प्रकीर्णन मापदंड: Difference between revisions

From Vigyanwiki
Line 9: Line 9:
एस-मापदंड, एक समान मापदंड परिवार के सदस्य हैं, जिनके अन्य उदाहरण हैं: Y-मापदंड<ref>Pozar, David M. (2005); ''Microwave Engineering, Third Edition'' (Intl. Ed.); John Wiley & Sons, Inc.; pp. 170–174. {{ISBN|0-471-44878-8}}.</ref>, [[जेड मानकों|Z-मापदंड]], H-मापदंड, T-मापदंड या [[एबीसीडी-पैरामीटर|एबीसीडी-मापदंड]] आदि।<ref>Pozar, David M. (2005) (op. cit.); pp. 170–174.</ref> <ref>Pozar, David M. (2005) (op. cit.); pp. 183–186.</ref><ref>Morton, A. H. (1985); '' Advanced Electrical Engineering''; Pitman Publishing Ltd.; pp. 33–72.  {{ISBN|0-273-40172-6}}.</ref> वे इनसे, इस अर्थ में भिन्न हैं कि एस-मापदंड एक रैखिक विद्युत नेटवर्क को चिह्नित करने के लिए विवृत्त या शॉर्ट परिपथ स्थितियों का उपयोग नहीं करते हैं; इसके अतिरिक्त इनमे [[प्रतिबाधा मिलान]] का उपयोग किया जाता है। विवृत्त-परिपथ और शॉर्ट-परिपथ टर्मिनेशन की तुलना में उच्च संकेत आवृत्ती पर इन [[ विद्युत समाप्ति |विद्युत सीमा]] का उपयोग करना अत्यधिक सरल है। साधारण धारणा के विपरीत, 'मात्राओं को शक्ति के संदर्भ में नहीं मापा जाता है'। समकालिक सदिश नेटवर्क विश्लेषक [[ वाल्ट |विभव]] यातायाती तरंग चरण के आंशिकता और [[चरण]] का मापन करते हैं, जो मूल रूप से डिजिटली मोड्यूलेट किए गए ताररहित संकेतों के डीमोडुलेशन के लिए उपयोग किए जाने वाले परिपथ के समान होते हैं।
एस-मापदंड, एक समान मापदंड परिवार के सदस्य हैं, जिनके अन्य उदाहरण हैं: Y-मापदंड<ref>Pozar, David M. (2005); ''Microwave Engineering, Third Edition'' (Intl. Ed.); John Wiley & Sons, Inc.; pp. 170–174. {{ISBN|0-471-44878-8}}.</ref>, [[जेड मानकों|Z-मापदंड]], H-मापदंड, T-मापदंड या [[एबीसीडी-पैरामीटर|एबीसीडी-मापदंड]] आदि।<ref>Pozar, David M. (2005) (op. cit.); pp. 170–174.</ref> <ref>Pozar, David M. (2005) (op. cit.); pp. 183–186.</ref><ref>Morton, A. H. (1985); '' Advanced Electrical Engineering''; Pitman Publishing Ltd.; pp. 33–72.  {{ISBN|0-273-40172-6}}.</ref> वे इनसे, इस अर्थ में भिन्न हैं कि एस-मापदंड एक रैखिक विद्युत नेटवर्क को चिह्नित करने के लिए विवृत्त या शॉर्ट परिपथ स्थितियों का उपयोग नहीं करते हैं; इसके अतिरिक्त इनमे [[प्रतिबाधा मिलान]] का उपयोग किया जाता है। विवृत्त-परिपथ और शॉर्ट-परिपथ टर्मिनेशन की तुलना में उच्च संकेत आवृत्ती पर इन [[ विद्युत समाप्ति |विद्युत सीमा]] का उपयोग करना अत्यधिक सरल है। साधारण धारणा के विपरीत, 'मात्राओं को शक्ति के संदर्भ में नहीं मापा जाता है'। समकालिक सदिश नेटवर्क विश्लेषक [[ वाल्ट |विभव]] यातायाती तरंग चरण के आंशिकता और [[चरण]] का मापन करते हैं, जो मूल रूप से डिजिटली मोड्यूलेट किए गए ताररहित संकेतों के डीमोडुलेशन के लिए उपयोग किए जाने वाले परिपथ के समान होते हैं।


विद्युत घटकों (प्रेरक, [[संधारित्र]], प्रतिरोधक ) के नेटवर्क की कई विद्युतीय गुणधर्मों को एस-मापदंड का उपयोग करके व्यक्त किया जा सकता है, जैसे कि [[लाभ (इलेक्ट्रॉनिक्स)|गेन]], [[ हारकर लौटा |रिटर्न लॉस]], [[ वोल्टेज खड़े लहर अनुपात |वोल्टेज स्टैंडिंग वेव अनुपात]] (वीएसडब्ल्यूआर), [[प्रतिबिंब गुणांक|प्रतिबिंबन संबंधक]] और [[एम्पलीफायर|प्रवर्धक]] स्थिरता आदि। शब्द 'प्रकीर्णन' आरएफ अभियांत्रिकी की तुलना में [[ऑप्टिकल इंजीनियरिंग|प्रकाशीय अभियांत्रिकी]] के लिए अधिक सामान्य है, जब एक विमान की लहर एक बाधा पर घटित होती है या असमान [[ढांकता हुआ|छायांकन]] माध्यम से गुजरती है, तों इस प्रभाव को देखा जा सकता है। एस-मापदंड के संदर्भ में, प्रकीर्णन उस विधि को संदर्भित करता है जिसमें [[ संचरण लाइन |संचरण लाइन]] में एक नेटवर्क के सम्मिलन के कारण संचारण लाइन में [[विद्युत प्रवाह]] और विभव प्रभावित होते हैं। यह [[विद्युत प्रतिबाधा]] से मिलने वाली तरंग के समतुल्य है, जो रेखा के अभिलक्षणिक प्रतिबाधा से भिन्न है।
विद्युत घटकों (प्रेरक, [[संधारित्र]], प्रतिरोधक ) के नेटवर्क की कई विद्युतीय गुणधर्मों को एस-मापदंड का उपयोग करके व्यक्त किया जा सकता है, जैसे कि [[लाभ (इलेक्ट्रॉनिक्स)|लाभ]], [[ हारकर लौटा |पुनरावृत्ति हानि]], [[ वोल्टेज खड़े लहर अनुपात |वोल्टेज स्टैंडिंग वेव अनुपात]] (वीएसडब्ल्यूआर), [[प्रतिबिंब गुणांक|प्रतिबिंबन संबंधक]] और [[एम्पलीफायर|प्रवर्धक]] स्थिरता आदि। शब्द 'प्रकीर्णन' आरएफ अभियांत्रिकी की तुलना में [[ऑप्टिकल इंजीनियरिंग|प्रकाशीय अभियांत्रिकी]] के लिए अधिक सामान्य है, जब एक विमान की लहर एक बाधा पर घटित होती है या असमान [[ढांकता हुआ|छायांकन]] माध्यम से गुजरती है, तों इस प्रभाव को देखा जा सकता है। एस-मापदंड के संदर्भ में, प्रकीर्णन उस विधि को संदर्भित करता है जिसमें [[ संचरण लाइन |संचरण लाइन]] में एक नेटवर्क के सम्मिलन के कारण संचारण लाइन में [[विद्युत प्रवाह]] और विभव प्रभावित होते हैं। यह [[विद्युत प्रतिबाधा]] से मिलने वाली तरंग के समतुल्य है, जो रेखा के अभिलक्षणिक प्रतिबाधा से भिन्न है।


यद्यपि यह किसी भी [[आवृत्ति]] पर लागू किया जा सकता है, एस-मापदंड अधिकतर[[ आकाशवाणी आवृति | आकाशवाणी आवृति]] और [[माइक्रोवेव]] आवृत्ती पर कार्य करने वाले नेटवर्क के लिए उपयोग किए जाते हैं। सामान्य उपयोग में आने वाले एस-मापदंड - पारंपरिक एस-मापदंड रैखिक मात्राएं हैं। एस-मापदंड माप आवृत्ति के साथ परिवर्तित होते हैं, इसलिए [[विशेषता प्रतिबाधा]] या [[नाममात्र प्रतिबाधा|किंचित प्रतिबाधा]] के अतिरिक्त, किसी भी एस-मापदंड माप के लिए, आवृत्ति को निर्दिष्ट किया जाना चाहिए।
यद्यपि यह किसी भी [[आवृत्ति]] पर लागू किया जा सकता है, एस-मापदंड अधिकतर[[ आकाशवाणी आवृति | आकाशवाणी आवृति]] और [[माइक्रोवेव]] आवृत्ती पर कार्य करने वाले नेटवर्क के लिए उपयोग किए जाते हैं। सामान्य उपयोग में आने वाले एस-मापदंड - पारंपरिक एस-मापदंड रैखिक मात्राएं हैं। एस-मापदंड माप आवृत्ति के साथ परिवर्तित होते हैं, इसलिए [[विशेषता प्रतिबाधा]] या [[नाममात्र प्रतिबाधा|किंचित प्रतिबाधा]] के अतिरिक्त, किसी भी एस-मापदंड माप के लिए, आवृत्ति को निर्दिष्ट किया जाना चाहिए।
Line 16: Line 16:


== पृष्ठभूमि ==
== पृष्ठभूमि ==
एस-मापदंड का पहला प्रकाशित विवरण 1945 में [[विटोल्ड बेलेविच]] की थीसिस में था।<ref>Belevitch, Vitold [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4066784 "Summary of the history of circuit theory"], ''Proceedings of the IRE'', '''vol.50''', iss.5, pp.&nbsp;848–855, May 1962.<br>Vandewalle, Joos "In memoriam – Vitold Belevitch", ''International Journal of Circuit Theory and Applications'', '''vol.28''', iss.5, pp.&nbsp;429–430, September/October 2000. {{doi|10.1002/1097-007X(200009/10)28:5<429::AID-CTA121>3.0.CO;2-6}}</ref> बेलेविच द्वारा उपयोग किया जाने वाला नाम पुनर्विभाजन आव्यूह  था, और इसने समावेशी तत्व नेटवर्क्स तक सीमित विचार था। प्रकीर्णन आव्यूह  शब्द का उपयोग 1947 में भौतिक विज्ञानी और इंजीनियर [[रॉबर्ट हेनरी डिके]] द्वारा किया गया था, जिन्होंने स्वतंत्र रूप से रडार पर युद्धकालीन कार्य के समय इस विचार को विकसित किया था।<ref>Valkenburg, Mac Elwyn Van ''Circuit Theory: Foundations and Classical Contributions'', p.334, Stroudsburg, Pennsylvania: Dowden, Hutchinson & Ross, 1974 {{ISBN|0-87933-084-8}}.</ref><ref>{{cite journal | doi = 10.1063/1.1697561 | volume=18 | issue=10 | title=माइक्रोवेव नेटवर्क के लिए लागू एक कम्प्यूटेशनल विधि| year=1947 | journal=Journal of Applied Physics | pages=873–878 | author=Dicke R. H.| bibcode=1947JAP....18..873D }}</ref>एस-मापदंड और प्रकीर्णन आव्यूह  में,प्रकीर्ण तरंगे वे तरंगे होते हैं जिन्हें 'यात्री तरंगे' कहा जाता है। 1960 के दशक में एक अलग प्रकार के एस-मापदंड का परिचय किया गया था। इन्हें "समन्वयक प्रकीर्णन-मापदंड" भी कहा जाता हैं। यह दूसरा प्रकार का एस-मापदंड कानेयुकी कुरोकावा द्वारा प्रसिद्ध हुआ था, जिन्होंने इस नए प्रकीर्ण तरंगों को 'पावर तरंगों' के रूप में संदर्भित किया। इन दो प्रकार के एस-मापदंड में बहुत अलग गुणधर्म होते हैं और इन्हें मिलाने का प्रयास नहीं किया जाना चाहिए।  अपने महत्वपूर्ण पेपर में,कुरोकावा ने स्पष्ट रूप से पावर-तरंग एस-मापदंड और पारंपरिक, यात्री-तरंग एस-मापदंड का अंतर किया है। इनके एक प्रकार को प्सेडो-यात्री-तरंग एस-मापदंड कहा जाता है।
एस-मापदंड का पहला प्रकाशित विवरण 1945 में [[विटोल्ड बेलेविच]] की थीसिस में था।<ref>Belevitch, Vitold [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4066784 "Summary of the history of circuit theory"], ''Proceedings of the IRE'', '''vol.50''', iss.5, pp.&nbsp;848–855, May 1962.<br>Vandewalle, Joos "In memoriam – Vitold Belevitch", ''International Journal of Circuit Theory and Applications'', '''vol.28''', iss.5, pp.&nbsp;429–430, September/October 2000. {{doi|10.1002/1097-007X(200009/10)28:5<429::AID-CTA121>3.0.CO;2-6}}</ref> बेलेविच द्वारा उपयोग किया जाने वाला नाम पुनर्विभाजन आव्यूह  था, और इसने समावेशी तत्व नेटवर्क्स तक सीमित विचार था। प्रकीर्णन आव्यूह  शब्द का उपयोग 1947 में भौतिक विज्ञानी और इंजीनियर [[रॉबर्ट हेनरी डिके]] द्वारा किया गया था, जिन्होंने स्वतंत्र रूप से रडार पर युद्धकालीन कार्य के समय इस विचार को विकसित किया था।<ref>Valkenburg, Mac Elwyn Van ''Circuit Theory: Foundations and Classical Contributions'', p.334, Stroudsburg, Pennsylvania: Dowden, Hutchinson & Ross, 1974 {{ISBN|0-87933-084-8}}.</ref><ref>{{cite journal | doi = 10.1063/1.1697561 | volume=18 | issue=10 | title=माइक्रोवेव नेटवर्क के लिए लागू एक कम्प्यूटेशनल विधि| year=1947 | journal=Journal of Applied Physics | pages=873–878 | author=Dicke R. H.| bibcode=1947JAP....18..873D }}</ref>एस-मापदंड और प्रकीर्णन आव्यूह  में,प्रकीर्ण तरंगे वे तरंगे होते हैं जिन्हें 'यात्री तरंगे' कहा जाता है। 1960 के दशक में एक अलग प्रकार के एस-मापदंड का परिचय किया गया था। इन्हें "समन्वयक प्रकीर्णन-मापदंड" भी कहा जाता हैं। यह दूसरा प्रकार का एस-मापदंड कानेयुकी कुरोकावा द्वारा प्रसिद्ध हुआ था, जिन्होंने इस नए प्रकीर्ण तरंगों को 'पावर तरंगों' के रूप में संदर्भित किया। इन दो प्रकार के एस-मापदंड में बहुत अलग गुणधर्म होते हैं और इन्हें मिलाने का प्रयास नहीं किया जाना चाहिए।  अपने महत्वपूर्ण पेपर में,कुरोकावा ने स्पष्ट रूप से पावर-तरंग एस-मापदंड और पारंपरिक, यात्री-तरंग एस-मापदंड का अंतरात्मक  किया है। इनके एक प्रकार को प्सेडो-यात्री-तरंग एस-मापदंड कहा जाता है।


