:

अग्र, यह आशय है कि:

उत्क्रम निहितार्थ महत्वहीन सत्य है। निहितार्थ सत्य है क्योंकि प्रबल त्रिभुज असमानता के दो पद समान हैं यदि दोनों पूर्णांकों के निरपेक्ष मान भिन्न हैं। परिणामस्वरूप, अभाज्य संख्याओं का (परिमित) समुच्चय जिसके लिए के घटक में नहीं हैं, जो 1 से अल्प हो जाते हैं। पुनरावृत्ति के साथ, यह निष्कर्ष प्राप्त किया जा सकता है कि उपस्थित है जैसे कि अब का चयन करें जैसे तब सतत प्रक्षेपण विशेषण है, इसलिए सघन समुच्चय की सतत छवि के रूप में सघन है।

परिणाम- मान लीजिए , पर परिमित-आयामी सदिश-समष्टि है। तब , में असतत और सह-सघन है।
प्रमेय- निम्नलिखित बिंदुओं को माना जाता है:
  • विभाज्य समूह है।[12]
  • घना है।

प्रमाण- प्रथम दो समीकरणों को प्राथमिक रूप से सिद्ध किया जा सकता है।

परिभाषा के अनुसार विभाज्य है यदि किसी और के लिए समीकरण का हल है। यह दर्शाने के लिए पर्याप्त है कि विभाज्य है किन्तु यह सत्य है क्योंकि प्रत्येक निर्देशांक में सकारात्मक विशेषता वाला क्षेत्र है।

अंतिम कथन के लिए ध्यान दें कि क्योंकि के तत्वों के निर्देशांक में हर की परिमित संख्या के माध्यम से होती है। परिणामस्वरूप, यह दर्शाने के लिए पर्याप्त है कि सघन है, अर्थात प्रत्येक विवृत उपसमुच्चय में का तत्व होता है। यह माना जा सकता है कि

क्योंकि , में की प्रतिवेश प्रणाली है। चीनी शेष प्रमेय द्वारा उपस्थित है जैसे चूंकि विशिष्ट अभाज्य संख्याओं की घात सहअभाज्य हैं, इसलिए अनुसरण करता है।

टिप्पणी- विशिष्ट रूप से विभाज्य नहीं है। मान लीजिए और दिया गया है। तब

दोनों समीकरण को संतुष्ट करते हैं और स्पष्ट रूप से ( उचित रूप से परिभाषित है, क्योंकि अधिक अभाज्य संख्याएँ को विभाजित करती हैं)। इस स्तिथि में, विशिष्ट रूप से विभाज्य होना टॉरशन-मुक्त होने के समतुल्य है, जो के लिए सत्य नहीं है, तब किन्तु और है।

टिप्पणी- चतुर्थ कथन सन्निकटन प्रमेय की विशेष स्तिथि है।

एडेल रिंग पर प्रत्येक माप

परिभाषा- फलन को सरल कहा जाता है, यदि जहाँ मापने योग्य हैं और प्रायः सभी के लिए है।

प्रमेय-[13] चूँकि स्थानीय रूप से सघन समूह है, इसलिए पर योगात्मक माप है। इस माप को सामान्यीकृत किया जा सकता है जिस प्रकार प्रत्येक पूर्णांक सरल फलन , निम्न समीकरण को संतुष्ट करता है-
जहाँ के लिए पर माप है, जिस प्रकार इकाई माप है और लेबेस्ग माप है। गुणनफल परिमित है, अर्थात प्रायः सभी गुणनखंड 1 के समान हैं।

आदर्श समूह

परिभाषा- एडेल रिंग की इकाइयों के समूह के रूप में के आदर्श समूह को परिभाषित कीजिए जो है। आइडल समूह के तत्वों को का आइडल कहा जाता है।

टिप्पणी- टोपोलॉजी से सुसज्जित है जिससे कि यह टोपोलॉजिकल समूह में परिवर्तित हो जाए। से विरासत में मिली उपसमुच्चय टोपोलॉजी उपयुक्त उम्मीदवार नहीं है क्योंकि उपसमुच्चय टोपोलॉजी से सुसज्जित टोपोलॉजिकल रिंग की इकाइयों का समूह टोपोलॉजिकल समूह नहीं हो सकता है। उदाहरण के लिए, में व्युत्क्रम मानचित्र सतत नहीं है। अनुक्रम-

में परिवर्तित होता है। इसे अवलोकित करने के लिए को व्यापकता की हानि के अतिरिक्त 0 का प्रतिवेश मान लीजिए-

के लिए के पश्चात् से, के लिए अधिक बड़ा है। चूँकि इस क्रम का व्युत्क्रम में अभिसरित नहीं होता है।

लेम्मा- मान लीजिए टोपोलॉजिकल रिंग है।
और टोपोलॉजी पर गुणनफल से प्रेरित टोपोलॉजिकल समूह है और समावेशन मानचित्र सतत है। यह पर अपरिष्कृत टोपोलॉजी है, जो को टोपोलॉजिकल समूह बनाती है।

