सिग्नल की समग्रता: Difference between revisions
No edit summary |
No edit summary |
||
Line 34: | Line 34: | ||
एनालॉग परिपथ में, डिजाइनर भौतिक स्रोतों से उत्पन्न होने वाले रव से भी चिंतित होते हैं, जैसे [[जॉनसन-निक्विस्ट शोर|जॉनसन-निक्विस्ट]] रव, [[झिलमिलाहट शोर|झिलमिलाहट]] रव और [[शॉट शोर|शॉट रव]]। ये रव स्रोत एक ओर सबसे छोटे संकेत की निम्न सीमा प्रस्तुत करते हैं जिसे प्रवर्धित किया जा सकता है, और दूसरी ओर उपयोगी प्रवर्धन के लिए एक ऊपरी सीमा को परिभाषित करते हैं। | एनालॉग परिपथ में, डिजाइनर भौतिक स्रोतों से उत्पन्न होने वाले रव से भी चिंतित होते हैं, जैसे [[जॉनसन-निक्विस्ट शोर|जॉनसन-निक्विस्ट]] रव, [[झिलमिलाहट शोर|झिलमिलाहट]] रव और [[शॉट शोर|शॉट रव]]। ये रव स्रोत एक ओर सबसे छोटे संकेत की निम्न सीमा प्रस्तुत करते हैं जिसे प्रवर्धित किया जा सकता है, और दूसरी ओर उपयोगी प्रवर्धन के लिए एक ऊपरी सीमा को परिभाषित करते हैं। | ||
अंकीय आईसी में, रुचि के संकेत में रव मुख्य रूप से अन्य संकेतों के स्विचन से युग्मन प्रभावों से उत्पन्न होता है। अन्तर्संबद्ध घनत्व बढ़ने से प्रत्येक तार के निकटवर्ती हो गए हैं जो शारीरिक रूप से एक साथ निकट हैं, जिससे निकटवर्ती जालों के बीच अप्रासंगिक संकेत बढ़ गया है। चूंकि मूर के नियम के अनुसार परिपथों का संकुचन जारी है, कई प्रभावों ने रव की समस्याओं को निकृष्ट बनाने | अंकीय आईसी में, रुचि के संकेत में रव मुख्य रूप से अन्य संकेतों के स्विचन से युग्मन प्रभावों से उत्पन्न होता है। अन्तर्संबद्ध घनत्व बढ़ने से प्रत्येक तार के निकटवर्ती हो गए हैं जो शारीरिक रूप से एक साथ निकट हैं, जिससे निकटवर्ती जालों के बीच अप्रासंगिक संकेत बढ़ गया है। चूंकि मूर के नियम के अनुसार परिपथों का संकुचन जारी है, कई प्रभावों ने रव की समस्याओं को निकृष्ट बनाने का कूटप्रबंध रचा है: | ||
* घटी हुई चौड़ाई के | * घटी हुई चौड़ाई के अतिरिक्त प्रतिरोध को सहनीय बनाए रखने के लिए, आधुनिक तार ज्यामिति उनके अंतर के अनुपात में मोटे होते हैं। यह आधार की धारिता की लागत पर पार्श्व भित्ति धारिता को बढ़ाता है, इसलिए प्रेरित रव वोल्टता (आपूर्ति वोल्टता के एक अंश के रूप में व्यक्त) को बढ़ाता है। | ||
* प्रौद्योगिकी सोपानी ने एमओएस ट्रांजिस्टर के लिए [[ सीमा वोल्टेज |सीमा वोल्टता]] को कम कर दिया है, और | * प्रौद्योगिकी सोपानी ने एमओएस ट्रांजिस्टर के लिए [[ सीमा वोल्टेज |सीमा वोल्टता]] को कम कर दिया है, और देहली और आपूर्ति वोल्टता के बीच अंतर को भी कम कर दिया है, जिससे [[शोर में कमी|रव उपांत]] कम हो गया है। | ||
* तर्क गति, और विशेष रूप से घड़ी की गति में | * तर्क गति, और विशेष रूप से घड़ी की गति में अत्यधिक वृद्धि हुई है, इस प्रकार तीव्रता से संक्रमण (उठने और गिरने) के समय में वृद्धि हुई है। ये तीव्र संक्रमण समय उच्च कैपेसिटिव अप्रासंगिक संकेत से निकटता से जुड़े हुए हैं। इसके अलावा, ऐसी उच्च गति पर तारों के आगमनात्मक गुण, विशेष रूप से पारस्परिक अधिष्ठापन, खेल में आ जाते हैं। | ||
इन प्रभावों ने संकेतों के बीच परस्पर क्रियाओं को बढ़ा दिया है और रव प्रतिरक्षा को कम कर दिया है | इन प्रभावों ने संकेतों के बीच परस्पर क्रियाओं को बढ़ा दिया है और रव प्रतिरक्षा को कम कर दिया है | ||
Line 78: | Line 78: | ||
== चिप-से-चिप संकेत की समग्रता == | == चिप-से-चिप संकेत की समग्रता == | ||