एस-मापदंड दृष्टिकोण में, एक विद्युत नेटवर्क को एक 'ब्लैक बॉक्स' के रूप में माना जाता है जिसमें विभिन्न संयुक्त आधारभूत विद्युत परिपथ घटक या संकुचित तत्व सम्मिलित होते हैं, जैसे कि रेजिस्टर, कैपेसिटर, इंडक्टर और ट्रांजिस्टर, जो पोर्ट के माध्यम से अन्य परिपथों के साथ संवाद करते हैं। नेटवर्क को एक वर्गीकरण मायात्रिक संख्याओं का सम्पर्क किया जाता है जिसे इसका एस-मापदंड मायात्रिक कहा जाता है, जो पोर्ट पर लागू किए गए संकेत के प्रतिक्रिया की गणना के लिए उपयोग किया जा सकता है।
एस-मापदंड दृष्टिकोण में, एक विद्युत नेटवर्क को एक 'ब्लैक बॉक्स' के रूप में माना जाता है जिसमें विभिन्न संयुक्त आधारभूत विद्युत परिपथ घटक या संकुचित तत्व सम्मिलित होते हैं, जैसे कि रेजिस्टर, कैपेसिटर, इंडक्टर और ट्रांजिस्टर, जो पोर्ट के माध्यम से अन्य परिपथों के साथ संवाद करते हैं। नेटवर्क को एक वर्गीकरण मायात्रिक संख्याओं का सम्पर्क किया जाता है जिसे इसका एस-मापदंड मायात्रिक कहा जाता है, जो पोर्ट पर लागू किए गए संकेत के प्रतिक्रिया की गणना के लिए उपयोग किया जा सकता है।
Line 117: Line 117:


:<math>S_{11}\,</math> इनपुट पोर्ट वोल्टेज प्रतिबिंब गुणांक है
:<math>S_{11}\,</math> इनपुट पोर्ट वोल्टेज प्रतिबिंब गुणांक है
:<math>S_{12}\,</math> रिवर्स वोल्टेज लाभ है
:<math>S_{12}\,</math> विपरीत  वोल्टेज लाभ है
:<math>S_{21}\,</math> आगे वोल्टेज लाभ है
:<math>S_{21}\,</math> आगे वोल्टेज लाभ है
:<math>S_{22}\,</math> आउटपुट पोर्ट वोल्टेज प्रतिबिंब गुणांक है।
:<math>S_{22}\,</math> आउटपुट पोर्ट वोल्टेज प्रतिबिंब गुणांक है।
Line 136: Line 136:
:<math>G = S_{21} = \frac{b_2}{a_1}\,</math>.
:<math>G = S_{21} = \frac{b_2}{a_1}\,</math>.


यह इनपुट घटना पावर वेव द्वारा विभाजित आउटपुट परावर्तित पावर वेव का रैखिक अनुपात है, सभी मान जटिल मात्रा के रूप में व्यक्त किए जाते हैं। हानिपूर्ण नेटवर्क के लिए यह उप-एकात्मक है, सक्रिय नेटवर्क के लिए <math> |G| > 1</math> .
यह इनपुट घटना पावर वेव द्वारा विभाजित आउटपुट परावर्तित पावर वेव का रैखिक अनुपात है, सभी मान जटिल मात्रा के रूप में व्यक्त किए जाते हैं। हानिपूर्ण नेटवर्क के लिए यह उप-एकात्मक है, सक्रिय नेटवर्क के लिए <math> |G| > 1</math> .यह वोल्टेज लाभ के बराबर तभी होगा जब डिवाइस में समान इनपुट और आउटपुट प्रतिबाधा हो।
यह वोल्टेज लाभ के बराबर तभी होगा जब डिवाइस में समान इनपुट और आउटपुट प्रतिबाधा हो।


=== अदिश रैखिक लाभ ===
=== अदिश रैखिक लाभ ===
Line 144: Line 143:
:<math>\left|G\right| = \left|S_{21}\right|\,</math>.
:<math>\left|G\right| = \left|S_{21}\right|\,</math>.


यह आपात संख्या गेन, यानी आपात ऊर्जा-तरंग से प्रवेश ऊर्जा-तरंग के अनुपात को प्रतिनिधित करता है और इसे पावर गेन के वर्ग के बराबर होता है। यह एक वास्तविक-मूल्य मात्रा है, जिसमें चरण की जानकारी हटा दी जाती है।
यह आपात संख्या लाभ, यानी आपात ऊर्जा-तरंग से प्रवेश ऊर्जा-तरंग के अनुपात को प्रतिनिधित करता है और इसे पावर लाभ के वर्ग के बराबर होता है। यह एक वास्तविक-मूल्य मात्रा है, जिसमें चरण की जानकारी हटा दी जाती है।


=== अदिश लघुगणक लाभ ===
=== अदिश लघुगणक लाभ ===
Line 154: Line 153:


=== सम्मिलन हानि ===
=== सम्मिलन हानि ===
मामले में दो माप पोर्ट एक ही संदर्भ प्रतिबाधा का उपयोग करते हैं, सम्मिलन हानि ({{math|''IL''}}) संचरण गुणांक के परिमाण का व्युत्क्रम है {{math|{{!}}''S<sub>21</sub>''{{!}}}} डेसिबल में व्यक्त किया गया। यह इस प्रकार दिया गया है:<ref>Collin, Robert E.; ''Foundations For Microwave Engineering, Second Edition''</ref>
यदि दो मापन पोर्ट एक ही संदर्भ आवेश का उपयोग करते हैं, तो संचालन संख्या के मान के प्रतिक रूप में डेसिबल में व्यक्त बीचवाल (IL) है। इसलिए, यह निम्नलिखित द्वारा दिया जाता है::<ref>Collin, Robert E.; ''Foundations For Microwave Engineering, Second Edition''</ref>


<math>IL = -20\log_{10}\left|S_{21}\right|\,</math> डीबी।
<math>IL = -20\log_{10}\left|S_{21}\right|\,</math> डीबी।


यह माप के 2 संदर्भ विमानों के बीच परीक्षण (डीयूटी) के तहत डिवाइस की शुरूआत से उत्पन्न अतिरिक्त नुकसान है। अतिरिक्त नुकसान DUT और/या बेमेल में आंतरिक नुकसान के कारण हो सकता है। अतिरिक्त नुकसान के मामले में सम्मिलन हानि को सकारात्मक रूप से परिभाषित किया गया है। डेसिबल में अभिव्यक्त सम्मिलन हानि के नकारात्मक को सम्मिलन लाभ के रूप में परिभाषित किया गया है और अदिश  लघुगणकीय   लाभ के बराबर है (देखें: ऊपर परिभाषा)।
यह मापन के संदर्भ तलों के बीच डिवाइस अंतरात्मक  ्गत परीक्षण (डीयूटी ) के प्रस्तावित करने से उत्पन्न अतिरिक्त हानि है। अतिरिक्त हानि डीयूटी में आंतरिक हानि और/या मिलान में हो सकती है। अतिरिक्त हानि के मामले में, प्रवेश हानि को सकारात्मक परिभाषित किया जाता है। डेसिबल में व्यक्त अवरोध तापमान के उल्टा नकारात्मक होता है और इसे प्रवेश गुण कहा जाता है, जो वैद्यतात्मक लघुगणकीय लाभ के बराबर होता है  


=== इनपुट रिटर्न लॉस ===
=== इनपुट पुनरावृत्ति हानि ===
इनपुट वापसी हानि ({{math|''RL''<sub>in</sub>}}) को एक उपाय के रूप में सोचा जा सकता है कि नेटवर्क का वास्तविक इनपुट प्रतिबाधा नाममात्र प्रणाली प्रतिबाधा मान के कितने करीब है। डेसीबल में व्यक्त इनपुट रिटर्न लॉस द्वारा दिया जाता है
इनपुट वापसी हानि ({{math|''RL''<sub>in</sub>}}) को एक उपाय के रूप में सोचा जा सकता है कि नेटवर्क का वास्तविक इनपुट प्रतिबाधा नाममात्र प्रणाली प्रतिबाधा मान के कितने समीप है। डेसीबल में व्यक्त इनपुट पुनरावृत्ति हानि द्वारा दिया जाता है


:<math>RL_\mathrm{in} = 10\log_{10}\left| \frac{1}{S_{11}^2} \right| = - 20\log_{10} \left| S_{11}\right|\,</math> डीबी।
:<math>RL_\mathrm{in} = 10\log_{10}\left| \frac{1}{S_{11}^2} \right| = - 20\log_{10} \left| S_{11}\right|\,</math> डीबी।


ध्यान दें कि निष्क्रिय दो-पोर्ट नेटवर्क के लिए जिसमें {{math|{{!}}''S<sub>11</sub>''{{!}}&nbsp;≤&nbsp;1}}, यह इस प्रकार है कि रिटर्न लॉस एक गैर-नकारात्मक मात्रा है: {{math|''RL<sub>in</sub>''&nbsp;≥&nbsp;0}}. यह भी ध्यान दें कि कुछ भ्रामक रूप से, रिटर्न लॉस # साइन को कभी-कभी ऊपर परिभाषित मात्रा के नकारात्मक के रूप में उपयोग किया जाता है, लेकिन यह उपयोग, हानि की परिभाषा के आधार पर, सख्ती से बोलना गलत है।<ref name=Bird>Trevor S. Bird, [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5162049 "Definition and Misuse of Return Loss"], ''IEEE Antennas & Propagation Magazine'', '''vol.51''', iss.2, pp.166–167, April 2009.</ref>
ध्यान दें कि निष्क्रिय दो-पोर्ट नेटवर्क के लिए जिसमें {{math|{{!}}''S<sub>11</sub>''{{!}}&nbsp;≤&nbsp;1}}, यह इस प्रकार है कि पुनरावृत्ति हानि एक गैर-नकारात्मक मात्रा है: {{math|''RL<sub>in</sub>''&nbsp;≥&nbsp;0}}. यह भी ध्यान दें कि कुछ भ्रामक रूप से, पुनरावृत्ति हानि  साइन को कभी-कभी ऊपर परिभाषित मात्रा के नकारात्मक के रूप में उपयोग किया जाता है, लेकिन यह उपयोग, हानि की परिभाषा के आधार पर, सख्ती से बोलना गलत है।<ref name=Bird>Trevor S. Bird, [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5162049 "Definition and Misuse of Return Loss"], ''IEEE Antennas & Propagation Magazine'', '''vol.51''', iss.2, pp.166–167, April 2009.</ref>




=== आउटपुट रिटर्न लॉस ===
=== आउटपुट पुनरावृत्ति हानि ===
आउटपुट वापसी हानि ({{math|''RL''<sub>out</sub>}}) की परिभाषा इनपुट रिटर्न लॉस के समान है, लेकिन यह इनपुट पोर्ट के बजाय आउटपुट पोर्ट (पोर्ट 2) पर लागू होता है। द्वारा दिया गया है
आउटपुट पुनरावृत्ति हानि ({{math|''RL''<sub>out</sub>}}) को यह सोचा जा सकता है कि यह माप आपात संख्या है जो नेटवर्क की वास्तविक इनपुट आवेशिकता को सामान्य प्रणाली आवेश मान के समीप कितनी समीप प्रस्तुत करती है। इनपुट पुनरावृत्ति हानि को डेसिबल में व्यक्त किया जाता है:


:<math>RL_\mathrm{out} = - 20\log_{10}\left|S_{22}\right|\,</math> डीबी।
:<math>RL_\mathrm{out} = - 20\log_{10}\left|S_{22}\right|\,</math> डीबी।


=== रिवर्स गेन और रिवर्स आइसोलेशन ===
=== विपरीत लाभ और विपरीत वियोजन ===
रिवर्स गेन के लिए अदिश  लघुगणकीय  (डेसिबल या डीबी) एक्सप्रेशन (<math>g_\mathrm{rev}\,</math>) है:
विपरीत लाभ <math>g_\mathrm{rev}\,</math>के लिए अदिश लघुगणकीय अभिव्यक्ति है:


:<math>g_\mathrm{rev} = 20\log_{10}\left|S_{12}\right|\,</math> डीबी।
:<math>g_\mathrm{rev} = 20\log_{10}\left|S_{12}\right|\,</math> डीबी।