प्रमाण- तब टोपोलॉजिकल रिंग है जो यह दर्शाने के लिए पर्याप्त है कि व्युत्क्रम मानचित्र सतत है। मान लीजिए विवृत है, तब विवृत है। यह दर्शाना आवश्यक है कि विवृत है या समकक्ष है, विवृत है। किन्तु यह उपरोक्त स्तिथि है।

आदर्श समूह लेम्मा में परिभाषित टोपोलॉजी से सुसज्जित है जो इसे सामयिक समूह बनाता है।

परिभाषा- के लिए के स्थानों का उपसमुच्चय:

लेम्मा- टोपोलॉजिकल समूहों का प्रमाण निम्नलिखित है-
जहां प्रतिबंधित गुणनफल में टोपोलॉजी है, जो रूप के प्रतिबंधित विवृत आयतों द्वारा उत्पन्न होती है
जहाँ सभी स्थानों के समुच्चय का परिमित उपसमुच्चय है और विवृत समुच्चय हैं।

प्रमाण- के लिए प्रमाण सिद्ध करें; अन्य दो समान रूप से अनुसरण करते हैं। प्रथम यह दर्शायें कि दो समुच्चय समान हैं:

के साथ को में होना चाहिए, जिसका अर्थ प्रायः सभी के लिए और प्रायः सभी के लिए है। इसलिए, प्रायः सभी के लिए है।

अब, बाईं ओर की टोपोलॉजी को दाहिनी ओर की टोपोलॉजी के समतुल्य दर्शाना संभव हो सकता है। स्पष्ट रूप से प्रत्येक विवृत प्रतिबंधित आयत आदर्श समूह की टोपोलॉजी में विवृत है। दूसरी ओर, किसी दिए गए के लिए, जो आइडल समूह की टोपोलॉजी में विवृत है, जिसका अर्थ है, इसलिए प्रत्येक के लिए विवृत प्रतिबंधित आयत उपस्थित है, जो का उपसमुच्चय है और इसमें सम्मिलित है। इसलिए, इन सभी प्रतिबंधित विवृत आयतों का संघ है और इसलिए प्रतिबंधित गुणनफल टोपोलॉजी में विवृत है।

लेम्मा- स्थानों के प्रत्येक समुच्चय के लिए, स्थानीय सघन टोपोलॉजिकल समूह है।

प्रमाण- गुणनफल के रूप में के विवरण से स्थानीय सघनता का अनुसरण होता है। यह टोपोलॉजिकल समूह होने के नाते टोपोलॉजिकल रिंग की इकाइयों के समूह पर उपरोक्त विचार द्वारा अनुसरण करता है।

की प्रतिवेश प्रणाली की प्रतिवेश प्रणाली है। वैकल्पिक रूप से,

जहां प्रायः सभी के लिए और का प्रतिवेश है।

चूंकि आदर्श समूह स्थानीय रूप से सघन है, इसलिए इसमें प्रत्येक माप उपस्थित है। इसे सामान्य किया जा सकता है, जिससे कि

यह परिमित स्थानों के लिए प्रयुक्त सामान्यीकरण है। इस समीकरण में, परिमित आइडल समूह है, जिसका अर्थ परिमित एडेल रिंग की इकाइयों का समूह है। अपरिमित स्थानों के लिए, गुणक लेबेस्ग माप का उपयोग करें।


परिमित विस्तार का आदर्श समूह

लेम्मा- मान लीजिए परिमित विस्तार है। तब-
जहां प्रतिबंधित गुणनफल के संबंध में है।
लेम्मा- में की कैनोनिकल एम्बेडिंग है।

प्रमाण- के लिए गुण के साथ से का मानचित्र है। इसलिए, को के उपसमूह के रूप में देखा जा सकता है। तत्व इस उपसमूह में है यदि उसके घटक निम्नलिखित गुणों को पूर्ण करते हैं: के लिए और के लिए और के समान स्थान के लिए है।


सदिश समष्टि और बीजगणित की स्तिथि

[14]


बीजगणित का आदर्श समूह

मान लीजिए , पर परिमित आयामी बीजगणित है। चूँकि सामान्य रूप से उपसमुच्चय-टोपोलॉजी वाला टोपोलॉजिकल समूह नहीं है, को उपरोक्त के समान टोपोलॉजी से सुसज्जित करें और को आदर्श समूह कहें। आइडल समूह के तत्वों को का आइडल कहा जाता है।