[[File:Reflections 100p rise time.png|400px|thumb|right| समाप्ति बेमेल के परिणाम के रूप में होने वाले प्रतिबिंब। नाड़ी में 100 पीएस वृद्धि का समय होता है। [[काफी यूनिवर्सल सर्किट सिम्युलेटर| | [[File:Reflections 100p rise time.png|400px|thumb|right| समाप्ति बेमेल के परिणाम के रूप में होने वाले प्रतिबिंब। नाड़ी में 100 पीएस वृद्धि का समय होता है। [[काफी यूनिवर्सल सर्किट सिम्युलेटर|अत्यधिक यूनिवर्सल परिपथ सिम्युलेटर]] (क्यूसीएस) का उपयोग करके सिम्युलेटेड। [[टाइम-डोमेन रिफ्लेक्टोमेट्री]] देखें।]]तारकृत संपर्क के लिए, यह तय करने के लिए अन्तर्संबद्ध उड़ान समय की बिट अवधि से तुलना करना महत्वपूर्ण है कि प्रतिबाधा मिलान या बेजोड़ संपर्क की आवश्यकता है या नहीं। | ||
अन्तर्संबद्ध का चैनल उड़ान समय (विलंब) मोटे तौर पर है {{nowrap|1 ns}} प्रति {{nowrap|15 cm}} ({{nowrap|6 in}}) [[FR-4]] [[स्ट्रिपलाइन]] (प्रसार वेग ढांकता हुआ और ज्यामिति पर निर्भर करता है)।<ref>{{cite web |url=https://www.edn.com/electronics-blogs/all-aboard-/4426188/Rule-of-Thumb--3-Signal-speed-on-an-interconnect |title=Rule of Thumb #3 Signal speed on an interconnect|publisher=EDN |accessdate=2018-03-17}}</ref> प्रतिबाधा बेमेल पर पिछली दालों के प्रतिबिंब रेखा के ऊपर और नीचे (यानी उड़ान समय के क्रम में) कुछ बाउंस के बाद मर जाते हैं। कम बिट दर पर, गूँज अपने आप मर जाती है, और मिडपल्स द्वारा, वे चिंता का विषय नहीं हैं। प्रतिबाधा मिलान न तो आवश्यक है और न ही वांछनीय। FR-4 के अलावा कई परिपथ बोर्ड प्रकार हैं, परन्तु सामान्यतः वे निर्माण के लिए अधिक महंगे होते हैं। | अन्तर्संबद्ध का चैनल उड़ान समय (विलंब) मोटे तौर पर है {{nowrap|1 ns}} प्रति {{nowrap|15 cm}} ({{nowrap|6 in}}) [[FR-4]] [[स्ट्रिपलाइन]] (प्रसार वेग ढांकता हुआ और ज्यामिति पर निर्भर करता है)।<ref>{{cite web |url=https://www.edn.com/electronics-blogs/all-aboard-/4426188/Rule-of-Thumb--3-Signal-speed-on-an-interconnect |title=Rule of Thumb #3 Signal speed on an interconnect|publisher=EDN |accessdate=2018-03-17}}</ref> प्रतिबाधा बेमेल पर पिछली दालों के प्रतिबिंब रेखा के ऊपर और नीचे (यानी उड़ान समय के क्रम में) कुछ बाउंस के बाद मर जाते हैं। कम बिट दर पर, गूँज अपने आप मर जाती है, और मिडपल्स द्वारा, वे चिंता का विषय नहीं हैं। प्रतिबाधा मिलान न तो आवश्यक है और न ही वांछनीय। FR-4 के अलावा कई परिपथ बोर्ड प्रकार हैं, परन्तु सामान्यतः वे निर्माण के लिए अधिक महंगे होते हैं। | ||
2004 में [[पीसीआई-एक्सप्रेस]] मानक के [[इंटेल]] द्वारा परिचय के साथ उच्च बिट दर के लिए कोमल प्रवृत्ति नाटकीय रूप से | 2004 में [[पीसीआई-एक्सप्रेस]] मानक के [[इंटेल]] द्वारा परिचय के साथ उच्च बिट दर के लिए कोमल प्रवृत्ति नाटकीय रूप से तीव्र हो गई। इस नेतृत्व के बाद, चिप-से-चिप संपर्क मानकों के बहुमत ने समानांतर बसों से सीरिएलाइज़र/डेसेरिएलाइज़र ([[सर्देस]]) लिंक जिन्हें लेन कहा जाता है, में एक वास्तुशिल्प बदलाव किया। इस प्रकार के सीरियल लिंक समानांतर बस क्लॉक स्क्यू को खत्म करते हैं और ट्रेस की संख्या और परिणामी युग्मन प्रभाव को कम करते हैं परन्तु ये फायदे लेन पर बिट दर में बड़ी वृद्धि और छोटी बिट अवधि की लागत पर आते हैं। | ||