अक्सर इसे रिवर्स आइसोलेशन के रूप में व्यक्त किया जाएगा (<math>I_\mathrm{rev}\,</math>) जिस स्थिति में यह परिमाण के बराबर धनात्मक मात्रा बन जाता है <math>g_\mathrm{rev}\,</math> और अभिव्यक्ति बन जाती है:
प्रायः इसे विपरीतआपाती (<math>I_\mathrm{rev}\,</math>) के रूप में व्यक्त किया जाएगा, जिसके लिए यह विपरीत लाभ <math>g_\mathrm{rev}\,</math>की मानकता के बराबर एक सकारात्मक मात्रा होता है और अभिव्यक्ति इस रूप में होती है


:<math>I_\mathrm{rev} =  \left|g_\mathrm{rev}\right|  = \left|20\log_{10}\left|S_{12}\right|\right|\,</math> डीबी।
:<math>I_\mathrm{rev} =  \left|g_\mathrm{rev}\right|  = \left|20\log_{10}\left|S_{12}\right|\right|\,</math> डीबी।
Line 194: Line 193:


=== वोल्टेज स्थायी तरंग अनुपात ===
=== वोल्टेज स्थायी तरंग अनुपात ===
एक पोर्ट पर वोल्टेज स्टैंडिंग वेव रेशियो (VSWR), लोअर केस 's' द्वारा दर्शाया गया है, पोर्ट मैच टू रिटर्न लॉस का एक समान माप है, लेकिन एक अदिश रैखिक मात्रा है, स्टैंडिंग वेव अधिकतम वोल्टेज का स्टैंडिंग वेव का अनुपात न्यूनतम वोल्टेज। इसलिए यह वोल्टेज परावर्तन गुणांक के परिमाण से संबंधित है और इसलिए दोनों के परिमाण से <math>S_{11}\,</math> इनपुट पोर्ट के लिए या <math>S_{22}\,</math> आउटपुट पोर्ट के लिए
एक पोर्ट पर वोल्टेज स्थानिक तरंग अनुपात (वीएसडब्ल्यूआर) को छोटे अक्षर 's' से प्रतिष्ठित किया जाता है, यह पोर्ट मैच का एक समान माप है जो वापसी हानि के समान है, लेकिन यह एक अदिश रैखिक मात्रा है, वापसी तरंग के अधिकतम वोल्टेज से वापसी तरंग के न्यूनतम वोल्टेज के अनुपात होता है। इसलिए, यह वोल्टेज प्रतिबिंब संख्या के मान और इस प्रकार इनपुट पोर्ट के लिए <math>S_{11}\,</math>, या आउटपुट पोर्ट के लिए <math>S_{22}\,</math>के मान से संबंधित है।


इनपुट पोर्ट पर, वीएसडब्ल्यूआर (<math>s_\mathrm{in}\,</math>) द्वारा दिया गया है
यहाँ इनपुट पोर्ट पर, वीएसडब्ल्यूआर (<math>s_\mathrm{in}\,</math>) द्वारा दिया गया है


:<math>s_\mathrm{in} = \frac{1+\left|S_{11}\right|}{1-\left|S_{11}\right|}\,</math>
:<math>s_\mathrm{in} = \frac{1+\left|S_{11}\right|}{1-\left|S_{11}\right|}\,</math>
Line 202: Line 201:


:<math>s_\mathrm{out} = \frac{1+\left|S_{22}\right|}{1-\left|S_{22}\right|}\,</math>
:<math>s_\mathrm{out} = \frac{1+\left|S_{22}\right|}{1-\left|S_{22}\right|}\,</math>
यह परावर्तन गुणांक के लिए सही है, जिसका परिमाण एकता से अधिक नहीं है, जो आमतौर पर होता है। एकता से अधिक परिमाण के साथ एक प्रतिबिंब गुणांक, जैसे नकारात्मक प्रतिरोध # एम्पलीफायरों में, इस अभिव्यक्ति के लिए नकारात्मक मान होगा। यद्यपि, वीएसडब्ल्यूआर, इसकी परिभाषा से, हमेशा सकारात्मक होता है। मल्टीपोर्ट के पोर्ट k के लिए एक अधिक सही व्यंजक है;
यह सत्य है जब गुणांक का मान एकाधिकता से अधिक नहीं होता है, जो आमतौर पर मामला होता है। एक एकाधिकता से अधिक मान वाला एक अभिविन्यास, जैसे कि एक टनल डायोड एम्पलिफायर में, इस अभिव्यक्ति के लिए एक नकारात्मक मान देगा। हालांकि, वीएसडब्ल्यूआर, अपनी परिभाषा से,सदैव  सकारात्मक होता है। एक बहुपोर्ट के पोर्ट k के लिए एक और सही अभिव्यक्ति है।


:<math>s_k = \frac{1+\left|S_{kk}\right|}{|1-\left|S_{kk}\right||}\,</math>
:<math>s_k = \frac{1+\left|S_{kk}\right|}{|1-\left|S_{kk}\right||}\,</math>
Line 211: Line 210:


:<math>\begin{pmatrix}S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{pmatrix} </math>
:<math>\begin{pmatrix}S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{pmatrix} </math>
वे आम तौर पर उनके बीच क्रॉस-टॉक की मात्रा निर्धारित करने के लिए युग्मित ट्रांसमिशन लाइनों की एक जोड़ी का विश्लेषण करने के लिए उपयोग किए जाते हैं, अगर वे दो अलग-अलग सिंगल एंडेड सिग्नल द्वारा संचालित होते हैं, या उन पर संचालित अंतर सिग्नल की परावर्तित और घटना शक्ति होती है। हाई स्पीड डिफरेंशियल सिग्नल के कई विनिर्देश 4-पोर्ट एस-मापदंड के संदर्भ में एक संचार चैनल को परिभाषित करते हैं, उदाहरण के लिए 10-गीगाबिट अटैचमेंट यूनिट इंटरफेस (XAUI), SATA, PCI-X और InfiniBand सिस्टम।
ये आपस में जुड़े हुए ट्रांसमिशन लाइन के जोड़ों का विश्लेषण करने के लिए सामान्यतः उपयोग होते हैं, जिससे यह निर्धारित किया जा सके कि उन्हें दो अलग-अलग संकेत एंडेड सकेत  द्वारा प्रेरित किया जाता है या उन पर प्रेरित अंतरात्मक  संकेत के प्रतिबिंबित और घटनायन शक्ति का मापन किया जा सकता है। उच्च गति के अंतरात्मक  संकेत के कई विनिर्देश चैनलों की विशेषताएं 4-पोर्ट एस-पैरामीटर्स के माध्यम से परिभाषित करती हैं, जैसे कि 10-गिगाबिट अटैचमेंट यूनिट इंटरफेस (एक्सएयूआई),सैटा,पीसीआई-एक्स और इन्फिनीबैंड प्रणाली।


===4-पोर्ट मिश्रित-मोड एस-मापदंड ===
===4-पोर्ट मिश्रित-मोड एस-मापदंड ===
4-पोर्ट मिश्रित-मोड एस-मापदंड सामान्य मोड और अंतर प्रोत्साहन संकेतों के लिए नेटवर्क की प्रतिक्रिया के संदर्भ में 4-पोर्ट नेटवर्क की विशेषता बताते हैं। निम्न तालिका 4-पोर्ट मिश्रित-मोड एस-मापदंड प्रदर्शित करती है।
4-पोर्ट मिश्रित-मोड एस-मापदंड सामान्य मोड और अंतरात्मक प्रोत्साहन संकेतों के लिए नेटवर्क की प्रतिक्रिया के संदर्भ में 4-पोर्ट नेटवर्क की विशेषता बताते हैं। निम्न तालिका 4-पोर्ट मिश्रित-मोड एस-मापदंड प्रदर्शित करती है।


{| class="wikitable"
{| class="wikitable"
Line 257: Line 256:
| SCC22
| SCC22
|}
|}
मापदंड संकेतन SXYab के प्रारूप पर ध्यान दें, जहां S बिखरने वाले मापदंड या S-मापदंड के लिए है, X प्रतिक्रिया मोड (अंतर या सामान्य) है, Y प्रोत्साहन मोड (अंतर या सामान्य) है, प्रतिक्रिया (आउटपुट) पोर्ट है और बी उत्तेजना (इनपुट) पोर्ट है। यह बिखरने वाले मापदंडों के लिए विशिष्ट नामकरण है।
मापदंड संकेतन SXYab के प्रारूप पर ध्यान दें, जहां S बिखरने वाले मापदंड या S-मापदंड के लिए है, X प्रतिक्रिया मोड (अंतरात्मक  या सामान्य) है, Y प्रोत्साहन मोड (अंतरात्मक  या सामान्य) है, प्रतिक्रिया (आउटपुट) पोर्ट है और बी उत्तेजना (इनपुट) पोर्ट है। यह बिखरने वाले मापदंडों के लिए विशिष्ट नामकरण है।


पहले चतुर्भुज को परीक्षण के तहत डिवाइस के अंतर उत्तेजना और अंतर प्रतिक्रिया विशेषताओं का वर्णन करने वाले ऊपरी बाएं 4 मापदंड के रूप में परिभाषित किया गया है। यह अधिकांश हाई-स्पीड डिफरेंशियल इंटरकनेक्ट्स के लिए ऑपरेशन का वास्तविक तरीका है और यह क्वाड्रंट है जिस पर सबसे अधिक ध्यान दिया जाता है। इसमें इनपुट डिफरेंशियल रिटर्न लॉस (SDD11), इनपुट डिफरेंशियल इंसर्शन लॉस (SDD21), आउटपुट डिफरेंशियल रिटर्न लॉस (SDD22) और आउटपुट डिफरेंशियल इंसर्शन लॉस (SDD12) शामिल हैं। डिफरेंशियल सिग्नल प्रोसेसिंग के कुछ लाभ हैं;
पहले चतुर्भुज को परीक्षण के तहत डिवाइस के अंतरात्मक  उत्तेजना और अंतरात्मक  प्रतिक्रिया विशेषताओं का वर्णन करने वाले ऊपरी बाएं 4 मापदंड के रूप में परिभाषित किया गया है। यह अधिकांश हाई-स्पीड डिफरेंशियल इंटरकनेक्ट्स के लिए ऑपरेशन का वास्तविक तरीका है और यह क्वाड्रंट है जिस पर सबसे अधिक ध्यान दिया जाता है। इसमें इनपुट डिफरेंशियल पुनरावृत्ति हानि (SDD11), इनपुट डिफरेंशियल इंसर्शन लॉस (SDD21), आउटपुट डिफरेंशियल पुनरावृत्ति हानि (SDD22) और आउटपुट डिफरेंशियल इंसर्शन लॉस (SDD12) शामिल हैं। डिफरेंशियल सिग्नल प्रोसेसिंग के कुछ लाभ हैं;
* कम विद्युत चुम्बकीय हस्तक्षेप संवेदनशीलता
* कम विद्युत चुम्बकीय हस्तक्षेप संवेदनशीलता
* संतुलित अंतर परिपथ से विद्युत चुम्बकीय विकिरण में कमी
* संतुलित अंतरात्मक  परिपथ से विद्युत चुम्बकीय विकिरण में कमी
* यहां तक ​​कि ऑर्डर डिफरेंशियल डिस्टॉर्शन उत्पाद सामान्य मोड सिग्नल में बदल जाते हैं
* यहां तक ​​कि ऑर्डर डिफरेंशियल डिस्टॉर्शन उत्पाद सामान्य मोड सिग्नल में बदल जाते हैं
* सिंगल-एंडेड के सापेक्ष वोल्टेज स्तर में दो वृद्धि का कारक
* संकेत -एंडेड के सापेक्ष वोल्टेज स्तर में दो वृद्धि का कारक
* अंतर सिग्नल पर सामान्य मोड आपूर्ति और ग्राउंड शोर एन्कोडिंग को अस्वीकार करना
* अंतरात्मक  सिग्नल पर सामान्य मोड आपूर्ति और ग्राउंड शोर एन्कोडिंग को अस्वीकार करना


दूसरा और तीसरा चतुर्भुज क्रमशः ऊपरी दाएँ और निचले बाएँ 4 मापदंड हैं। इन्हें क्रॉस-मोड क्वाड्रंट भी कहा जाता है। ऐसा इसलिए है क्योंकि वे परीक्षण के तहत डिवाइस में होने वाले किसी भी मोड रूपांतरण को पूरी तरह से चिह्नित करते हैं, चाहे वह कॉमन-टू-डिफरेंशियल एसडीकैब रूपांतरण (इच्छित डिफरेंशियल सिग्नल एसडीडी ट्रांसमिशन एप्लिकेशन के लिए ईएमआई संवेदनशीलता) या डिफरेंशियल-टू-कॉमन एससीडीएबी रूपांतरण (ईएमआई रेडिएशन) हो। अंतर अनुप्रयोग)। गीगाबिट डेटा थ्रूपुट के लिए इंटरकनेक्ट के डिज़ाइन को अनुकूलित करने का प्रयास करते समय मोड रूपांतरण को समझना बहुत सहायक होता है।
दूसरा और तीसरा चतुर्भुज क्रमशः ऊपरी दाएँ और निचले बाएँ 4 मापदंड हैं। इन्हें क्रॉस-मोड क्वाड्रंट भी कहा जाता है। ऐसा इसलिए है क्योंकि वे परीक्षण के तहत डिवाइस में होने वाले किसी भी मोड रूपांतरण को पूरी तरह से चिह्नित करते हैं, चाहे वह कॉमन-टू-डिफरेंशियल एसडीकैब रूपांतरण (इच्छित डिफरेंशियल सिग्नल एसडीडी ट्रांसमिशन एप्लिकेशन के लिए ईएमआई संवेदनशीलता) या डिफरेंशियल-टू-कॉमन एससीडीएबी रूपांतरण (ईएमआई रेडिएशन) हो। अंतरात्मक  अनुप्रयोग)। गीगाबिट डेटा थ्रूपुट के लिए इंटरकनेक्ट के डिज़ाइन को अनुकूलित करने का प्रयास करते समय मोड रूपांतरण को समझना बहुत सहायक होता है।