प्रस्ताव- मान लीजिए , का परिमित उपसमुच्चय है, जिसमें पर का आधार होता है। के प्रत्येक परिमित स्थान के लिए, मान लीजिए , में द्वारा उत्पन्न -मॉड्यूल है। युक्त स्थानों का परिमित समुच्चय उपस्थित है जिसमें है जिस प्रकार सभी के लिए का सघन उपवलय है। इसके अतिरिक्त, में होता है। प्रत्येक के लिए, , का विवृत उपसमुच्चय है और मानचित्र , पर सतत है। परिणामस्वरूप , को में अपनी छवि पर होमियोमॉर्फिक रूप से मैप करता है। प्रत्येक के लिए, उपरोक्त फलन के साथ में मानचित्रण के तत्व हैं। इसलिए , का विवृत और सघन उपसमूह है।[15]


आदर्श समूह का वैकल्पिक लक्षण वर्णन

प्रस्ताव- मान लीजिए स्थानों का परिमित समूह है। तब
का विवृत उपसमूह है, जहां सभी का संघ है।[16]
परिणाम- के प्रत्येक परिमित समुच्चय के लिए की विशेष स्तिथि में,
का विवृत उपसमूह है। सभी का संघ है।


आइडल समूह पर मानदंड

ट्रेस और मानदंड को एडेल रिंग से आइडल समूह में स्थानांतरित किया जाना चाहिए। यह ज्ञात हुआ है कि ट्रेस को इतनी सरलता से स्थानांतरित नहीं किया जा सकता है। चूँकि, आदर्श को एडेल रिंग से आइडल समूह में स्थानांतरित करना संभव है। मान लीजिए तब और इसलिए, यह कहा जा सकता है कि अंतःक्षेपी समूह समरूपता में है-

चूँकि व्युत्क्रमणीय है, भी व्युत्क्रमणीय है, क्योंकि है। इसलिए परिणामस्वरूप, मानदंड-फलन का प्रतिबंध सतत फलन का परिचय देता है:


आइडल वर्ग समूह

लेम्मा- विकर्ण मानचित्र द्वारा दिए गए में का प्राकृतिक एम्बेडिंग है।

प्रमाण- चूँकि सभी के लिए का उपसमुच्चय है, एम्बेडिंग उचित रूप से परिभाषित और अंतःक्षेपी है।

परिणाम- , का असतत उपसमूह है।

परिभाषा- आदर्श वर्ग समूह के अनुरूप, में के तत्वों को का प्रमुख आदर्श कहा जाता है। भागफल समूह को का आदर्श वर्ग समूह कहा जाता है। यह समूह आदर्श वर्ग समूह से संबंधित है और वर्ग क्षेत्र सिद्धांत में केंद्रीय वस्तु है।

टिप्पणी- , में संवृत है इसलिए स्थानीय रूप से सघन टोपोलॉजिकल समूह और हॉसडॉर्फ स्पेस है।

लेम्मा-[17] मान लीजिए परिमित विस्तार है। एम्बेडिंग अंतःक्षेपी मानचित्र प्रेरित करता है-


आदर्श समूह के गुण

K और 1-आइडल के आदर्श समूह पर निरपेक्ष मान

परिभाषा- के लिए को परिभाषित करें। चूंकि आदर्श है, यह गुणनफल परिमित है, और इसलिए उचित रूप से परिभाषित है।

टिप्पणी- अपरिमित गुणनफलों की अनुमति से परिभाषा को तक विस्तारित किया जा सकता है। चूंकि, ये अपरिमित गुणनफल लुप्त हो जाते हैं और इसलिए पर लुप्त हो जाता है। का उपयोग और दोनों फलनों को निरूपित करने के लिए किया जाएगा।

प्रमेय- सतत समूह समरूपता है।

प्रमाण- मान लीजिए

जहां इसका उपयोग किया जाता है कि सभी गुणनफल परिमित हैं। मानचित्र सतत है जिसे अनुक्रमों वाले तर्क का उपयोग करके देखा जा सकता है। यह इस समस्या को अल्प कर देता है कि क्या , पर सतत है। चूँकि, यह विपरीत त्रिभुज असमानता के कारण स्पष्ट है।

परिभाषा- 1-आइडल के समुच्चय को इस प्रकार परिभाषित किया जा सकता है-

, का उपसमूह है। क्योंकि का संवृत्त उपसमुच्चय है। अंततः पर -टोपोलॉजी, पर के उपसमुच्चय-टोपोलॉजी के समान होती है।[18][19]

आर्टिन का गुणनफल सूत्र- सभी के लिए

प्रमाण-[20] संख्या क्षेत्रों के सूत्र का प्रमाण, वैश्विक फलन क्षेत्रों की स्तिथि को इसी प्रकार से सिद्ध किया जा सकता है। मान लीजिए संख्या क्षेत्र है और निम्न समीकरण दर्शाता है-

परिमित स्थान , जिसके लिए संबंधित प्रमुख आदर्श , , को विभाजित नहीं करता और इसलिए है। यह प्रायः सभी के लिए मान्य है, जहाँ-