मल्टीगैबिट/एस डेटा दरों पर, लिंक डिजाइनरों को प्रतिबाधा परिवर्तनों पर प्रतिबिंबों पर विचार करना चाहिए (उदाहरण के लिए जहां निशान (इलेक्ट्रॉनिकी) के माध्यम से स्तर बदलते हैं, [[पारेषण रेखाएँ]] देखें), घने पैक किए गए निकटवर्ती संपर्क ( अप्रासंगिक संकेत) से प्रेरित रव, और उच्च आवृत्ति क्षीणन के कारण होता है धातु ट्रेस और ढांकता हुआ नुकसान स्पर्शरेखा में त्वचा का प्रभाव। इन हानियों के लिए शमन तकनीकों के उदाहरण क्रमशः एक प्रतिबाधा मिलान, विभेदक संकेतन का उपयोग, और [[ पूर्व जोर |पूर्व जोर]] फ़िल्टरिंग सुनिश्चित करने के लिए ज्यामिति के माध्यम से एक नया स्वरूप है।<ref>[https://www.keysight.com/upload/cmc_upload/All/GTL11.pdf "Signal Integrity: Problems and Solutions," ''Eric Bogatin, Bogatin Enterprises'']</ref><ref>[http://literature.cdn.keysight.com/litweb/pdf/5988-5623EN.pdf "Eight Hints for Debugging and Validating High-Speed Buses," ''Application Note 1382-10,'' Agilent Technologies]</ref> | मल्टीगैबिट/एस डेटा दरों पर, लिंक डिजाइनरों को प्रतिबाधा परिवर्तनों पर प्रतिबिंबों पर विचार करना चाहिए (उदाहरण के लिए जहां निशान (इलेक्ट्रॉनिकी) के माध्यम से स्तर बदलते हैं, [[पारेषण रेखाएँ]] देखें), घने पैक किए गए निकटवर्ती संपर्क ( अप्रासंगिक संकेत) से प्रेरित रव, और उच्च आवृत्ति क्षीणन के कारण होता है धातु ट्रेस और ढांकता हुआ नुकसान स्पर्शरेखा में त्वचा का प्रभाव। इन हानियों के लिए शमन तकनीकों के उदाहरण क्रमशः एक प्रतिबाधा मिलान, विभेदक संकेतन का उपयोग, और [[ पूर्व जोर |पूर्व जोर]] फ़िल्टरिंग सुनिश्चित करने के लिए ज्यामिति के माध्यम से एक नया स्वरूप है।<ref>[https://www.keysight.com/upload/cmc_upload/All/GTL11.pdf "Signal Integrity: Problems and Solutions," ''Eric Bogatin, Bogatin Enterprises'']</ref><ref>[http://literature.cdn.keysight.com/litweb/pdf/5988-5623EN.pdf "Eight Hints for Debugging and Validating High-Speed Buses," ''Application Note 1382-10,'' Agilent Technologies]</ref> |
Revision as of 21:28, 19 June 2023
संकेत की समग्रता या एसआई एक विद्युत संकेत की गुणवत्ता के उपायों का एक समूह है। अंकीय इलेक्ट्रॉनिकी में, बाइनरी मानों की एक धारा को वोल्टता (या धारा) तरंग द्वारा दर्शाया जाता है। यद्यपि , अंकीय संकेत प्रकृति में मौलिक रूप से एनालॉग संकेत हैं, और सभी संकेत विद्युत रव, विरूपण और हानि जैसे प्रभावों के अधीन हैं। कम दूरी और कम बिट दर पर, एक साधारण संवाहक इसे पर्याप्त निष्ठा के साथ प्रसारित कर सकता है। उच्च बिट दर और लंबी दूरी पर या विभिन्न माध्यमों से, विभिन्न प्रभाव विद्युत संकेत को उस बिंदु तक कम कर सकते हैं जहां त्रुटियां होती हैं और तंत्र या युक्ति विफल हो जाता है। संकेत की समग्रता इंजीनियरिंग इन प्रभावों का विश्लेषण और कम करने का कार्य है। यह एक एकीकृत परिपथ (आईसी) के आंतरिक संपर्क से इलेक्ट्रॉनिकी संवेष्टन[1] एकीकृत परिपथ संवेष्टन, मुद्रित परिपथ बोर्ड (पीसीबी), बैकप्लेन और अंतः तंत्र संपर्क के माध्यम से इलेक्ट्रॉनिकी संवेष्टन और समन्वायोजन के सभी स्तरों पर एक महत्वपूर्ण गतिविधि है।[2] जबकि इन विभिन्न स्तरों पर कुछ सामान्य विषय हैं, व्यावहारिक विचार भी हैं, विशेष रूप से अन्तर्संबद्ध उड़ान समय बनाम बिट अवधि, चिप-पर संपर्क बनाम चिप-से-चिप संपर्क के लिए संकेत की समग्रता के दृष्टिकोण में पर्याप्त अंतर उत्पन्न करते हैं।
संकेत की समग्रता के लिए महत्व के कुछ मुख्य समस्या निनाद (संकेत) , अप्रासंगिक संकेत, आधार प्रस्कन्द , विरूपण, संकेत हानि और विद्युत आपूर्ति रव हैं।
इतिहास