चौथा चतुर्भुज निचला दायां 4 मापदंड है और परीक्षण के तहत डिवाइस के माध्यम से प्रचार करने वाले सामान्य-मोड सिग्नल एससीसीएबी की प्रदर्शन विशेषताओं का वर्णन करता है। ठीक से डिज़ाइन किए गए एसडीडीएबी डिफरेंशियल डिवाइस के लिए न्यूनतम सामान्य-मोड आउटपुट एससीसीएबी होना चाहिए। हालाँकि, चौथा चतुर्थांश सामान्य-मोड प्रतिक्रिया डेटा सामान्य-मोड संचरण प्रतिक्रिया का एक उपाय है और नेटवर्क सामान्य-मोड अस्वीकृति को निर्धारित करने के लिए अंतर संचरण प्रतिक्रिया के अनुपात में उपयोग किया जाता है। यह कॉमन मोड रिजेक्शन डिफरेंशियल सिग्नल प्रोसेसिंग का एक महत्वपूर्ण लाभ है और इसे कुछ डिफरेंशियल परिपथ इम्प्लीमेंटेशन में घटाकर एक किया जा सकता है।<ref>[https://web.archive.org/web/20110717081041/http://www.designcon.com/media/2005/Euro/5-TA3--John_DAmbrosia.pdf ''Backplane Channels and Correlation Between Their Frequency and Time Domain Performance''].</ref><ref>{{cite journal |author1=Bockelman, DE |author2=Eisenstadt, WR |title=Combined differential and common-mode scattering parameters: theory and simulation |journal=IEEE Transactions |volume=43 |issue=7 |date=July 1995 |pages=1530–1539 |doi=10.1109/22.392911}}</ref>
चौथा चतुर्भुज निचला दायां 4 मापदंड है और परीक्षण के तहत डिवाइस के माध्यम से प्रचार करने वाले सामान्य-मोड सिग्नल एससीसीएबी की प्रदर्शन विशेषताओं का वर्णन करता है। ठीक से डिज़ाइन किए गए एसडीडीएबी डिफरेंशियल डिवाइस के लिए न्यूनतम सामान्य-मोड आउटपुट एससीसीएबी होना चाहिए। हालाँकि, चौथा चतुर्थांश सामान्य-मोड प्रतिक्रिया डेटा सामान्य-मोड संचरण प्रतिक्रिया का एक उपाय है और नेटवर्क सामान्य-मोड अस्वीकृति को निर्धारित करने के लिए अंतरात्मक  संचरण प्रतिक्रिया के अनुपात में उपयोग किया जाता है। यह कॉमन मोड रिजेक्शन डिफरेंशियल सिग्नल प्रोसेसिंग का एक महत्वपूर्ण लाभ है और इसे कुछ डिफरेंशियल परिपथ इम्प्लीमेंटेशन में घटाकर एक किया जा सकता है।<ref>[https://web.archive.org/web/20110717081041/http://www.designcon.com/media/2005/Euro/5-TA3--John_DAmbrosia.pdf ''Backplane Channels and Correlation Between Their Frequency and Time Domain Performance''].</ref><ref>{{cite journal |author1=Bockelman, DE |author2=Eisenstadt, WR |title=Combined differential and common-mode scattering parameters: theory and simulation |journal=IEEE Transactions |volume=43 |issue=7 |date=July 1995 |pages=1530–1539 |doi=10.1109/22.392911}}</ref>




== एस-एम्पलीफायर डिजाइन में मापदंड ==
== एस-एम्पलीफायर डिजाइन में मापदंड ==
रिवर्स अलगाव मापदंड <math>S_{12}\,</math> एक एम्पलीफायर के आउटपुट से इनपुट तक प्रतिक्रिया का स्तर निर्धारित करता है और इसलिए इसकी स्थिरता को प्रभावित करता है (इसकी दोलन से बचने की प्रवृत्ति) एक साथ आगे लाभ के साथ <math>S_{21}\,</math>. इनपुट और आउटपुट पोर्ट के साथ एक एम्पलीफायर एक दूसरे से पूरी तरह से अलग-थलग होता है, जिसमें अनंत अदिश  लॉग परिमाण अलगाव या रैखिक परिमाण होता है <math>S_{12}\,</math> शून्य होगा। ऐसा एम्पलीफायर एकतरफा कहा जाता है। यद्यपि अधिकांश व्यावहारिक एम्पलीफायरों में कुछ परिमित अलगाव होगा, जिससे इनपुट पर प्रतिबिंब गुणांक 'देखा' जा सकता है, जो आउटपुट पर लोड से कुछ हद तक प्रभावित होता है। एक एम्पलीफायर जिसे जानबूझकर डिज़ाइन किया गया है, का सबसे छोटा संभव मूल्य है <math>\left|S_{12}\right|\,</math> अक्सर [[बफर एम्पलीफायर]] कहा जाता है।
विपरीत  अलगाव मापदंड <math>S_{12}\,</math> एक एम्पलीफायर के आउटपुट से इनपुट तक प्रतिक्रिया का स्तर निर्धारित करता है और इसलिए इसकी स्थिरता को प्रभावित करता है (इसकी दोलन से बचने की प्रवृत्ति) एक साथ आगे लाभ के साथ <math>S_{21}\,</math>. इनपुट और आउटपुट पोर्ट के साथ एक एम्पलीफायर एक दूसरे से पूरी तरह से अलग-थलग होता है, जिसमें अनंत अदिश  लॉग परिमाण अलगाव या रैखिक परिमाण होता है <math>S_{12}\,</math> शून्य होगा। ऐसा एम्पलीफायर एकतरफा कहा जाता है। यद्यपि अधिकांश व्यावहारिक एम्पलीफायरों में कुछ परिमित अलगाव होगा, जिससे इनपुट पर प्रतिबिंब गुणांक 'देखा' जा सकता है, जो आउटपुट पर लोड से कुछ हद तक प्रभावित होता है। एक एम्पलीफायर जिसे जानबूझकर डिज़ाइन किया गया है, का सबसे छोटा संभव मूल्य है <math>\left|S_{12}\right|\,</math> अक्सर [[बफर एम्पलीफायर]] कहा जाता है।


मान लीजिए कि एक वास्तविक (गैर-एकतरफा या द्विपक्षीय) एम्पलीफायर का आउटपुट पोर्ट एक मनमाना भार से जुड़ा है, जिसका प्रतिबिंब गुणांक है <math>\Gamma_{L}\,</math>. इनपुट पोर्ट पर वास्तविक प्रतिबिंब गुणांक 'देखा' गया <math>\Gamma_\mathrm{in}\,</math> द्वारा दिया जाएगा<ref>Gonzalez, Guillermo (1997); ''Microwave Transistor Amplifiers Analysis and Design, Second Edition''; Prentice Hall NJ; pp 212–216. {{ISBN|0-13-254335-4}}.</ref>
मान लीजिए कि एक वास्तविक (गैर-एकतरफा या द्विपक्षीय) एम्पलीफायर का आउटपुट पोर्ट एक मनमाना भार से जुड़ा है, जिसका प्रतिबिंब गुणांक है <math>\Gamma_{L}\,</math>. इनपुट पोर्ट पर वास्तविक प्रतिबिंब गुणांक 'देखा' गया <math>\Gamma_\mathrm{in}\,</math> द्वारा दिया जाएगा<ref>Gonzalez, Guillermo (1997); ''Microwave Transistor Amplifiers Analysis and Design, Second Edition''; Prentice Hall NJ; pp 212–216. {{ISBN|0-13-254335-4}}.</ref>
Line 358: Line 357:
== उच्च-क्रम एस-मापदंड मैट्रिसेस ==
== उच्च-क्रम एस-मापदंड मैट्रिसेस ==


असमान पोर्टो  के जोड़े के लिए उच्च क्रम एस-मापदंड (<math>S_{mn}\,</math>), कहाँ <math>m \ne \; n\,</math> बदले में पोर्टो  के जोड़े पर विचार करके 2-पोर्ट नेटवर्क के लिए समान रूप से घटाया जा सकता है, प्रत्येक मामले में यह सुनिश्चित करना कि शेष सभी (अप्रयुक्त) पोर्ट सिस्टम प्रतिबाधा के समान प्रतिबाधा के साथ लोड किए गए हैं। इस तरह प्रत्येक अप्रयुक्त पोर्ट के लिए घटना शक्ति तरंग शून्य हो जाती है, जो 2-पोर्ट मामले के लिए प्राप्त समान भावों को उत्पन्न करती है। केवल सिंगल पोर्ट से संबंधित एस-मापदंड (<math>S_{mm}\,</math>) शेष सभी पोर्टो  को सिस्टम प्रतिबाधा के समान प्रतिबाधा के साथ लोड करने की आवश्यकता होती है, इसलिए विचाराधीन पोर्ट को छोड़कर सभी घटना शक्ति तरंगें शून्य हो जाती हैं। इसलिए सामान्य तौर पर हमारे पास:
असमान पोर्टो  के जोड़े के लिए उच्च क्रम एस-मापदंड (<math>S_{mn}\,</math>), कहाँ <math>m \ne \; n\,</math> बदले में पोर्टो  के जोड़े पर विचार करके 2-पोर्ट नेटवर्क के लिए समान रूप से घटाया जा सकता है, प्रत्येक मामले में यह सुनिश्चित करना कि शेष सभी (अप्रयुक्त) पोर्ट सिस्टम प्रतिबाधा के समान प्रतिबाधा के साथ लोड किए गए हैं। इस तरह प्रत्येक अप्रयुक्त पोर्ट के लिए घटना शक्ति तरंग शून्य हो जाती है, जो 2-पोर्ट मामले के लिए प्राप्त समान भावों को उत्पन्न करती है। केवल संकेत  पोर्ट से संबंधित एस-मापदंड (<math>S_{mm}\,</math>) शेष सभी पोर्टो  को सिस्टम प्रतिबाधा के समान प्रतिबाधा के साथ लोड करने की आवश्यकता होती है, इसलिए विचाराधीन पोर्ट को छोड़कर सभी घटना शक्ति तरंगें शून्य हो जाती हैं। इसलिए सामान्य तौर पर हमारे पास:


:<math>S_{mn} = \frac{b_m}{a_n}\,</math>
:<math>S_{mn} = \frac{b_m}{a_n}\,</math>
Line 404: Line 403:


=== 2 से अधिक पोर्टो  वाले नेटवर्क के एस-मापदंड को मापना ===
=== 2 से अधिक पोर्टो  वाले नेटवर्क के एस-मापदंड को मापना ===
दो से अधिक पोर्टो  वाले नेटवर्क के एस-मापदंड के एक साथ माप के लिए डिज़ाइन किए गए VNA संभव हैं, लेकिन जल्दी ही निषेधात्मक रूप से जटिल और महंगे हो जाते हैं। आम तौर पर उनकी खरीद उचित नहीं होती है क्योंकि अतिरिक्त माप के साथ मानक 2-पोर्ट कैलिब्रेटेड वीएनए का उपयोग करके प्राप्त परिणामों की सही व्याख्या के बाद आवश्यक माप प्राप्त किया जा सकता है। आवश्यक एस-मापदंड आव्यूह  को चरणों में क्रमिक दो पोर्ट मापों से इकट्ठा किया जा सकता है, एक समय में दो पोर्ट, प्रत्येक अवसर पर अप्रयुक्त पोर्ट्स को सिस्टम प्रतिबाधा के बराबर उच्च गुणवत्ता भार में समाप्त किया जा सकता है। इस दृष्टिकोण का एक जोखिम यह है कि लोड का रिटर्न लॉस या वीएसडब्ल्यूआर खुद को उपयुक्त रूप से निर्दिष्ट किया जाना चाहिए, जितना संभव हो उतना करीब 50 ओम, या जो भी नाममात्र प्रणाली प्रतिबाधा है। कई पोर्टो  वाले नेटवर्क के लिए लागत के आधार पर भार के वीएसडब्ल्यूआर को अपर्याप्त रूप से निर्दिष्ट करने का प्रलोभन हो सकता है। लोड का सबसे खराब स्वीकार्य वीएसडब्ल्यूआर क्या होगा, यह निर्धारित करने के लिए कुछ विश्लेषण आवश्यक होगा।
दो से अधिक पोर्टो  वाले नेटवर्क के एस-मापदंड के एक साथ माप के लिए डिज़ाइन किए गए VNA संभव हैं, लेकिन जल्दी ही निषेधात्मक रूप से जटिल और महंगे हो जाते हैं। आम तौर पर उनकी खरीद उचित नहीं होती है क्योंकि अतिरिक्त माप के साथ मानक 2-पोर्ट कैलिब्रेटेड वीएनए का उपयोग करके प्राप्त परिणामों की सही व्याख्या के बाद आवश्यक माप प्राप्त किया जा सकता है। आवश्यक एस-मापदंड आव्यूह  को चरणों में क्रमिक दो पोर्ट मापों से इकट्ठा किया जा सकता है, एक समय में दो पोर्ट, प्रत्येक अवसर पर अप्रयुक्त पोर्ट्स को सिस्टम प्रतिबाधा के बराबर उच्च गुणवत्ता भार में समाप्त किया जा सकता है। इस दृष्टिकोण का एक जोखिम यह है कि लोड का पुनरावृत्ति हानि या वीएसडब्ल्यूआर खुद को उपयुक्त रूप से निर्दिष्ट किया जाना चाहिए, जितना संभव हो उतना करीब 50 ओम, या जो भी नाममात्र प्रणाली प्रतिबाधा है। कई पोर्टो  वाले नेटवर्क के लिए लागत के आधार पर भार के वीएसडब्ल्यूआर को अपर्याप्त रूप से निर्दिष्ट करने का प्रलोभन हो सकता है। लोड का सबसे खराब स्वीकार्य वीएसडब्ल्यूआर क्या होगा, यह निर्धारित करने के लिए कुछ विश्लेषण आवश्यक होगा।