पंक्ति 1 से पंक्ति 2 तक जाने में का उपयोग किया गया था, जहां , का स्थान है और , का स्थान है, जो के ऊपर स्थित है। पंक्ति 2 से पंक्ति 3 तक जाने पर, मानदंड के गुण का उपयोग किया जाता है। मानदंड में है, इसलिए व्यापकता की हानि के अतिरिक्त यह माना जा सकता है कि तब के निकट अद्वितीय पूर्णांक गुणनखंडन होता है-

जहाँ प्रायः सभी के लिए है। ओस्ट्रोव्स्की के प्रमेय के अनुसार पर सभी निरपेक्ष मान या -एडिक निरपेक्ष मान के समतुल्य हैं। इसलिए:

लेम्मा-[21] केवल पर निर्भर स्थिर उपस्थित है जैसे कि प्रत्येक संतोषजनक के लिए उपस्थित है जिस प्रकार सभी के लिए उपस्थित है।
परिणाम- मान लीजिए , का स्थान है और सभी के लिए गुण के साथ के लिए दिया गया है। तब उपस्थित है इसीलिए सभी के लिए उपस्थित है।

प्रमाण- मान लीजिए स्थिर है। मान लीजिए , का समान तत्व है। न्यूनतम के साथ के माध्यम से एडेल को परिभाषित करें, जिससे कि सभी के लिए है। तब, प्रायः सभी के लिए है। के साथ को परिभाषित करें तब यह कार्य करता है, क्योंकि प्रायः सभी के लिए है। लेम्मा द्वारा उपस्थित है, जिससे कि सभी के लिए है।

प्रमेय- , में असतत और सहसंबद्ध है।

प्रमाण-[22] चूँकि , में असतत है, यह में भी असतत है। की सघनता सिद्ध करने के लिए मान लीजिए लेम्मा का स्थिरांक है और मान लीजिए , को संतुष्टि करता है। परिभाषित करें-

स्पष्ट रूप से सघन है। यह आशय किया जा सकता है कि प्राकृतिक प्रक्षेपण विशेषण है। मान लीजिए एकपक्षीय है, तब-

और इसलिए

यह इस प्रकार है कि

लेम्मा द्वारा उपस्थित है जैसे सभी के लिए , और इसलिए प्राकृतिक प्रक्षेपण की प्रक्षेप्यता सिद्ध कर रहा है। चूंकि यह भी सतत है इसलिए सघनता इस प्रकार है।

प्रमेय-[23] विहित समरूपता है। इसके अतिरिक्त, , के प्रतिनिधियों का समूह है और , के प्रतिनिधियों का समूह है।

प्रमाण- मानचित्र पर विचार करें

यह मानचित्र उचित रूप से परिभाषित है, क्योंकि सभी के लिए और इसलिए प्रत्यक्ष रूप से सतत समूह समरूपता है। अब मान लीजिए तब उपस्थित है जिस प्रकार अपरिमित स्थान पर विचार करके यह देखा जा सकता है कि अंतःक्षेपक सिद्ध करता है। प्रक्षेपकता दर्शाने के लिए मान लीजिए इस तत्व का निरपेक्ष मान है और इसलिए

इस प्रकार ,

तब से

यह निष्कर्ष निकाला गया है प्रक्षेपकता है।

प्रमेय-[24] निरपेक्ष मान फलन टोपोलॉजिकल समूहों के निम्नलिखित समरूपता को प्रेरित करता है-

प्रमाण- समरूपता द्वारा दिया जाता है-


आदर्श वर्ग समूह और आइडल वर्ग समूह के मध्य संबंध

प्रमेय- मान लीजिए संख्या क्षेत्र है जिसमें पूर्णांकों का समूह भिन्नात्मक आदर्शों का समूह और आइडल वर्ग समूह है। यहाँ निम्नलिखित समरूपताएँ हैं-
जहाँ परिभाषित किया गया है।

प्रमाण- मान लीजिए , का परिमित स्थान है और को तुल्यता वर्ग का प्रतिनिधि बनाता है।

तब , में प्रमुख आदर्श है। मानचित्र , के परिमित स्थानों और के अशून्य प्रमुख आदर्शों के मध्य आक्षेप है। व्युत्क्रम इस प्रकार दिया गया है: प्रमुख आदर्श को मूल्यांकन द्वारा मैप किया गया है-

निम्नलिखित मानचित्र उचित रूप से परिभाषित है-

मानचित्र स्पष्ट रूप से विशेषण समाकारिता है और प्रथम समरूपता मूलभूत प्रमेय द्वारा प्राप्त होती है। अब, दोनों पक्षों को से विभाजित किया गया है। यह संभव है, क्योंकि

कृपया टिप्पणी के दुरुपयोग पर ध्यान दें: समीकरणों की इस श्रृंखला की प्रथम पंक्ति में बाईं ओर, परिभाषित मानचित्र के लिए का उपयोग किया गया है। तत्पश्चात, को में एम्बेड करने के लिए उपयोग किया जाता है। द्वितीय पंक्ति में, मानचित्र की परिभाषा का उपयोग किया गया है।