संकेत की समग्रता में मुख्य रूप से एक इलेक्ट्रॉनिक उत्पाद के भीतर संकेतों को स्थानांतरित करने के लिए उपयोग किए जाने वाले तारों और अन्य संवेष्टन संरचनाओं का विद्युत निष्पादन सम्मिलित होता है। इस प्रकार का निष्पादन मूलभूत भौतिकी का विषय है और इलेक्ट्रॉनिक संकेतन की प्रारंभ के बाद से यह अपेक्षाकृत अपरिवर्तित रहा है। पहला अटलांटिक पार का टेलीग्राफ केबल का सामना करना पड़ा था, और समस्याओं के विश्लेषण से कई गणितीय उपकरण निकले जो आज भी संकेत की समग्रता समस्याओं का विश्लेषण करने के लिए उपयोग किए जाते हैं, जैसे कि टेलीग्राफर के समीकरण। तार-स्प्रिंग रिले पर आधारित पश्चिमी इलेक्ट्रिक क्रॉसबार स्विच (लगभग 1940) जितने प्राचीन उत्पादों को आज देखे जाने वाले लगभग सभी प्रभावों का सामना करना पड़ा - निनाद, अप्रासंगिक संकेत, आधार प्रस्कन्द, और विद्युत आपूर्ति का रव जो आधुनिक अंकीय उत्पादों को प्रभावित करता है।
मुद्रित परिपथ बोर्डों पर, संकेत की समग्रता एक संगीन चिंता बन गई जब संकेतों के संक्रमण (उठने और गिरने) के समय पूरे बोर्ड में प्रसार समय के बराबर होने लगे। साधारणतया बोल रहा हूँ, यह सामान्यतः तब होता है जब तंत्र की गति कुछ दसियों मेगाहर्ट्ज से अधिक हो जाती है। सबसे पूर्व, मात्र कुछ सबसे महत्वपूर्ण, या उच्चतम गति, संकेतों को विस्तृत विश्लेषण या डिज़ाइन की आवश्यकता थी। जैसे-जैसे गति में वृद्धि हुई, संकेतों के एक बड़े और बड़े भाग को एसआई विश्लेषण और डिजाइन प्रथाओं की आवश्यकता हुई। आधुनिक (> 100 मेगाहर्ट्ज) परिपथ डिजाइन में, अनिवार्य रूप से सभी संकेतों को एसआई को ध्यान में रखकर डिजाइन किया जाना चाहिए।
आईसी के लिए, कम डिजाइन नियमों के प्रभाव के रूप में एसआई विश्लेषण आवश्यक हो गया। आधुनिक वीएलएसआई युग के प्रारंभिक दिनों में, अंकीय चिप परिपथ डिजाइन और अभिन्यास हस्त प्रक्रियाएं थीं। पृथक्करण के उपयोग और तर्क संश्लेषण के अनुप्रयोग ने तब से डिजाइनरों को स्थानांतरण स्तर रजिस्टर का उपयोग करके अपने डिजाइनों को व्यक्त करने और बहुत जटिल डिजाइन बनाने के लिए एक स्वचालित डिजाइन प्रक्रिया को लागू करने की अनुमति दी है, अंतर्निहित अंतर्निहित परिपथ की विद्युत विशेषताओं को बड़ी मात्रा में अनदेखा कर दिया है। यद्यपि , सोपानी प्रवृत्तियों (मूर का नियम देखें) ने वर्तमान के प्रौद्योगिकी नोड में विद्युत प्रभाव को सबसे आगे लाया। 0.25 माइक्रोमीटर से नीचे प्रौद्योगिकी के सोपानी के साथ, तार विलंब तुलनात्मक या गेट विलंब से भी अधिक हो गए हैं। फलस्वरूप, कालसमंजन संवरक को प्राप्त करने के लिए तार विलम्ब पर विचार करने की आवश्यकता है। नैनोमीटर प्रौद्योगिकियों में 0.13 माइक्रोमीटर और उससे कम पर, संकेतों के बीच अनपेक्षित अंतःक्रियाएं (जैसे अप्रासंगिक संकेत) अंकीय डिजाइन के लिए एक महत्वपूर्ण विचार बन गई हैं। इन प्रौद्योगिकी नोड पर, रव प्रभावों पर विचार किए बिना डिजाइन के निष्पादन और शुद्धता का आश्वासन नहीं दिया जा सकता है।
इस लेख का अधिकांश भाग आधुनिक इलेक्ट्रॉनिक प्रौद्योगिकी के संबंध में एसआई के विषय में है - विशेष रूप से एकीकृत परिपथों और मुद्रित परिपथ बोर्ड प्रौद्योगिकी का उपयोग। फिर भी, एसआई के सिद्धांत उपयोग की जाने वाली संकेतन तकनीक के लिए अनन्य नहीं हैं। एसआई या तो प्रौद्योगिकी के आगमन से बहुत पूर्व अस्तित्व में था, और जब तक इलेक्ट्रॉनिक संचार जारी रहता है, तब तक ऐसा ही रहेगा।
चिप निहित संकेत की समग्रता
आधुनिक एकीकृत परिपथों (आईसी) में संकेत की समग्रता की समस्याओं के अंकीय डिजाइनों के लिए कई जटिल परिणाम हो सकते हैं:
- उत्पाद निश्चय ही काम करने में विफल हो सकते हैं, या इससे भी निकृष्ट, क्षेत्र में अविश्वसनीय हो सकते हैं।
- डिजाइन काम कर सकता है, परन्तु मात्र नियोजित गति से मंद गति से
- उपज कम हो सकती है, कभी-कभी बहुत अधिक