यह मानते हुए कि अतिरिक्त भार को पर्याप्त रूप से निर्दिष्ट किया गया है, यदि आवश्यक हो, तो दो या अधिक एस-मापदंड सबस्क्रिप्ट को वीएनए (1 और 2 ऊपर दिए गए मामले में) से संबंधित उन लोगों से संशोधित किया जाता है जो परीक्षण के तहत नेटवर्क से संबंधित हैं (1 से 1 तक)। एन, अगर एन डीयूटी पोर्टो  की कुल संख्या है)। उदाहरण के लिए, यदि DUT में 5 पोर्ट हैं और एक दो पोर्ट VNA VNA पोर्ट 1 से DUT पोर्ट 3 और VNA पोर्ट 2 से DUT पोर्ट 5 से जुड़ा है, तो मापा गया VNA परिणाम (<math>S_{11}\,</math>, <math>S_{12}\,</math>, <math>S_{21}\,</math> और <math>S_{22}\,</math>) के बराबर होगा <math>S_{33}\,</math>, <math>S_{35}\,</math>, <math>S_{53}\,</math> और <math>S_{55}\,</math> क्रमशः, यह मानते हुए कि DUT पोर्ट 1, 2 और 4 को पर्याप्त 50 ओम भार में समाप्त कर दिया गया था। यह आवश्यक 25 एस-मापदंड में से 4 प्रदान करेगा।
यह मानते हुए कि अतिरिक्त भार को पर्याप्त रूप से निर्दिष्ट किया गया है, यदि आवश्यक हो, तो दो या अधिक एस-मापदंड सबस्क्रिप्ट को वीएनए (1 और 2 ऊपर दिए गए मामले में) से संबंधित उन लोगों से संशोधित किया जाता है जो परीक्षण के तहत नेटवर्क से संबंधित हैं (1 से 1 तक)। एन, अगर एन डीयूटी पोर्टो  की कुल संख्या है)। उदाहरण के लिए, यदि DUT में 5 पोर्ट हैं और एक दो पोर्ट VNA VNA पोर्ट 1 से DUT पोर्ट 3 और VNA पोर्ट 2 से DUT पोर्ट 5 से जुड़ा है, तो मापा गया VNA परिणाम (<math>S_{11}\,</math>, <math>S_{12}\,</math>, <math>S_{21}\,</math> और <math>S_{22}\,</math>) के बराबर होगा <math>S_{33}\,</math>, <math>S_{35}\,</math>, <math>S_{53}\,</math> और <math>S_{55}\,</math> क्रमशः, यह मानते हुए कि DUT पोर्ट 1, 2 और 4 को पर्याप्त 50 ओम भार में समाप्त कर दिया गया था। यह आवश्यक 25 एस-मापदंड में से 4 प्रदान करेगा।

Revision as of 11:31, 16 June 2023


प्रकीर्णन मापदंड या एस-मापदंड किसी प्रकीर्णन आव्यूह या एस-आव्यूह के तत्वों को विद्युत संकेतों द्वारा विभिन्न स्थिर समष्टि आवेशों से गुजरने पर रैखिक विद्युत नेटवर्क के विद्युत व्यवहार का वर्णन करते हैं।

मापदंड, विद्युत अभियन्त्रण की कई शाखाओं के लिए उपयोगी हैं, जिनमें विद्युत अभियांत्रिकी, संचार प्रणाली प्रारूपण और विशेष रूप से माइक्रोवेव अभियांत्रिकी सम्मिलित हैं।

एस-मापदंड, एक समान मापदंड परिवार के सदस्य हैं, जिनके अन्य उदाहरण हैं: Y-मापदंड[1], Z-मापदंड, H-मापदंड, T-मापदंड या एबीसीडी-मापदंड आदि।[2] [3][4] वे इनसे, इस अर्थ में भिन्न हैं कि एस-मापदंड एक रैखिक विद्युत नेटवर्क को चिह्नित करने के लिए विवृत्त या शॉर्ट परिपथ स्थितियों का उपयोग नहीं करते हैं; इसके अतिरिक्त इनमे प्रतिबाधा मिलान का उपयोग किया जाता है। विवृत्त-परिपथ और शॉर्ट-परिपथ टर्मिनेशन की तुलना में उच्च संकेत आवृत्ती पर इन विद्युत सीमा का उपयोग करना अत्यधिक सरल है। साधारण धारणा के विपरीत, 'मात्राओं को शक्ति के संदर्भ में नहीं मापा जाता है'। समकालिक सदिश नेटवर्क विश्लेषक विभव यातायाती तरंग चरण के आंशिकता और चरण का मापन करते हैं, जो मूल रूप से डिजिटली मोड्यूलेट किए गए ताररहित संकेतों के डीमोडुलेशन के लिए उपयोग किए जाने वाले परिपथ के समान होते हैं।

विद्युत घटकों (प्रेरक, संधारित्र, प्रतिरोधक ) के नेटवर्क की कई विद्युतीय गुणधर्मों को एस-मापदंड का उपयोग करके व्यक्त किया जा सकता है, जैसे कि लाभ, पुनरावृत्ति हानि, वोल्टेज स्टैंडिंग वेव अनुपात (वीएसडब्ल्यूआर), प्रतिबिंबन संबंधक और प्रवर्धक स्थिरता आदि। शब्द 'प्रकीर्णन' आरएफ अभियांत्रिकी की तुलना में प्रकाशीय अभियांत्रिकी के लिए अधिक सामान्य है, जब एक विमान की लहर एक बाधा पर घटित होती है या असमान छायांकन माध्यम से गुजरती है, तों इस प्रभाव को देखा जा सकता है। एस-मापदंड के संदर्भ में, प्रकीर्णन उस विधि को संदर्भित करता है जिसमें संचरण लाइन में एक नेटवर्क के सम्मिलन के कारण संचारण लाइन में विद्युत प्रवाह और विभव प्रभावित होते हैं। यह विद्युत प्रतिबाधा से मिलने वाली तरंग के समतुल्य है, जो रेखा के अभिलक्षणिक प्रतिबाधा से भिन्न है।

यद्यपि यह किसी भी आवृत्ति पर लागू किया जा सकता है, एस-मापदंड अधिकतर आकाशवाणी आवृति और माइक्रोवेव आवृत्ती पर कार्य करने वाले नेटवर्क के लिए उपयोग किए जाते हैं। सामान्य उपयोग में आने वाले एस-मापदंड - पारंपरिक एस-मापदंड रैखिक मात्राएं हैं। एस-मापदंड माप आवृत्ति के साथ परिवर्तित होते हैं, इसलिए विशेषता प्रतिबाधा या किंचित प्रतिबाधा के अतिरिक्त, किसी भी एस-मापदंड माप के लिए, आवृत्ति को निर्दिष्ट किया जाना चाहिए।

एस-मापदंड सरलता से आव्यूह रूप में प्रदर्शित होते हैं और आव्यूह बीजगणित के नियमों का पालन करते हैं।

पृष्ठभूमि

एस-मापदंड का पहला प्रकाशित विवरण 1945 में विटोल्ड बेलेविच की थीसिस में था।[5] बेलेविच द्वारा उपयोग किया जाने वाला नाम पुनर्विभाजन आव्यूह था, और इसने समावेशी तत्व नेटवर्क्स तक सीमित विचार था। प्रकीर्णन आव्यूह शब्द का उपयोग 1947 में भौतिक विज्ञानी और इंजीनियर रॉबर्ट हेनरी डिके द्वारा किया गया था, जिन्होंने स्वतंत्र रूप से रडार पर युद्धकालीन कार्य के समय इस विचार को विकसित किया था।[6][7]एस-मापदंड और प्रकीर्णन आव्यूह में,प्रकीर्ण तरंगे वे तरंगे होते हैं जिन्हें 'यात्री तरंगे' कहा जाता है। 1960 के दशक में एक अलग प्रकार के एस-मापदंड का परिचय किया गया था। इन्हें "समन्वयक प्रकीर्णन-मापदंड" भी कहा जाता हैं। यह दूसरा प्रकार का एस-मापदंड कानेयुकी कुरोकावा द्वारा प्रसिद्ध हुआ था, जिन्होंने इस नए प्रकीर्ण तरंगों को 'पावर तरंगों' के रूप में संदर्भित किया। इन दो प्रकार के एस-मापदंड में बहुत अलग गुणधर्म होते हैं और इन्हें मिलाने का प्रयास नहीं किया जाना चाहिए। अपने महत्वपूर्ण पेपर में,कुरोकावा ने स्पष्ट रूप से पावर-तरंग एस-मापदंड और पारंपरिक, यात्री-तरंग एस-मापदंड का अंतरात्मक किया है। इनके एक प्रकार को प्सेडो-यात्री-तरंग एस-मापदंड कहा जाता है।

एस-मापदंड दृष्टिकोण में, एक विद्युत नेटवर्क को एक 'ब्लैक बॉक्स' के रूप में माना जाता है जिसमें विभिन्न संयुक्त आधारभूत विद्युत परिपथ घटक या संकुचित तत्व सम्मिलित होते हैं, जैसे कि रेजिस्टर, कैपेसिटर, इंडक्टर और ट्रांजिस्टर, जो पोर्ट के माध्यम से अन्य परिपथों के साथ संवाद करते हैं। नेटवर्क को एक वर्गीकरण मायात्रिक संख्याओं का सम्पर्क किया जाता है जिसे इसका एस-मापदंड मायात्रिक कहा जाता है, जो पोर्ट पर लागू किए गए संकेत के प्रतिक्रिया की गणना के लिए उपयोग किया जा सकता है।

एस-मापदंड की परिभाषा के अनुसार, यह समझा जाता है कि एक नेटवर्क में कोई भी घटक हो सकता है, जो संयुक्त छोटे संकेतों के साथ रेखीय रूप से व्यवहार करता है। इसमें एकाधिक संचार प्रणाली के उपयोगी घटक या 'खंड' भी सम्मिलित हो सकते हैं, जैसे प्रवर्धक, क्षीणक, विद्युतकीय फिल्टर, दिशात्मक युग्मक और समानता परंतु इन्हें भी रेखीय और परिभाषित शर्तों के तहत चलाया जाना चाहिए।

एस-मापदंड द्वारा वर्णित एक विद्युत नेटवर्क में पोर्टो की संख्या हो सकती है। पोर्ट वे बिंदु होते हैं जिन पर विद्युत संकेत या तो नेटवर्क में प्रवेश करते हैं या बाहर निकलते हैं। पोर्ट सामान्यतः सिरो के जोड़े होते हैं जिनकी आवश्यकता होती है कि एक सिरा में विद्युत प्रवाह दूसरे को छोड़कर वर्तमान के बराबर होता है।[8][9] एस-मापदंड का उपयोग आवृत्तियों पर किया जाता है जहां पोर्ट प्रायः समाक्षीय या वेवगाइड (विद्युत चुंबकत्व) संबंध होते हैं।

एन-पोर्ट नेटवर्क का वर्णित करने वाला एस-मापदंड आव्यूह आयाम एन का वर्ग होगा और इसलिए इसमें तत्व सम्मिलित होंगे। परीक्षण आवृत्ति पर प्रत्येक तत्व या एस-मापदंड को एक इकाई रहित संयुक्त संख्या द्वारा दर्शाया जाता है जो परिमाण और कोण, अर्थात आयाम और चरण का प्रतिनिधित्व करता है। सम्मिश्र संख्या या तो आयताकार रूप में व्यक्त किया जा सकता है या, अधिकांशतः, घूर्णीय रूप में व्यक्त किया जाता है।

एस-मापदंड की परिमाण लीनियर रूप या लघुगणकीय रूप में व्यक्त की जा सकती है। जब लघुगणक रूप में व्यक्त किया जाता है, तो परिमाण" बिन आयामित इकाई" अर्थात डेसिबल की होती है। एस-मापदंड का कोण अधिकांशतः डिग्री में व्यक्त किया जाता है, लेकिन कभी-कभी रेडियन में भी व्यक्त किया जाता है। किसी भी एस-मापदंड को आरेखित रूप में प्रदर्शित किया जा सकता है, जहां एक आवृत्ति के लिए एक बिंदु या आवृत्ति सीमा के लिए एक स्थानक होता है।

यदि यह केवल एक पोर्ट पर लागू होता है , इसे प्रणाली प्रतिबाधा के लिए सामान्यीकृत स्मिथ चार्ट प्रतिबाधा या प्रवेश पर प्रदर्शित किया जा सकता है। स्मिथ चार्ट के बीच सरल रूपांतरण की अनुमति देता है मापदंड, वोल्टेज प्रतिबिंब गुणांक के बराबर और उस पोर्ट पर संबंधित प्रतिबाधा 'देखा'।

एस-मापदंड का एक सेट निर्दिष्ट करते समय निम्नलिखित जानकारी को परिभाषित किया जाना चाहिए:

  1. आवृत्ति
  2. नाममात्र विशेषता प्रतिबाधा (अक्सर 50 Ω)
  3. पोर्ट नंबर का आवंटन
  4. स्थितियां जो नेटवर्क को प्रभावित कर सकती हैं, जैसे कि तापमान, नियंत्रण वोल्टेज, और बायस करंट, जहां लागू हो।

एस-मापदंड आव्यूह

एक परिभाषा

एक सामान्य मल्टी-पोर्ट नेटवर्क के लिए, पोर्ट्स को 1 से N तक क्रमांकित किया जाता है, जहाँ N पोर्ट्स की कुल संख्या है। पोर्ट I के लिए, संबंधित एस-मापदंड परिभाषा घटना और परावर्तित 'शक्ति तरंगों' के संदर्भ में है, और क्रमश।