अंततः, इसका उपयोग करें कि , डेडेकाइंड डोमेन है और इसलिए प्रत्येक आदर्श को प्रधान आदर्शों के गुणनफल के रूप में अंकित किया जा सकता है। अन्य शब्दों में, मानचित्र , - समतुल्य समूह समरूपता है। परिणामस्वरूप, उपरोक्त मानचित्र विशेषण समरूपता को प्रेरित करता है-

द्वितीय तुल्याकारिता को सिद्ध करने के लिए, यह दर्शाना होगा विचार करें तब क्योंकि सभी के लिए है। दूसरी ओर, के साथ का विचार करें जो को अंकित करने की अनुमति प्रदान करता है। परिणामस्वरूप, प्रतिनिधि उपस्थित है, जैसे कि: फलस्वरूप, और इसलिए प्रमेय की द्वितीय समरूपता सिद्ध हो चुकी है।

अंतिम तुल्याकारिता के लिए ध्यान दें कि विशेषण समूह समाकारिता को प्रेरित करता है-

टिप्पणी- आइडल टोपोलॉजी के साथ पर विचार करें और को असतत टोपोलॉजी से सुसज्जित करें। चूँकि प्रत्येक के लिए विवृत और सतत है। विवृत है, जहाँ तब

K के आदर्श समूह और आदर्श वर्ग समूह का अपघटन

प्रमेय-

प्रमाण- प्रत्येक स्थान के लिए जो सभी के लिए, , द्वारा उत्पन्न के उपसमूह से संबंधित है। इसलिए प्रत्येक के लिए , द्वारा उत्पन्न के उपसमूह में है। इसलिए समरूपता की छवि , द्वारा उत्पन्न का असतत उपसमूह है। चूंकि यह समूह गैर-तुच्छ है, यह कुछ द्वारा उत्पन्न होता है। का चयन करें जिससे कि तब , और द्वारा उत्पन्न उपसमूह का प्रत्यक्ष गुणनफल है। यह उपसमूह असतत और के लिए समरूपीय है।

के लिए को परिभाषित करें-

मानचित्र , और के संवृत उपसमूह में की समरूपता है।

स्पष्ट रूप से, समरूपता है। यह सिद्ध करने के लिए कि यह अंतःक्षेपक है, मान लें। चूँकि के लिए , है जिसका तात्पर्य के लिए है। इसके अतिरिक्त, उपस्थित है तब के लिए है। इसलिए, के लिए है। इसके अतिरिक्त का तात्पर्य है, जहाँ , के अपरिमित स्थानों की संख्या है। परिणाम के रूप में और इसलिए अंतःक्षेपक है। विशेषण दर्शाने के लिए, मान लें। को परिभाषित किया गया है और इसके अतिरिक्त, के लिए और के लिए है। को परिभाषित करें। का उपयोग किया गया है।इसलिए, विशेषण है।

अन्य समीकरण भी इसी प्रकार अनुसरण करते हैं।

आदर्श समूह की विशेषता

प्रमेय-[25] मान लीजिए संख्या क्षेत्र है। स्थानों का परिमित समूह उपस्थित है, जिस प्रकार

प्रमाण- किसी संख्या क्षेत्र का आदर्श वर्ग समूह परिमित होता है इसलिए को आदर्श मान लें, जो में वर्गों का प्रतिनिधित्व करते हैं। ये आदर्श प्रधान आदर्शों की परिमित संख्या से उत्पन्न होते हैं। मान लीजिए , वाले स्थानों का परिमित समुच्चय है और के संगत परिमित स्थान हैं। समरूपता पर विचार करें:

प्रेरक

अनंत स्थानों पर कथन तत्काल होता है, इसलिए कथन परिमित स्थानों के लिए सिद्ध हुआ है। समावेश "" ज़ाहिर है। मान लीजिए संगत आदर्श एक वर्ग के अंतर्गत आता है अर्थ एक प्रमुख आदर्श के लिए विचारधारा आदर्श के नक्शे नक्शे के नीचे इसका मत चूंकि प्रमुख आदर्शों में में हैं यह इस प्रकार है सभी के लिए इसका मत सभी के लिए यह इस प्रकार है कि इसलिए


अनुप्रयोग

किसी संख्या क्षेत्र की वर्ग संख्या की परिमितता

पिछले खंड में तथ्य यह है कि संख्या क्षेत्र की वर्ग संख्या परिमित है, का उपयोग किया गया था। यहाँ इस कथन को सिद्ध किया जा सकता है:

प्रमेय (किसी संख्या क्षेत्र की वर्ग संख्या की परिमितता)। मान लीजिए एक संख्या क्षेत्र हो। तब

प्रमाण- वो मानचित्र

विशेषण है और इसलिए सघन सेट की सतत छवि है इस प्रकार, सघन है। इसके अतिरिक्त, यह असतत और इतना परिमित है।