इन विफलताओं की लागत बहुत अधिक है, और विलंबित उत्पाद परिचय के कारण आवरक लागत, इंजीनियरिंग लागत और अवसर लागत सम्मिलित हैं। इसलिए, इन समस्याओं का विश्लेषण, रोकथाम और सुधार करने के लिए इलेक्ट्रॉनिक डिजाइन स्वचालन (ईडीए) उपकरण विकसित किए गए हैं।[1] एकीकृत परिपथ, या आईसी में, संकेत की समग्रता की समस्याओं का मुख्य कारण अप्रासंगिक संकेत है। सीएमओएस प्रौद्योगिकियों में, यह मुख्य रूप से युग्मन धारिता के कारण होता है, परन्तु सामान्यतः पारस्परिक अधिष्ठापन, कार्यद्रव युग्मन , गैर-आदर्श गेट संचालन और अन्य स्रोतों के कारण हो सकता है। फिक्स में सामान्यतः ड्राइवरों के आकार और/या तारों की दूरी को बदलना सम्मिलित होता है।
एनालॉग परिपथ में, डिजाइनर भौतिक स्रोतों से उत्पन्न होने वाले रव से भी चिंतित होते हैं, जैसे जॉनसन-निक्विस्ट रव, झिलमिलाहट रव और शॉट रव। ये रव स्रोत एक ओर सबसे छोटे संकेत की निम्न सीमा प्रस्तुत करते हैं जिसे प्रवर्धित किया जा सकता है, और दूसरी ओर उपयोगी प्रवर्धन के लिए एक ऊपरी सीमा को परिभाषित करते हैं।
अंकीय आईसी में, रुचि के संकेत में रव मुख्य रूप से अन्य संकेतों के स्विचन से युग्मन प्रभावों से उत्पन्न होता है। अन्तर्संबद्ध घनत्व बढ़ने से प्रत्येक तार के निकटवर्ती हो गए हैं जो शारीरिक रूप से एक साथ निकट हैं, जिससे निकटवर्ती जालों के बीच अप्रासंगिक संकेत बढ़ गया है। चूंकि मूर के नियम के अनुसार परिपथों का संकुचन जारी है, कई प्रभावों ने रव की समस्याओं को निकृष्ट बनाने का कूटप्रबंध रचा है:
- घटी हुई चौड़ाई के अतिरिक्त प्रतिरोध को सहनीय बनाए रखने के लिए, आधुनिक तार ज्यामिति उनके अंतर के अनुपात में मोटे होते हैं। यह आधार की धारिता की लागत पर पार्श्व भित्ति धारिता को बढ़ाता है, इसलिए प्रेरित रव वोल्टता (आपूर्ति वोल्टता के एक अंश के रूप में व्यक्त) को बढ़ाता है।
- प्रौद्योगिकी सोपानी ने एमओएस ट्रांजिस्टर के लिए सीमा वोल्टता को कम कर दिया है, और देहली और आपूर्ति वोल्टता के बीच अंतर को भी कम कर दिया है, जिससे रव उपांत कम हो गया है।
- तर्क गति, और विशेष रूप से घड़ी की गति में अत्यधिक वृद्धि हुई है, इस प्रकार तीव्रता से संक्रमण (उठने और गिरने) के समय में वृद्धि हुई है। ये तीव्र संक्रमण समय उच्च कैपेसिटिव अप्रासंगिक संकेत से निकटता से जुड़े हुए हैं। इसके अलावा, ऐसी उच्च गति पर तारों के आगमनात्मक गुण, विशेष रूप से पारस्परिक अधिष्ठापन, खेल में आ जाते हैं।
इन प्रभावों ने संकेतों के बीच परस्पर क्रियाओं को बढ़ा दिया है और रव प्रतिरक्षा को कम कर दिया है अंकीय सीएमओएस परिपथ। इससे अंकीय आईसी के लिए रव एक महत्वपूर्ण समस्या बन गया है जिसे रकम गंवाना; मर जाना से पूर्व प्रत्येक अंकीय चिप डिजाइनर द्वारा विचार किया जाना चाहिए। कई चिंताएँ हैं जिन्हें कम किया जाना चाहिए:
- रव गलत मान ग्रहण करने के संकेत का कारण बन सकता है। यह विशेष रूप से महत्वपूर्ण है जब संकेत लैच (या सैंपल) होने वाला हो, गलत मान को स्टोरेज एलिमेंट में लोड किया जा सकता है, जिससे लॉजिक फेल हो सकता है।
- रव संकेत को सही मान पर सेट करने में विलम्ब कर सकता है। इसे अक्सर नॉइज़-ऑन- विलम्ब कहा जाता है।
- रव (जैसे निनाद) गेट के इनपुट वोल्टता को आधारी स्तर से नीचे गिरा सकता है, या आपूर्ति वोल्टता को पार कर सकता है। यह घटकों पर जोर देकर युक्ति के जीवनकाल को कम कर सकता है, अवरोधित हो जाना को प्रेरित कर सकता है, या संकेत के कई साइकलिंग का कारण बन सकता है जो किसी निश्चित अवधि में मात्र एक बार चक्र होना चाहिए।
आईसी संकेत की समग्रता समस्याओं का पता लगाना
विशिष्ट रूप से, एक IC डिज़ाइनर एसआई सत्यापन के लिए निम्नलिखित कदम उठाएगा:
- अभिन्यास से जुड़े परजीवी तत्व (विद्युत नेटवर्क) प्राप्त करने के लिए एक अभिन्यास निष्कर्षण करें। सामान्यतः वर्स्ट-केस परजीवी और बेस्ट-केस परजीवी निकाले जाते हैं और सिमुलेशन में उपयोग किए जाते हैं। आईसी के लिए, पीसीबी के विपरीत, परजीवियों का भौतिक माप लगभग कभी नहीं किया जाता है, क्योंकि बाहरी उपकरणों के साथ इन-सीटू मापन अत्यंत कठिन होता है। इसके अलावा, चिप बनने के बाद कोई भी माप होगा, जो देखी गई किसी भी समस्या को ठीक करने में बहुत देर हो चुकी है।
- विभिन्न प्रकार के रव, जैसे युग्मन और चार्ज शेयरिंग सहित अपेक्षित रव की घटनाओं की एक सूची बनाएं।
- प्रत्येक रव घटना के लिए एक मॉडल बनाएं। यह महत्वपूर्ण है कि दिए गए रव घटना को मॉडल करने के लिए मॉडल जितना आवश्यक हो उतना सटीक है।
- प्रत्येक संकेत घटना के लिए, यह तय करें कि परिपथ को कैसे उत्तेजित किया जाए ताकि रव की घटना घटित हो।
- एक मसाला (या अन्य परिपथ सिम्युलेटर) netlist बनाएं जो आवश्यक उत्तेजना (जैसे परजीवी अधिष्ठापन और धारिता, और विभिन्न विरूपण प्रभाव) को आवश्यक रूप से सम्मिलित करने के लिए वांछित उत्तेजना का प्रतिनिधित्व करता है।
- स्पाइस सिमुलेशन चलाएं। सिमुलेशन परिणामों का विश्लेषण करें और तय करें कि क्या किसी पुन: डिजाइन की आवश्यकता है। आंखों के पैटर्न के साथ और समयबद्ध बजट की गणना करके परिणामों का विश्लेषण करना सामान्य बात है।[3]
आईसी डिजाइन के लिए आधुनिक संकेत की समग्रता उपकरण इन सभी चरणों को स्वचालित रूप से निष्पादित करते हैं, रिपोर्ट तैयार करते हैं जो एक डिजाइन को स्वास्थ्य का एक साफ बिल, या समस्याओं की एक सूची देते हैं जिन्हें ठीक किया जाना चाहिए। यद्यपि , ऐसे उपकरण सामान्यतः पूरे आईसी पर लागू नहीं होते हैं, परन्तु मात्र रुचि के चयनित संकेत होते हैं।
आईसी संकेत की समग्रता समस्याओं को ठीक करना
एक बार समस्या मिलने के बाद, इसे ठीक किया जाना चाहिए। IC चिप निहित समस्याओं के विशिष्ट सुधारों में सम्मिलित हैं:
- प्रतिबाधा विच्छिन्नता को हटाना। उन स्थानों को ढूँढ़ना जहाँ प्रतिबाधा में महत्वपूर्ण बदलाव मौजूद हैं और प्रतिबाधा को स्थानांतरित करने के लिए पथ की ज्यामिति को समायोजित करके शेष पथ से बेहतर मेल खाते हैं।
- चालक अनुकूलन। आपके पास बहुत अधिक ड्राइव हो सकती है, और पर्याप्त भी नहीं।
- बफर सम्मिलन। इस दृष्टिकोण में, पीड़ित चालक को अपसाइज़ करने के बजाय, पीड़ित जाल में एक उपयुक्त बिंदु पर एक बफर डाला जाता है।
- एग्रेसर डाउनसाइजिंग। यह इसके चालक की ताकत को कम करके हमलावर जाल के संक्रमण समय को बढ़ाकर काम करता है।
- परिरक्षण जोड़ें। अप्रासंगिक संकेत के प्रभाव को कम करने के लिए जीएनडी और वीडीडी शील्ड का उपयोग करके महत्वपूर्ण जाल या क्लॉक नेट का परिरक्षण जोड़ें (इस तकनीक से रूटिंग ओवरहेड हो सकता है)।
- रूटिंग (ईडीए) में परिवर्तन। रव की समस्याओं को ठीक करने में रूटिंग परिवर्तन बहुत प्रभावी हो सकते हैं, मुख्य रूप से पृथक्करण के माध्यम से सबसे अधिक परेशानी वाले युग्मन प्रभाव को कम करके।
इनमें से प्रत्येक सुधार संभवतः अन्य समस्याओं का कारण बन सकता है। इस प्रकार के समस्या को डिज़ाइन फ़्लो (ईडीए) और डिजाइन बंद के भाग के रूप में संबोधित किया जाना चाहिए। डिजाइन परिवर्तन के बाद पुन: विश्लेषण एक विवेकपूर्ण उपाय है।
ऑन-डाई टर्मिनेशन
ऑन-डाई टर्मिनेशन (ODT) या अंकीय रूप से नियंत्रित प्रतिबाधा (DCI[4]) वह तकनीक है जहां पारेषण लाइनों में प्रतिबाधा मिलान के लिए टर्मिनेशन रेसिस्टर एक परिपथ बोर्ड पर लगे एक अलग, असतत उपकरण के बजाय सेमीकंडक्टर चिप के भीतर स्थित होता है। रिसीवर से समाप्ति की निकटता दोनों के बीच स्टब को छोटा करती है, इस प्रकार समग्र संकेत की समग्रता में सुधार होता है।