कुरोकावा[10] प्रत्येक पोर्ट के लिए घटना शक्ति तरंग को परिभाषित करता है

और प्रत्येक पोर्ट के लिए परावर्तित तरंग को इस रूप में परिभाषित किया गया है

जहाँ पोर्ट I के लिए प्रतिबाधा है, का जटिल संयुग्म है , और पोर्ट i पर वोल्टेज और करंट के क्रमशः जटिल आयाम हैं, और

कभी-कभी यह मानना ​​उपयोगी होता है कि संदर्भ प्रतिबाधा सभी पोर्टो के लिए समान है, जिस स्थिति में घटना और परावर्तित तरंगों की परिभाषा को सरल बनाया जा सकता है

और

ध्यान दें कि जैसा कि स्वयं कुरोकावा ने बताया था, की उपरोक्त परिभाषाएँ और अद्वितीय नहीं हैं। सदिशों a और b के बीच संबंध, जिसके i-वें घटक विद्युत तरंगें हैं और क्रमशः, एस-मापदंड आव्यूह एस का उपयोग करके व्यक्त किया जा सकता है:

या स्पष्ट घटकों का उपयोग करना:


पारस्परिकता

एक नेटवर्क पारस्परिकता प्रमेय होगा यदि यह निष्क्रिय घटक है और इसमें केवल पारस्परिक तत्व हो जो प्रेषित संकेत को प्रभावित करती है। उदाहरण के लिए, क्षीणकर्ता, केबल, स्प्लिटर्स और कंबाइनर सभी पारस्परिक नेटवर्क हैं और प्रत्येक विषयो में होगा या एस-मापदंड आव्यूह इसके स्थानान्तरण के बराबर होगा। ऐसे नेटवर्क जिनमें संचरण माध्यम में गैर-पारस्परिक तत्व सम्मिलित होती है जैसे कि पूर्वाग्रह फेराइट (चुंबक) घटक गैर-पारस्परिक होंगे। एक प्रवर्धक गैर-पारस्परिक नेटवर्क का एक और उदाहरण है।

यद्यपि, 3-पोर्ट नेटवर्क की एक गुण यह है कि वे एक साथ पारस्परिक, हानि-मुक्त और पूरी तरह से मेल नहीं खा सकते हैं।[11]

दोषरहित नेटवर्क

दोषरहित नेटवर्क वह है जो किसी भी शक्ति का क्षय नहीं करता है, या: . सभी पोर्टो पर घटना शक्तियों का योग सभी पोर्टो पर आउटगोइंग शक्तियों के योग के बराबर है। इसका तात्पर्य है कि एस-मापदंड आव्यूह एकात्मक आव्यूह है, अर्थात , जहाँ का संयुग्मी स्थानांतरण है और पहचान आव्यूह है।

हानिपूर्ण नेटवर्क

एक हानिपूर्ण निष्क्रिय नेटवर्क वह है जिसमें सभी पोर्टो पर घटना शक्तियों का योग सभी पोर्टो पर आउटगोइंग शक्तियों के योग से अधिक होता है। इसलिए यह शक्ति का प्रसार करता है: . इस प्रकार , और सकारात्मक-निश्चित आव्यूह है।[12]


दो-पोर्ट एस-मापदंड

TwoPortNetworkScatteringAmplitudes.svg

2-पोर्ट नेटवर्क के लिए एस-मापदंड आव्यूह संभवतः सबसे आम रूप से उपयोग की जाती है और यह बड़े नेटवर्क के लिए उच्च वर्ग आव्यूह उत्पन्न करने के लिए मूल निर्माण इकाई के रूप में कार्य करती है। [18] इस मामले में, बाहरी ('प्रतिबिंबित') और आंतरिक तरंगों के बीच का संबंध और एस-पैरामीटर आव्यूह द्वारा दिया जाता है:

.

आव्यूहों को समीकरणों में विस्तारित करने पर प्राप्त होता है:

और

.

प्रत्येक समीकरण नेटवर्क के प्रत्येक पोर्ट, 1 और 2, पर बाहरी और प्रवेशित तरंगों के बीच संबंध को नेटवर्क के व्यक्तिगत एस-मापदंडो , , और . के माध्यम से देता है। यदि हम पोर्ट 1 पर एक प्रवेशित तरंग (1a_1) को मानते हैं तो इससे पोर्ट 1 या पोर्ट 2 से निकलने वाली तरंगें हो सकती हैं, यद्यपि, अगर, एस-मापदंड की परिभाषा के अनुसार, पोर्ट 2 को सिस्टम प्रतिबाधा के समान भार में समाप्त किया जाता है () तब, अधिकतम शक्ति प्रमेय द्वारा स्थानांतरण सिद्धांत के अनुसार, बनाने में पूरी तरह से शोषित हो जाएगी शून्य हो जाएगी। इसलिए, प्रवेशित वोल्टेज तरंगों को निर्धारित करते हुए और के रूप में परिभाषित करते हैं

और .

उसी तरह, यदि पोर्ट 1 को प्रणाली आवेश में समाप्त किया जाता है, तो शून्य हो जाती है, जिससे वाल्यू 1=0 होती है।

और

2-पोर्ट एस-मापदंड में निम्नलिखित सामान्य विवरण हैं:

इनपुट पोर्ट वोल्टेज प्रतिबिंब गुणांक है
विपरीत वोल्टेज लाभ है
आगे वोल्टेज लाभ है
आउटपुट पोर्ट वोल्टेज प्रतिबिंब गुणांक है।

यदि, प्रत्येक पोर्ट के सापेक्ष वोल्टेज तरंग दिशा को परिभाषित करने के अतिरिक्त उन्हें आगे के रूप में उनकी पूर्ण दिशा द्वारा परिभाषित किया जाता है और उल्टा लहरें तब और . एस-मापदंड तब अधिक सहज अर्थ लेते हैं जैसे कि आगे वोल्टेज लाभ आगे वोल्टेज के अनुपात द्वारा परिभाषित किया जा रहा है.

इसका उपयोग करके उपरोक्त आव्यूह को और अधिक व्यावहारिक विधियों से विस्तारित किया जा सकता है

एस-मापदंड 2-पोर्ट नेटवर्क

रेखीय स्थितियों में कार्यरत एक अधिसूचक अचक्षु एक अनुप्रेषक नेटवर्क का अच्छा उदाहरण है और एक मिलती हुई घटाव कोण एक प्रतिबिंबी नेटवर्क का एक उदाहरण है। निम्नलिखित मामलों में हम मान लेंगे कि प्रवेश और निर्गमन कनेक्शन पोर्ट 1 और 2 को अनुक्रमिक रूप से किए गए हैं जो सबसे सामान्य संवेदना है। सामान्य प्रणाली आवेश, आवृत्ति, और डिवाइस को प्रभावित करने वाले किसी भी अन्य कारक जैसे तापमान आदि को भी निर्दिष्ट किया जाना चाहिए।।

जटिल रैखिक लाभ

जटिल रैखिक लाभ जी द्वारा दिया जाता है

.

यह इनपुट घटना पावर वेव द्वारा विभाजित आउटपुट परावर्तित पावर वेव का रैखिक अनुपात है, सभी मान जटिल मात्रा के रूप में व्यक्त किए जाते हैं। हानिपूर्ण नेटवर्क के लिए यह उप-एकात्मक है, सक्रिय नेटवर्क के लिए .यह वोल्टेज लाभ के बराबर तभी होगा जब डिवाइस में समान इनपुट और आउटपुट प्रतिबाधा हो।

अदिश रैखिक लाभ

अदिश रैखिक लाभ द्वारा दिया जाता है

.

यह आपात संख्या लाभ, यानी आपात ऊर्जा-तरंग से प्रवेश ऊर्जा-तरंग के अनुपात को प्रतिनिधित करता है और इसे पावर लाभ के वर्ग के बराबर होता है। यह एक वास्तविक-मूल्य मात्रा है, जिसमें चरण की जानकारी हटा दी जाती है।

अदिश लघुगणक लाभ

लाभ (जी) के लिए अदिश लघुगणकीय अभिव्यक्ति है:

डीबी।

यह अदिश रूपांतरित आपात गुणांक से अधिक प्रयुक्त होता है और सामान्यतः एक सकारात्मक मात्रा को साधारित रूप से एक "गुणांक" के रूप में समझा जाता है, जबकि एक नकारात्मक मात्रा एक "नकारात्मक गुणांक" होती है, जो डीबी में अपने मात्रा के बराबर होती है। उदाहरण के लिए, 100 मेगाहर्ट्ज पर, 10 मीटर लंबी केबल का एक गुणांक -1 डीबी हो सकता है, जो 1 डीबी का हानि के बराबर होता है।

सम्मिलन हानि

यदि दो मापन पोर्ट एक ही संदर्भ आवेश का उपयोग करते हैं, तो संचालन संख्या के मान के प्रतिक रूप में डेसिबल में व्यक्त बीचवाल (IL) है। इसलिए, यह निम्नलिखित द्वारा दिया जाता है::[13]

डीबी।

यह मापन के संदर्भ तलों के बीच डिवाइस अंतरात्मक ्गत परीक्षण (डीयूटी ) के प्रस्तावित करने से उत्पन्न अतिरिक्त हानि है। अतिरिक्त हानि डीयूटी में आंतरिक हानि और/या मिलान में हो सकती है। अतिरिक्त हानि के मामले में, प्रवेश हानि को सकारात्मक परिभाषित किया जाता है। डेसिबल में व्यक्त अवरोध तापमान के उल्टा नकारात्मक होता है और इसे प्रवेश गुण कहा जाता है, जो वैद्यतात्मक लघुगणकीय लाभ के बराबर होता है

इनपुट पुनरावृत्ति हानि

इनपुट वापसी हानि (RLin) को एक उपाय के रूप में सोचा जा सकता है कि नेटवर्क का वास्तविक इनपुट प्रतिबाधा नाममात्र प्रणाली प्रतिबाधा मान के कितने समीप है। डेसीबल में व्यक्त इनपुट पुनरावृत्ति हानि द्वारा दिया जाता है

डीबी।

ध्यान दें कि निष्क्रिय दो-पोर्ट नेटवर्क के लिए जिसमें |S11| ≤ 1, यह इस प्रकार है कि पुनरावृत्ति हानि एक गैर-नकारात्मक मात्रा है: RLin ≥ 0. यह भी ध्यान दें कि कुछ भ्रामक रूप से, पुनरावृत्ति हानि साइन को कभी-कभी ऊपर परिभाषित मात्रा के नकारात्मक के रूप में उपयोग किया जाता है, लेकिन यह उपयोग, हानि की परिभाषा के आधार पर, सख्ती से बोलना गलत है।[14]


आउटपुट पुनरावृत्ति हानि

आउटपुट पुनरावृत्ति हानि (RLout) को यह सोचा जा सकता है कि यह माप आपात संख्या है जो नेटवर्क की वास्तविक इनपुट आवेशिकता को सामान्य प्रणाली आवेश मान के समीप कितनी समीप प्रस्तुत करती है। इनपुट पुनरावृत्ति हानि को डेसिबल में व्यक्त किया जाता है:

डीबी।

विपरीत लाभ और विपरीत वियोजन

विपरीत लाभ के लिए अदिश लघुगणकीय अभिव्यक्ति है:

डीबी।

प्रायः इसे विपरीतआपाती () के रूप में व्यक्त किया जाएगा, जिसके लिए यह विपरीत लाभ की मानकता के बराबर एक सकारात्मक मात्रा होता है और अभिव्यक्ति इस रूप में होती है

डीबी।

प्रतिबिंब गुणांक

इनपुट पोर्ट पर प्रतिबिंब गुणांक () या आउटपुट पोर्ट पर () के समकक्ष हैं और क्रमशः, इसलिए

और .

जैसा और जटिल मात्राएँ हैं, इसलिए हैं और .