टिप्पणी। वैश्विक कार्य क्षेत्र के मामले में एक समान परिणाम है। इस मामले में, तथाकथित भाजक समूह परिभाषित किया गया है। यह दिखाया जा सकता है कि डिग्री के सभी विभाजकों के सेट का भागफल प्रमुख विभाजकों के समुच्चय द्वारा एक परिमित समूह है।[26]


इकाइयों का समूह और डिरिचलेट की इकाई प्रमेय

मान लीजिए स्थानों का एक परिमित समूह हो। परिभाषित करना

तब का एक उपसमूह है सभी तत्वों से युक्त संतुष्टि देने वाला सभी के लिए तब से में असतत है का असतत उपसमूह है और इसी तर्क के साथ में असतत है एक वैकल्पिक परिभाषा है: जहाँ का उपसमूह है द्वारा परिभाषित

एक परिणाम के रूप में, सभी तत्व शामिल हैं जो पूरा करते हैं सभी के लिए

लेम्मा 1. चलो निम्नलिखित सेट परिमित है:

प्रमाण। परिभाषित करना

सघन है और ऊपर वर्णित सेट का प्रतिच्छेदन है असतत उपसमूह के साथ में और इसलिए परिमित।

लेम्मा 2। चलो सभी के लिए सेट हो ऐसा है कि सभी के लिए तब की एकता की सभी जड़ों का समूह विशेष रूप से यह परिमित और चक्रीय है।

प्रमाण। की एकता की सभी जड़ें निरपेक्ष मूल्य है इसलिए विलोम के लिए ध्यान दें कि लेम्मा 1 के साथ और कोई भी तात्पर्य परिमित है। इसके अतिरिक्त स्थानों के प्रत्येक परिमित सेट के लिए अंत में मान लीजिए कि मौजूद है जो की एकता का मूल नहीं है तब सभी के लिए की सूक्ष्मता के विपरीत

इकाई प्रमेय। की प्रत्यक्ष उपज है और एक समूह आइसोमोर्फिक है जहाँ अगर और अगर [27]
डिरिक्लेट की इकाई प्रमेय। मान लीजिए एक संख्या क्षेत्र हो। तब जहाँ की एकता की सभी जड़ों का परिमित चक्रीय समूह है के वास्तविक एम्बेडिंग की संख्या है और के जटिल एम्बेडिंग के संयुग्म जोड़े की संख्या है यह खड़ा है, वह

टिप्पणी। इकाई प्रमेय डिरिचलेट की इकाई प्रमेय का सामान्यीकरण करता है। इसे देखने के लिए, आइए एक संख्या क्षेत्र हो। यह पहले से ही ज्ञात है तय करना और ध्यान दें फिर वहाँ है:


सन्निकटन प्रमेय

कमजोर सन्निकटन प्रमेय।[28] मान लीजिए के असमान मूल्यांकन हो मान लीजिए का पूरा होना इसके संबंध में एम्बेड तिरछे में तब हर जगह-सघन में सेट है दूसरे शब्दों में, प्रत्येक के लिए और प्रत्येक के लिए वहां मौजूद ऐसा है कि:
मजबूत सन्निकटन प्रमेय।[29] मान लीजिए का स्थान हो परिभाषित करना
तब में घना है

टिप्पणी। इसके एडेल रिंग में वैश्विक क्षेत्र असतत है। मजबूत सन्निकटन प्रमेय हमें बताता है कि, यदि एक स्थान (या अधिक) को छोड़ दिया जाता है, तो असततता का गुण के सघनता में बदल जाता है


हस्से सिद्धांत

हस्से-मिन्कोव्स्की प्रमेय- पर द्विघात रूप शून्य है, यदि प्रत्येक पूर्णता में द्विघात रूप शून्य है।

टिप्पणी- द्विघात रूपों के लिए यह हस्से सिद्धांत है। 2 से बड़ी डिग्री के बहुपदों के लिए हस्से सिद्धांत सामान्य रूप से मान्य नहीं है। हस्से सिद्धांत (स्थानीय-वैश्विक सिद्धांत के रूप में भी जाना जाता है) का विचार संख्या क्षेत्र की दी गई समस्या को हल करने के लिए की पूर्णता है और तत्पश्चात में समाधान पर निष्कर्ष ज्ञात करना है।


एडेल रिंग पर वर्ण

परिभाषा। मान लीजिए स्थानीय रूप से सघन एबेलियन समूह बनें। का वर्ण समूह के सभी वर्णों का समुच्चय है और द्वारा दर्शाया गया है इसके तुल्य से सभी सतत समूह समरूपताओं का समुच्चय है को सुसज्जित सघन सबसेट पर समान अभिसरण की टोपोलॉजी के साथ कोई यह दिखा सकता है स्थानीय रूप से सघन एबेलियन समूह भी है।

प्रमेय। एडेल रिंग सेल्फ-डुअल है:

प्रमाण। स्थानीय निर्देशांकों में कमी करके, यह प्रत्येक को दिखाने के लिए पर्याप्त है स्वयं द्वैत है। यह एक निश्चित वर्ण का उपयोग करके किया जा सकता है विचार को दर्शाकर चित्रित किया गया है स्वयं द्वैत है। परिभाषित करना:

फिर निम्न मानचित्र एक समरूपता है जो टोपोलॉजी का सम्मान करता है:

प्रमेय (एडेल रिंग के बीजगणितीय और सतत दोहरे)।[30] मान लीजिए का एक गैर-तुच्छ चरित्र हो जो तुच्छ है मान लीजिए एक परिमित-आयामी वेक्टर-स्पेस ओवर हो मान लीजिए और के बीजगणितीय द्वैत हों और के सामयिक दोहरे को निरूपित करें द्वारा और उपयोग करें और प्राकृतिक बिलिनियर जोड़ियों को इंगित करने के लिए और फिर सूत्र सभी के लिए समरूपता निर्धारित करता है का पर जहाँ और इसके अतिरिक्त, अगर पूरा सभी के लिए तब


टेट की थीसिस

के अक्षरों की सहायता से एडेल रिंग पर फूरियर विश्लेषण किया जा सकता है।[31] जॉन टी. टेट ने अपने थीसिस फूरियर एनालिसिस इन नंबर फील्ड्स एंड हेके जीटा फंक्शंस में[5] ने एडेल रिंग और आइडल ग्रुप पर फूरियर विश्लेषण का उपयोग करके डिरिचलेट एल-फंक्शन के बारे में परिणाम साबित किए। इसलिए, एडेल रिंग और आइडल ग्रुप को रीमैन जीटा फंक्शन और अधिक सामान्य जीटा फंक्शन और एल-फंक्शन का अध्ययन करने के लिए लागू किया गया है। इन कार्यों के एडेलिक रूपों को संबंधित हार उपायों के संबंध में एडेल रिंग या आइडल समूह पर इंटीग्रल के रूप में परिभाषित और प्रतिनिधित्व किया जा सकता है। इन कार्यों के कार्यात्मक समीकरण और मेरोमोर्फिक सततताएं दिखाई जा सकती हैं। उदाहरण के लिए, सभी के लिए साथ

जहाँ अद्वितीय हार उपाय चालू है इस तरह सामान्यीकृत मात्रा एक है और शून्य से परिमित एडेल रिंग तक बढ़ाया गया है। नतीजतन, रीमैन ज़ेटा फ़ंक्शन को एडेल रिंग के ऊपर एक अभिन्न अंग (एक सबसेट) के रूप में लिखा जा सकता है।[32]


स्वचालित रूप

ऑटोमोर्फिक रूपों का सिद्धांत आदर्श समूह को समान उच्च आयामी समूहों के साथ बदलकर टेट की थीसिस का सामान्यीकरण है। इस नोट को देखने के लिए:

इन पहचान के आधार पर आदर्श समूह और 1-आदर्श को प्रतिस्थापित करने के लिए एक प्राकृतिक सामान्यीकरण होगा:

और अंत में

जहाँ का केन्द्र है फिर यह एक ऑटोमोर्फिक रूप को एक तत्व के रूप में परिभाषित करता है दूसरे शब्दों में एक ऑटोमोर्फिक रूप एक कार्य है कुछ बीजगणितीय और विश्लेषणात्मक स्थितियों को संतुष्ट करना। ऑटोमॉर्फिक रूपों का अध्ययन करने के लिए, समूह के निरूपण को जानना महत्वपूर्ण है ऑटोमॉर्फिक एल-फ़ंक्शंस का अध्ययन करना भी संभव है, जिसे इंटीग्रल ओवर के रूप में वर्णित किया जा सकता है [33] प्रतिस्थापित करके आगे भी सामान्यीकरण संभव है एक संख्या क्षेत्र के साथ और एक मनमाना रिडक्टिव बीजगणितीय समूह के साथ।

आगे के आवेदन

आर्टिन पारस्परिकता कानून का एक सामान्यीकरण प्रतिनिधित्व के संबंध की ओर जाता है और गाल्वा के अभ्यावेदन (लैंगलैंड्स कार्यक्रम)।

आदर्श वर्ग समूह वर्ग क्षेत्र सिद्धांत का एक प्रमुख उद्देश्य है, जो क्षेत्र के एबेलियन विस्तार का वर्णन करता है। स्थानीय वर्ग क्षेत्र सिद्धांत में स्थानीय पारस्परिक मानचित्रों का गुणनफल वैश्विक क्षेत्र के अधिकतम एबेलियन विस्तार के गैलोज़ समूह को आदर्श समूह का एक समरूपता देता है। आर्टिन पारस्परिकता कानून, जो गॉस द्विघात पारस्परिकता कानून का एक व्यापक सामान्यीकरण है, कहता है कि गुणनफल संख्या क्षेत्र के गुणात्मक समूह पर गायब हो जाता है। इस प्रकार, क्षेत्र के निरपेक्ष गैल्वा समूह के एबेलियन भाग के लिए आदर्श वर्ग समूह का वैश्विक पारस्परिकता मानचित्र प्राप्त किया जाएगा।