चिप-से-चिप संकेत की समग्रता
तारकृत संपर्क के लिए, यह तय करने के लिए अन्तर्संबद्ध उड़ान समय की बिट अवधि से तुलना करना महत्वपूर्ण है कि प्रतिबाधा मिलान या बेजोड़ संपर्क की आवश्यकता है या नहीं।
अन्तर्संबद्ध का चैनल उड़ान समय (विलंब) मोटे तौर पर है 1 ns प्रति 15 cm (6 in) FR-4 स्ट्रिपलाइन (प्रसार वेग ढांकता हुआ और ज्यामिति पर निर्भर करता है)।[5] प्रतिबाधा बेमेल पर पिछली दालों के प्रतिबिंब रेखा के ऊपर और नीचे (यानी उड़ान समय के क्रम में) कुछ बाउंस के बाद मर जाते हैं। कम बिट दर पर, गूँज अपने आप मर जाती है, और मिडपल्स द्वारा, वे चिंता का विषय नहीं हैं। प्रतिबाधा मिलान न तो आवश्यक है और न ही वांछनीय। FR-4 के अलावा कई परिपथ बोर्ड प्रकार हैं, परन्तु सामान्यतः वे निर्माण के लिए अधिक महंगे होते हैं।
2004 में पीसीआई-एक्सप्रेस मानक के इंटेल द्वारा परिचय के साथ उच्च बिट दर के लिए कोमल प्रवृत्ति नाटकीय रूप से तीव्र हो गई। इस नेतृत्व के बाद, चिप-से-चिप संपर्क मानकों के बहुमत ने समानांतर बसों से सीरिएलाइज़र/डेसेरिएलाइज़र (सर्देस) लिंक जिन्हें लेन कहा जाता है, में एक वास्तुशिल्प बदलाव किया। इस प्रकार के सीरियल लिंक समानांतर बस क्लॉक स्क्यू को खत्म करते हैं और ट्रेस की संख्या और परिणामी युग्मन प्रभाव को कम करते हैं परन्तु ये फायदे लेन पर बिट दर में बड़ी वृद्धि और छोटी बिट अवधि की लागत पर आते हैं।
मल्टीगैबिट/एस डेटा दरों पर, लिंक डिजाइनरों को प्रतिबाधा परिवर्तनों पर प्रतिबिंबों पर विचार करना चाहिए (उदाहरण के लिए जहां निशान (इलेक्ट्रॉनिकी) के माध्यम से स्तर बदलते हैं, पारेषण रेखाएँ देखें), घने पैक किए गए निकटवर्ती संपर्क ( अप्रासंगिक संकेत) से प्रेरित रव, और उच्च आवृत्ति क्षीणन के कारण होता है धातु ट्रेस और ढांकता हुआ नुकसान स्पर्शरेखा में त्वचा का प्रभाव। इन हानियों के लिए शमन तकनीकों के उदाहरण क्रमशः एक प्रतिबाधा मिलान, विभेदक संकेतन का उपयोग, और पूर्व जोर फ़िल्टरिंग सुनिश्चित करने के लिए ज्यामिति के माध्यम से एक नया स्वरूप है।[6][7] इन नए मल्टीगैबिट/एस बिट दरों पर, बिट अवधि उड़ान समय से कम है; पिछले स्पंदों की गूँज मुख्य स्पंद के शीर्ष पर स्थित रिसीवर तक पहुँच सकती है और इसे दूषित कर सकती है। कम्युनिकेशन इंजीनियरिंग में इसे इंटरसिंबल इंटरफेरेंस (आईएसआई) कहा जाता है। संकेत की समग्रता इंजीनियरिंग में इसे सामान्यतः आंख बंद करना कहा जाता है (एक प्रकार के ऑसिलोस्कोप ट्रेस के केंद्र में अव्यवस्था का संदर्भ जिसे आंख आरेख कहा जाता है)। जब बिट अवधि उड़ान समय से कम होती है, क्लासिक माइक्रोवेव तकनीकों का उपयोग करके प्रतिबिंबों का उन्मूलन जैसे ट्रांसमीटर के विद्युत प्रतिबाधा को अन्तर्संबद्ध से मिलान करना, एक दूसरे से अन्तर्संबद्ध के अनुभाग, और रिसीवर से अन्तर्संबद्ध महत्वपूर्ण है। विद्युत समाप्ति दो सिरों पर मिलान का पर्याय है। चयनित किया जा सकने वाला अन्तर्संबद्ध प्रतिबाधा मुक्त स्थान के प्रतिबाधा द्वारा विवश है (~377 Ω), एक ज्यामितीय रूप कारक और स्ट्रिपलाइन भराव के सापेक्ष ढांकता हुआ स्थिरांक के वर्गमूल द्वारा (सामान्यतः FR-4, ~ 4 के सापेक्ष ढांकता हुआ स्थिरांक के साथ)। साथ में, ये गुण ट्रेस की विशेषता प्रतिबाधा निर्धारित करते हैं। 50 Ω सिंगल-एंड लाइन के लिए एक सुविधाजनक विकल्प है,[8] और 100 ohm अंतर के लिए।