प्रतिबिंब गुणांक जटिल मात्राएं हैं और ध्रुवीय आरेखों या स्मिथ चार्ट्स पर रेखांकन का प्रतिनिधित्व किया जा सकता है

प्रतिबिंब गुणांक लेख भी देखें।

वोल्टेज स्थायी तरंग अनुपात

एक पोर्ट पर वोल्टेज स्थानिक तरंग अनुपात (वीएसडब्ल्यूआर) को छोटे अक्षर 's' से प्रतिष्ठित किया जाता है, यह पोर्ट मैच का एक समान माप है जो वापसी हानि के समान है, लेकिन यह एक अदिश रैखिक मात्रा है, वापसी तरंग के अधिकतम वोल्टेज से वापसी तरंग के न्यूनतम वोल्टेज के अनुपात होता है। इसलिए, यह वोल्टेज प्रतिबिंब संख्या के मान और इस प्रकार इनपुट पोर्ट के लिए , या आउटपुट पोर्ट के लिए के मान से संबंधित है।

यहाँ इनपुट पोर्ट पर, वीएसडब्ल्यूआर () द्वारा दिया गया है

आउटपुट पोर्ट पर, वीएसडब्ल्यूआर () द्वारा दिया गया है

यह सत्य है जब गुणांक का मान एकाधिकता से अधिक नहीं होता है, जो आमतौर पर मामला होता है। एक एकाधिकता से अधिक मान वाला एक अभिविन्यास, जैसे कि एक टनल डायोड एम्पलिफायर में, इस अभिव्यक्ति के लिए एक नकारात्मक मान देगा। हालांकि, वीएसडब्ल्यूआर, अपनी परिभाषा से,सदैव सकारात्मक होता है। एक बहुपोर्ट के पोर्ट k के लिए एक और सही अभिव्यक्ति है।


4-पोर्ट एस-मापदंड

4 पोर्ट एस मापदंड का उपयोग 4 पोर्ट नेटवर्क की विशेषता के लिए किया जाता है। इनमें नेटवर्क के 4 पोर्ट के बीच परावर्तित और आपतित विद्युत तरंगों के बारे में जानकारी शामिल होती है।

ये आपस में जुड़े हुए ट्रांसमिशन लाइन के जोड़ों का विश्लेषण करने के लिए सामान्यतः उपयोग होते हैं, जिससे यह निर्धारित किया जा सके कि उन्हें दो अलग-अलग संकेत एंडेड सकेत द्वारा प्रेरित किया जाता है या उन पर प्रेरित अंतरात्मक संकेत के प्रतिबिंबित और घटनायन शक्ति का मापन किया जा सकता है। उच्च गति के अंतरात्मक संकेत के कई विनिर्देश चैनलों की विशेषताएं 4-पोर्ट एस-पैरामीटर्स के माध्यम से परिभाषित करती हैं, जैसे कि 10-गिगाबिट अटैचमेंट यूनिट इंटरफेस (एक्सएयूआई),सैटा,पीसीआई-एक्स और इन्फिनीबैंड प्रणाली।

4-पोर्ट मिश्रित-मोड एस-मापदंड

4-पोर्ट मिश्रित-मोड एस-मापदंड सामान्य मोड और अंतरात्मक प्रोत्साहन संकेतों के लिए नेटवर्क की प्रतिक्रिया के संदर्भ में 4-पोर्ट नेटवर्क की विशेषता बताते हैं। निम्न तालिका 4-पोर्ट मिश्रित-मोड एस-मापदंड प्रदर्शित करती है।

4-port mixed-mode S-parameters
Stimulus
Differential Common-mode
Port 1 Port 2 Port 1 Port 2
Response Differential Port 1 SDD11 SDD12 SDC11 SDC12
Port 2 SDD21 SDD22 SDC21 SDC22
Common-mode Port 1 SCD11 SCD12 SCC11 SCC12
Port 2 SCD21 SCD22 SCC21 SCC22

मापदंड संकेतन SXYab के प्रारूप पर ध्यान दें, जहां S बिखरने वाले मापदंड या S-मापदंड के लिए है, X प्रतिक्रिया मोड (अंतरात्मक या सामान्य) है, Y प्रोत्साहन मोड (अंतरात्मक या सामान्य) है, प्रतिक्रिया (आउटपुट) पोर्ट है और बी उत्तेजना (इनपुट) पोर्ट है। यह बिखरने वाले मापदंडों के लिए विशिष्ट नामकरण है।

पहले चतुर्भुज को परीक्षण के तहत डिवाइस के अंतरात्मक उत्तेजना और अंतरात्मक प्रतिक्रिया विशेषताओं का वर्णन करने वाले ऊपरी बाएं 4 मापदंड के रूप में परिभाषित किया गया है। यह अधिकांश हाई-स्पीड डिफरेंशियल इंटरकनेक्ट्स के लिए ऑपरेशन का वास्तविक तरीका है और यह क्वाड्रंट है जिस पर सबसे अधिक ध्यान दिया जाता है। इसमें इनपुट डिफरेंशियल पुनरावृत्ति हानि (SDD11), इनपुट डिफरेंशियल इंसर्शन लॉस (SDD21), आउटपुट डिफरेंशियल पुनरावृत्ति हानि (SDD22) और आउटपुट डिफरेंशियल इंसर्शन लॉस (SDD12) शामिल हैं। डिफरेंशियल सिग्नल प्रोसेसिंग के कुछ लाभ हैं;

  • कम विद्युत चुम्बकीय हस्तक्षेप संवेदनशीलता
  • संतुलित अंतरात्मक परिपथ से विद्युत चुम्बकीय विकिरण में कमी
  • यहां तक ​​कि ऑर्डर डिफरेंशियल डिस्टॉर्शन उत्पाद सामान्य मोड सिग्नल में बदल जाते हैं
  • संकेत -एंडेड के सापेक्ष वोल्टेज स्तर में दो वृद्धि का कारक
  • अंतरात्मक सिग्नल पर सामान्य मोड आपूर्ति और ग्राउंड शोर एन्कोडिंग को अस्वीकार करना

दूसरा और तीसरा चतुर्भुज क्रमशः ऊपरी दाएँ और निचले बाएँ 4 मापदंड हैं। इन्हें क्रॉस-मोड क्वाड्रंट भी कहा जाता है। ऐसा इसलिए है क्योंकि वे परीक्षण के तहत डिवाइस में होने वाले किसी भी मोड रूपांतरण को पूरी तरह से चिह्नित करते हैं, चाहे वह कॉमन-टू-डिफरेंशियल एसडीकैब रूपांतरण (इच्छित डिफरेंशियल सिग्नल एसडीडी ट्रांसमिशन एप्लिकेशन के लिए ईएमआई संवेदनशीलता) या डिफरेंशियल-टू-कॉमन एससीडीएबी रूपांतरण (ईएमआई रेडिएशन) हो। अंतरात्मक अनुप्रयोग)। गीगाबिट डेटा थ्रूपुट के लिए इंटरकनेक्ट के डिज़ाइन को अनुकूलित करने का प्रयास करते समय मोड रूपांतरण को समझना बहुत सहायक होता है।

चौथा चतुर्भुज निचला दायां 4 मापदंड है और परीक्षण के तहत डिवाइस के माध्यम से प्रचार करने वाले सामान्य-मोड सिग्नल एससीसीएबी की प्रदर्शन विशेषताओं का वर्णन करता है। ठीक से डिज़ाइन किए गए एसडीडीएबी डिफरेंशियल डिवाइस के लिए न्यूनतम सामान्य-मोड आउटपुट एससीसीएबी होना चाहिए। हालाँकि, चौथा चतुर्थांश सामान्य-मोड प्रतिक्रिया डेटा सामान्य-मोड संचरण प्रतिक्रिया का एक उपाय है और नेटवर्क सामान्य-मोड अस्वीकृति को निर्धारित करने के लिए अंतरात्मक संचरण प्रतिक्रिया के अनुपात में उपयोग किया जाता है। यह कॉमन मोड रिजेक्शन डिफरेंशियल सिग्नल प्रोसेसिंग का एक महत्वपूर्ण लाभ है और इसे कुछ डिफरेंशियल परिपथ इम्प्लीमेंटेशन में घटाकर एक किया जा सकता है।[15][16]


एस-एम्पलीफायर डिजाइन में मापदंड

विपरीत अलगाव मापदंड एक एम्पलीफायर के आउटपुट से इनपुट तक प्रतिक्रिया का स्तर निर्धारित करता है और इसलिए इसकी स्थिरता को प्रभावित करता है (इसकी दोलन से बचने की प्रवृत्ति) एक साथ आगे लाभ के साथ . इनपुट और आउटपुट पोर्ट के साथ एक एम्पलीफायर एक दूसरे से पूरी तरह से अलग-थलग होता है, जिसमें अनंत अदिश लॉग परिमाण अलगाव या रैखिक परिमाण होता है शून्य होगा। ऐसा एम्पलीफायर एकतरफा कहा जाता है। यद्यपि अधिकांश व्यावहारिक एम्पलीफायरों में कुछ परिमित अलगाव होगा, जिससे इनपुट पर प्रतिबिंब गुणांक 'देखा' जा सकता है, जो आउटपुट पर लोड से कुछ हद तक प्रभावित होता है। एक एम्पलीफायर जिसे जानबूझकर डिज़ाइन किया गया है, का सबसे छोटा संभव मूल्य है अक्सर बफर एम्पलीफायर कहा जाता है।

मान लीजिए कि एक वास्तविक (गैर-एकतरफा या द्विपक्षीय) एम्पलीफायर का आउटपुट पोर्ट एक मनमाना भार से जुड़ा है, जिसका प्रतिबिंब गुणांक है . इनपुट पोर्ट पर वास्तविक प्रतिबिंब गुणांक 'देखा' गया द्वारा दिया जाएगा[17]

.

अगर एम्पलीफायर एकतरफा है तो और या, इसे दूसरे तरीके से रखने के लिए, आउटपुट लोडिंग का इनपुट पर कोई प्रभाव नहीं पड़ता है।

एक समान संपत्ति विपरीत दिशा में मौजूद है, इस मामले में यदि आउटपुट पोर्ट पर देखा जाने वाला प्रतिबिंब गुणांक है और इनपुट पोर्ट से जुड़े स्रोत का प्रतिबिंब गुणांक है।


एक एम्पलीफायर के लिए बिना शर्त स्थिर होने के लिए पोर्ट लोडिंग की स्थिति

एक एम्पलीफायर बिना शर्त स्थिर होता है यदि किसी प्रतिबिंब गुणांक के भार या स्रोत को अस्थिरता पैदा किए बिना जोड़ा जा सकता है। यह स्थिति तब होती है जब स्रोत, लोड और एम्पलीफायर के इनपुट और आउटपुट पोर्ट पर प्रतिबिंब गुणांक के परिमाण एक साथ एकता से कम होते हैं। एक महत्वपूर्ण आवश्यकता जिसे अक्सर अनदेखा किया जाता है वह यह है कि एम्पलीफायर एक रैखिक नेटवर्क होना चाहिए जिसमें दाहिने आधे विमान में कोई ध्रुव न हो।[18] अस्थिरता एम्पलीफायर के लाभ आवृत्ति प्रतिक्रिया या अत्यधिक, दोलन में गंभीर विकृति का कारण बन सकती है। ब्याज की आवृत्ति पर बिना शर्त स्थिर होने के लिए, एक एम्पलीफायर को निम्नलिखित 4 समीकरणों को एक साथ संतुष्ट करना चाहिए:[19]

जब इन मूल्यों में से प्रत्येक एकता के बराबर होता है, तो सीमा की स्थिति को (जटिल) प्रतिबिंब गुणांक का प्रतिनिधित्व करने वाले ध्रुवीय आरेख पर खींचे गए एक चक्र द्वारा दर्शाया जा सकता है, एक इनपुट पोर्ट के लिए और दूसरा आउटपुट पोर्ट के लिए। अक्सर इन्हें स्मिथ चार्ट्स के रूप में स्केल किया जाएगा। प्रत्येक मामले में सर्कल केंद्र और संबंधित त्रिज्या के निर्देशांक निम्नलिखित समीकरणों द्वारा दिए गए हैं:

के लिए मान (आउटपुट स्टेबिलिटी सर्कल)

RADIUS केंद्र


के लिए मान (इनपुट स्थिरता चक्र)

RADIUS केंद्र दोनों ही मामलों में

और सुपरस्क्रिप्ट तारा (*) एक जटिल संयुग्म को इंगित करता है।

सर्कल प्रतिबिंब गुणांक की जटिल इकाइयों में हैं इसलिए प्रतिबाधा या प्रवेश आधारित स्मिथ चार्ट को सिस्टम प्रतिबाधा के लिए सामान्यीकृत किया जा सकता है। यह बिना शर्त स्थिरता की भविष्यवाणी के लिए सामान्यीकृत प्रतिबाधा (या प्रवेश) के क्षेत्रों को आसानी से दिखाने का कार्य करता है। बिना शर्त स्थिरता प्रदर्शित करने का एक अन्य तरीका रोलेट स्थिरता कारक के माध्यम से है (), के रूप में परिभाषित

बिना शर्त स्थिरता की स्थिति तब प्राप्त होती है जब और


प्रकीर्णन ट्रांसफर मापदंड

प्रकीर्णन ट्रांसफर मापदंड या 2-पोर्ट नेटवर्क के टी-मापदंड टी-मापदंड आव्यूह द्वारा व्यक्त किए जाते हैं और संबंधित एस-मापदंड आव्यूह से निकटता से संबंधित होते हैं। यद्यपि, एस मापदंड के विपरीत, सिस्टम में टी मापदंड को मापने के लिए कोई सरल भौतिक साधन नहीं है, जिसे कभी-कभी Youla तरंगों के रूप में संदर्भित किया जाता है। टी-मापदंड आव्यूह घटना से संबंधित है और निम्नानुसार प्रत्येक पोर्ट पर सामान्यीकृत तरंगें परिलक्षित होती हैं:

हालाँकि, उन्हें निम्नानुसार परिभाषित किया जा सकता है:

MATLAB में RF टूलबॉक्स ऐड-ऑन[20] और कई किताबें (उदाहरण के लिए नेटवर्क प्रकीर्णन मापदंड[21]) इस अंतिम परिभाषा का प्रयोग करें, इसलिए सावधानी आवश्यक है। इस आलेख में से एस से टी और टी से एस पैराग्राफ पहली परिभाषा पर आधारित हैं। दूसरी परिभाषा के लिए अनुकूलन तुच्छ है (इंटरचेंजिंग टी11 टी के लिए22, और टी12 टी के लिए21). एस-मापदंड की तुलना में टी-मापदंड का लाभ यह है कि संदर्भ प्रतिबाधा प्रदान करना विशुद्ध रूप से, वास्तविक या जटिल संयुग्म है, उनका उपयोग 2 या अधिक 2-पोर्ट नेटवर्क को कैस्केडिंग के प्रभाव को आसानी से निर्धारित करने के लिए किया जा सकता है, बस संबंधित व्यक्तिगत टी को गुणा करके। मापदंड आव्यूह । यदि टी-मापदंड कहते हैं कि तीन अलग-अलग 2-पोर्ट नेटवर्क 1, 2 और 3 हैं , और क्रमशः तीनों नेटवर्क के कैस्केड के लिए टी-मापदंड आव्यूह () क्रम में क्रम द्वारा दिया गया है:

ध्यान दें कि आव्यूह गुणन क्रमविनिमेय नहीं है, इसलिए क्रम महत्वपूर्ण है। एस-मापदंड के साथ, टी-मापदंड जटिल मान हैं और दो प्रकारों के बीच सीधा रूपांतरण होता है। यद्यपि कैस्केडेड टी-मापदंड व्यक्तिगत टी-मापदंड का एक सरल आव्यूह गुणन है, प्रत्येक नेटवर्क के एस-मापदंड के लिए संबंधित टी-मापदंड में रूपांतरण और कैस्केड टी-मापदंड का समतुल्य कैस्केड एस-मापदंड में रूपांतरण, जो आमतौर पर आवश्यक होते हैं, तुच्छ नहीं होते हैं। यद्यपि एक बार ऑपरेशन पूरा हो जाने के बाद, दोनों दिशाओं में सभी पोर्टो के बीच जटिल फुल वेव इंटरैक्शन को ध्यान में रखा जाएगा। निम्नलिखित समीकरण 2-पोर्ट नेटवर्क के लिए एस और टी मापदंड के बीच रूपांतरण प्रदान करेंगे।[22] एस से टी:

कहाँ आव्यूह के निर्धारक को इंगित करता है ,

.