एक परिमित क्षेत्र पर एक वक्र के कार्य क्षेत्र के एडेल रिंग की स्व-द्वैत आसानी से रीमैन-रोच प्रमेय और वक्र के लिए द्वंद्व सिद्धांत का अर्थ है।

संदर्भ

  1. Groechenig, Michael (August 2017). "एडेलिक डिसेंट थ्योरी". Compositio Mathematica. 153 (8): 1706–1746. arXiv:1511.06271. doi:10.1112/S0010437X17007217. ISSN 0010-437X. S2CID 54016389.
  2. https://ncatlab.org/nlab/show/ring+of+adeles
  3. Geometric Class Field Theory, notes by Tony Feng of a lecture of Bhargav Bhatt (PDF).
  4. Weil uniformization theorem, nlab article.
  5. 5.0 5.1 Cassels & Fröhlich 1967.
  6. Tate, John (1968), "Residues of differentials on curves" (PDF), Annales Scientifiques de l'École Normale Supérieure, 1: 149–159, doi:10.24033/asens.1162.
  7. This proof can be found in Cassels & Fröhlich 1967, p. 64.
  8. The definitions are based on Weil 1967, p. 60.
  9. See Weil 1967, p. 64 or Cassels & Fröhlich 1967, p. 74.
  10. For proof see Deitmar 2010, p. 124, theorem 5.2.1.
  11. See Cassels & Fröhlich 1967, p. 64, Theorem, or Weil 1967, p. 64, Theorem 2.
  12. The next statement can be found in Neukirch 2007, p. 383.
  13. See Deitmar 2010, p. 126, Theorem 5.2.2 for the rational case.
  14. This section is based on Weil 1967, p. 71.
  15. A proof of this statement can be found in Weil 1967, p. 71.
  16. A proof of this statement can be found in Weil 1967, p. 72.
  17. For a proof see Neukirch 2007, p. 388.
  18. This statement can be found in Cassels & Fröhlich 1967, p. 69.
  19. is also used for the set of the -idele but is used in this example.
  20. There are many proofs for this result. The one shown below is based on Neukirch 2007, p. 195.
  21. For a proof see Cassels & Fröhlich 1967, p. 66.
  22. This proof can be found in Weil 1967, p. 76 or in Cassels & Fröhlich 1967, p. 70.
  23. Part of Theorem 5.3.3 in Deitmar 2010.
  24. Part of Theorem 5.3.3 in Deitmar 2010.
  25. The general proof of this theorem for any global field is given in Weil 1967, p. 77.
  26. For more information, see Cassels & Fröhlich 1967, p. 71.
  27. A proof can be found in Weil 1967, p. 78 or in Cassels & Fröhlich 1967, p. 72.
  28. A proof can be found in Cassels & Fröhlich 1967, p. 48.
  29. A proof can be found in Cassels & Fröhlich 1967, p. 67
  30. A proof can be found in Weil 1967, p. 66.
  31. For more see Deitmar 2010, p. 129.
  32. A proof can be found Deitmar 2010, p. 128, Theorem 5.3.4. See also p. 139 for more information on Tate's thesis.
  33. For further information see Chapters 7 and 8 in Deitmar 2010.


स्रोत

  • Cassels, John; Fröhlich, Albrecht (1967). बीजगणितीय संख्या सिद्धांत: लंदन मैथमैटिकल सोसाइटी, (एक नाटो उन्नत अध्ययन संस्थान) द्वारा आयोजित एक निर्देशात्मक सम्मेलन की कार्यवाही. Vol. XVIII. London: Academic Press. ISBN 978-0-12-163251-9. 366 पृष्ठ।
  • Neukirch, Jürgen (2007). बीजगणितीय संख्या सिद्धांत, अपरिवर्तित। पहले संस्करण की आवृत्ति। ईडीएन (in Deutsch). Vol. XIII. Berlin: Springer. ISBN 9783540375470. 595 पृष्ठ।
  • Weil, André (1967). मूल संख्या सिद्धांत. Vol. XVIII. Berlin; Heidelberg; New York: Springer. ISBN 978-3-662-00048-9. 294 पृष्ठ।
  • Deitmar, Anton (2010). ऑटोमोर्फिक रूप (in Deutsch). Vol. VIII. Berlin; Heidelberg (u.a.): Springer. ISBN 978-3-642-12389-4. 250 पृष्ठ।
  • Lang, Serge (1994). बीजगणितीय संख्या सिद्धांत, गणित में स्नातक पाठ 110 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-94225-4.

बाहरी संबंध