टी से एस

कहाँ आव्यूह के निर्धारक को इंगित करता है .


1-पोर्ट एस-मापदंड

1-पोर्ट नेटवर्क के लिए एस-मापदंड फॉर्म के सरल 1 × 1 आव्यूह द्वारा दिया जाता है जहाँ n आवंटित पोर्ट संख्या है। रैखिकता की एस-मापदंड परिभाषा का अनुपालन करने के लिए, यह सामान्य रूप से किसी प्रकार का निष्क्रिय भार होगा। एक एंटीना (रेडियो) एक सामान्य एक-पोर्ट नेटवर्क है जिसके लिए छोटे मान होते हैं इंगित करता है कि ऐन्टेना या तो विकीर्ण करेगा या बिखराएगा/संग्रहीत करेगा।

उच्च-क्रम एस-मापदंड मैट्रिसेस

असमान पोर्टो के जोड़े के लिए उच्च क्रम एस-मापदंड (), कहाँ बदले में पोर्टो के जोड़े पर विचार करके 2-पोर्ट नेटवर्क के लिए समान रूप से घटाया जा सकता है, प्रत्येक मामले में यह सुनिश्चित करना कि शेष सभी (अप्रयुक्त) पोर्ट सिस्टम प्रतिबाधा के समान प्रतिबाधा के साथ लोड किए गए हैं। इस तरह प्रत्येक अप्रयुक्त पोर्ट के लिए घटना शक्ति तरंग शून्य हो जाती है, जो 2-पोर्ट मामले के लिए प्राप्त समान भावों को उत्पन्न करती है। केवल संकेत पोर्ट से संबंधित एस-मापदंड () शेष सभी पोर्टो को सिस्टम प्रतिबाधा के समान प्रतिबाधा के साथ लोड करने की आवश्यकता होती है, इसलिए विचाराधीन पोर्ट को छोड़कर सभी घटना शक्ति तरंगें शून्य हो जाती हैं। इसलिए सामान्य तौर पर हमारे पास:

और

उदाहरण के लिए, एक 3-पोर्ट नेटवर्क जैसे 2-वे स्प्लिटर में निम्नलिखित एस-मापदंड परिभाषाएँ होंगी

साथ

 ;  ;
 ;  ;
 ;  ;

कहाँ पोर्ट n पर घटना तरंग द्वारा प्रेरित पोर्ट m पर आउटगोइंग वेव को संदर्भित करता है।

== एस-मापदंड == का मापन एस-मापदंड को आमतौर पर एक नेटवर्क विश्लेषक (विद्युत) (वीएनए) से मापा जाता है।

मापा और सही एस-मापदंड डेटा का आउटपुट स्वरूप

एस-मापदंड परीक्षण डेटा कई वैकल्पिक स्वरूपों में प्रदान किया जा सकता है, उदाहरण के लिए: सूची, ग्राफिकल (स्मिथ चार्ट या जटिल विमान )।

सूची प्रारूप

सूची प्रारूप में मापा और सही एस-मापदंड आवृत्ति के विरुद्ध सारणीबद्ध हैं। सबसे आम सूची प्रारूप को टचस्टोन या एसएनपी के रूप में जाना जाता है, जहां एन पोर्टो की संख्या है। आमतौर पर इस जानकारी वाली टेक्स्ट फ़ाइलों का फ़ाइल नाम एक्सटेंशन '.s2p' होता है। डिवाइस के लिए प्राप्त पूर्ण 2-पोर्ट एस-मापदंड डेटा के लिए कसौटी फ़ाइल सूचीकरण का एक उदाहरण नीचे दिखाया गया है:

! शुक्र 21 जुलाई, 14:28:50 2005 को बनाया गया
# एमएचजेड एस डीबी आर 50
! SP1.SP
50 -15.4 100.2 10.2 173.5 -30.1 9.6 -13.4 57.2
51 -15.8 103.2 10.7 177.4 -33.1 9.6 -12.4 63.4
52 -15.9 105.5 11.2 179.1 -35.7 9.6 -14.4 66.9
53 -16.4 107.0 10.5 183.1 -36.6 9.6 -14.7 70.3
54 -16.6 109.3 10.6 187.8 -38.1 9.6 -15.3 71.4

विस्मयादिबोधक चिह्न से शुरू होने वाली पंक्तियों में केवल टिप्पणियाँ होती हैं। हैश प्रतीक के साथ शुरू होने वाली पंक्ति इंगित करती है कि इस स्थिति में आवृत्तियाँ मेगाहर्ट्ज़ (MHZ) में हैं, S-मापदंड सूचीबद्ध हैं (S), परिमाण dB लॉग परिमाण (DB) में हैं और सिस्टम प्रतिबाधा 50 ओम (R 50) है। डेटा के 9 कॉलम हैं। इस मामले में कॉलम 1 मेगाहर्ट्ज़ में परीक्षण आवृत्ति है। कॉलम 2, 4, 6 और 8 के परिमाण हैं , , और क्रमशः डीबी में। कॉलम 3, 5, 7 और 9 के कोण हैं , , और क्रमशः डिग्री में।

ग्राफिकल (स्मिथ चार्ट)

किसी भी 2-पोर्ट एस-मापदंड को स्मिथ चार्ट पर ध्रुवीय निर्देशांक का उपयोग करके प्रदर्शित किया जा सकता है, लेकिन सबसे सार्थक होगा और चूँकि इनमें से किसी को भी सिस्टम इम्पीडेंस के लिए उपयुक्त विशेषता स्मिथ चार्ट इम्पीडेंस (या प्रवेश) स्केलिंग का उपयोग करके सीधे समकक्ष सामान्यीकृत प्रतिबाधा (या प्रवेश) में परिवर्तित किया जा सकता है।

ग्राफिकल (ध्रुवीय आरेख)

किसी भी 2-पोर्ट एस-मापदंड को ध्रुवीय निर्देशांक का उपयोग करके ध्रुवीय आरेख पर प्रदर्शित किया जा सकता है।

या तो ग्राफिकल प्रारूप में एक विशेष परीक्षण आवृत्ति पर प्रत्येक एस-मापदंड को डॉट के रूप में प्रदर्शित किया जाता है। यदि माप कई आवृत्तियों में एक स्वीप है तो प्रत्येक के लिए एक डॉट दिखाई देगा।

एक-पोर्ट नेटवर्क के एस-मापदंड को मापना

केवल एक पोर्ट वाले नेटवर्क के लिए एस-मापदंड आव्यूह के रूप में केवल एक तत्व का प्रतिनिधित्व किया जाएगा , जहां n पोर्ट को आवंटित संख्या है। अधिकांश वीएनए समय बचाने के लिए एक पोर्ट माप के लिए एक सरल एक-पोर्ट अंशांकन क्षमता प्रदान करते हैं यदि वह सब आवश्यक है।

2 से अधिक पोर्टो वाले नेटवर्क के एस-मापदंड को मापना

दो से अधिक पोर्टो वाले नेटवर्क के एस-मापदंड के एक साथ माप के लिए डिज़ाइन किए गए VNA संभव हैं, लेकिन जल्दी ही निषेधात्मक रूप से जटिल और महंगे हो जाते हैं। आम तौर पर उनकी खरीद उचित नहीं होती है क्योंकि अतिरिक्त माप के साथ मानक 2-पोर्ट कैलिब्रेटेड वीएनए का उपयोग करके प्राप्त परिणामों की सही व्याख्या के बाद आवश्यक माप प्राप्त किया जा सकता है। आवश्यक एस-मापदंड आव्यूह को चरणों में क्रमिक दो पोर्ट मापों से इकट्ठा किया जा सकता है, एक समय में दो पोर्ट, प्रत्येक अवसर पर अप्रयुक्त पोर्ट्स को सिस्टम प्रतिबाधा के बराबर उच्च गुणवत्ता भार में समाप्त किया जा सकता है। इस दृष्टिकोण का एक जोखिम यह है कि लोड का पुनरावृत्ति हानि या वीएसडब्ल्यूआर खुद को उपयुक्त रूप से निर्दिष्ट किया जाना चाहिए, जितना संभव हो उतना करीब 50 ओम, या जो भी नाममात्र प्रणाली प्रतिबाधा है। कई पोर्टो वाले नेटवर्क के लिए लागत के आधार पर भार के वीएसडब्ल्यूआर को अपर्याप्त रूप से निर्दिष्ट करने का प्रलोभन हो सकता है। लोड का सबसे खराब स्वीकार्य वीएसडब्ल्यूआर क्या होगा, यह निर्धारित करने के लिए कुछ विश्लेषण आवश्यक होगा।

यह मानते हुए कि अतिरिक्त भार को पर्याप्त रूप से निर्दिष्ट किया गया है, यदि आवश्यक हो, तो दो या अधिक एस-मापदंड सबस्क्रिप्ट को वीएनए (1 और 2 ऊपर दिए गए मामले में) से संबंधित उन लोगों से संशोधित किया जाता है जो परीक्षण के तहत नेटवर्क से संबंधित हैं (1 से 1 तक)। एन, अगर एन डीयूटी पोर्टो की कुल संख्या है)। उदाहरण के लिए, यदि DUT में 5 पोर्ट हैं और एक दो पोर्ट VNA VNA पोर्ट 1 से DUT पोर्ट 3 और VNA पोर्ट 2 से DUT पोर्ट 5 से जुड़ा है, तो मापा गया VNA परिणाम (, , और ) के बराबर होगा , , और क्रमशः, यह मानते हुए कि DUT पोर्ट 1, 2 और 4 को पर्याप्त 50 ओम भार में समाप्त कर दिया गया था। यह आवश्यक 25 एस-मापदंड में से 4 प्रदान करेगा।

यह भी देखें

संदर्भ

  1. Pozar, David M. (2005); Microwave Engineering, Third Edition (Intl. Ed.); John Wiley & Sons, Inc.; pp. 170–174. ISBN 0-471-44878-8.
  2. Pozar, David M. (2005) (op. cit.); pp. 170–174.
  3. Pozar, David M. (2005) (op. cit.); pp. 183–186.
  4. Morton, A. H. (1985); Advanced Electrical Engineering; Pitman Publishing Ltd.; pp. 33–72. ISBN 0-273-40172-6.
  5. Belevitch, Vitold "Summary of the history of circuit theory", Proceedings of the IRE, vol.50, iss.5, pp. 848–855, May 1962.
    Vandewalle, Joos "In memoriam – Vitold Belevitch", International Journal of Circuit Theory and Applications, vol.28, iss.5, pp. 429–430, September/October 2000. doi:10.1002/1097-007X(200009/10)28:5<429::AID-CTA121>3.0.CO;2-6
  6. Valkenburg, Mac Elwyn Van Circuit Theory: Foundations and Classical Contributions, p.334, Stroudsburg, Pennsylvania: Dowden, Hutchinson & Ross, 1974 ISBN 0-87933-084-8.
  7. Dicke R. H. (1947). "माइक्रोवेव नेटवर्क के लिए लागू एक कम्प्यूटेशनल विधि". Journal of Applied Physics. 18 (10): 873–878. Bibcode:1947JAP....18..873D. doi:10.1063/1.1697561.
  8. Pozar, David M. (2005) (op. cit.); p. 170.
  9. Morton, A. H. (1985) (op. cit.); p. 33.
  10. Kurokawa, K., "Power Waves and the Scattering Matrix", IEEE Trans. Micr. Theory & Tech., Mar. 1965, pp. 194–202
  11. Pozar, David M. (2005) (op. cit.); p. 173.
  12. S-Parameter Design; Application Note AN 154; Agilent Technologies; p 7
  13. Collin, Robert E.; Foundations For Microwave Engineering, Second Edition
  14. Trevor S. Bird, "Definition and Misuse of Return Loss", IEEE Antennas & Propagation Magazine, vol.51, iss.2, pp.166–167, April 2009.
  15. Backplane Channels and Correlation Between Their Frequency and Time Domain Performance.
  16. Bockelman, DE; Eisenstadt, WR (July 1995). "Combined differential and common-mode scattering parameters: theory and simulation". IEEE Transactions. 43 (7): 1530–1539. doi:10.1109/22.392911.
  17. Gonzalez, Guillermo (1997); Microwave Transistor Amplifiers Analysis and Design, Second Edition; Prentice Hall NJ; pp 212–216. ISBN 0-13-254335-4.
  18. J.M. Rollett, "Stability and Power-Gain Invariants of Linear Twoports", IRE Trans. on Circuit Theory vol. CT-9, pp. 29–32, March 1962
  19. Gonzalez, Guillermo (op. cit.); pp 217–222
  20. "RF Toolbox documentation".
  21. R. Mavaddat. (1996). Network scattering parameter. Singapore: World Scientific. ISBN 978-981-02-2305-2.
  22. S-Parameter Design; Application Note AN 154; Agilent Technologies; p 14


ग्रन्थसूची