मिलान के लिए आवश्यक कम प्रतिबाधा के परिणामस्वरूप, पीसीबी संकेत के निशान उनके चिप निहित समकक्षों की तुलना में बहुत अधिक धारा ले जाते हैं। कैपेसिटिव मोड के विपरीत यह बड़ा धारा मुख्य रूप से चुंबकीय या आगमनात्मक मोड में अप्रासंगिक संकेत को प्रेरित करता है। इस अप्रासंगिक संकेत का मुकाबला करने के लिए, अंकीय पीसीबी डिजाइनरों को हर संकेत के लिए न मात्र इच्छित संकेत पथ के विषय में पूरी प्रकार से अवगत रहना चाहिए, बल्कि प्रत्येक संकेत के लिए संकेत धारा को वापस करने का मार्ग भी होना चाहिए। संकेत स्वयं और इसके लौटने वाले संकेत वर्तमान पथ अपरिवर्तनीय अप्रासंगिक संकेत उत्पन्न करने में समान रूप से सक्षम हैं। विभेदक ट्रेस जोड़े इन प्रभावों को कम करने में मदद करते हैं।
चिप निहित और चिप-से-चिप संपर्क के बीच तीसरे अंतर में संकेत संवाहक का क्रॉस-सेक्शनल आकार सम्मिलित होता है, अर्थात् पीसीबी संवाहक बहुत बड़े होते हैं (सामान्यतः 100 µm या अधिक चौड़ाई में)। इस प्रकार, डीसी पर पीसीबी अंशों में एक छोटी सी श्रृंखला विद्युत प्रतिरोध (सामान्यतः 0.1 Ω/सेमी) होती है। पल्स के उच्च आवृत्ति घटक को यद्यपि त्वचा के प्रभाव और पीसीबी सामग्री से जुड़े ढांकता हुआ नुकसान स्पर्शरेखा के कारण अतिरिक्त प्रतिरोध द्वारा क्षीण किया जाता है।
मुख्य चुनौती अक्सर इस बात पर निर्भर करती है कि क्या परियोजना लागत-चालित उपभोक्ता अनुप्रयोग है या निष्पादन-संचालित मूलभूत ढांचा अनुप्रयोग है।[9] उन्हें क्रमशः व्यापक पोस्ट- अभिन्यास सत्यापन (कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स का उपयोग करके) और पूर्व- अभिन्यास डिज़ाइन अनुकूलन (स्पाइस और एक चैनल सिम्युलेटर का उपयोग करके) की आवश्यकता होती है।
रूटिंग टोपोलॉजी
ट्रेस/नेटवर्क पर रव का स्तर चयनित रूटिंग टोपोलॉजी पर अत्यधिक निर्भर है। पॉइंट-से-पॉइंट टोपोलॉजी में, संकेत ट्रांसमीटर से सीधे रिसीवर तक जाता है (यह PCIe , रैपिडियो, गीगाबिट ईथरनेट, डीडीआर2 एसडीआरएएम/डीडीआर3/डीडीआर4 डीक्यू/डीक्यूएस आदि में लागू होता है)। पॉइंट-से-पॉइंट टोपोलॉजी में कम से कम एसआई-समस्याएं हैं क्योंकि लाइन टी (ट्रेस का दो-तरफ़ा विभाजन) द्वारा कोई बड़ा प्रतिबाधा मैच पेश नहीं किया जा रहा है।
इंटरफेस के लिए जहां एक ही लाइन से कई पैकेज प्राप्त हो रहे हैं, (उदाहरण के लिए बैकप्लेन कॉन्फ़िगरेशन के साथ), लाइन को सभी रिसीवरों की सेवा के लिए किसी बिंदु पर विभाजित किया जाना चाहिए। कुछ स्टब्स और प्रतिबाधा बेमेल माना जाता है। मल्टीपैकेज इंटरफेस में BLVDS, DDR2/DDR3/DDR4 C/A बैंक, RS485 और CAN बस सम्मिलित हैं। दो मुख्य मल्टीपैकेज टोपोलॉजी हैं: ट्री और फ्लाई-बाय।
संकेत की समग्रता समस्याओं का पता लगाना
- अभिन्यास से जुड़े परजीवियों को प्राप्त करने के लिए एक अभिन्यास निष्कर्षण करें। सामान्यतः वर्स्ट-केस परजीवी और बेस्ट-केस परजीवी निकाले जाते हैं और सिमुलेशन में उपयोग किए जाते हैं। कई दोषों की वितरित प्रकृति के कारण, विद्युत चुम्बकीय अनुकरण[10] निकासी के लिए प्रयोग किया जाता है।
- यदि पीसीबी या पैकेज पूर्व से मौजूद है, तो डिजाइनर नेटवर्क विश्लेषक (विद्युत) जैसे हाई स्पीड इंस्ट्रूमेंटेशन का उपयोग करके संपर्क द्वारा प्रस्तुत हानि को भी माप सकता है। उदाहरण के लिए, IEEE P802.3ap टास्क फ़ोर्स परीक्षण मामलों के रूप में मापे गए एस मानकों का उपयोग करती है[11] की समस्या के प्रस्तावित समाधान के लिए 10 Gbit/s बैकप्लेन पर ईथरनेट।
- सटीक रव मॉडलिंग जरूरी है। विभिन्न प्रकार के रव, जैसे युग्मन और चार्ज शेयरिंग सहित अपेक्षित रव घटनाओं की एक सूची बनाएं। इनपुट आउटपुट बफर सूचना विशिष्टता (IBIS) या परिपथ मॉडल का उपयोग ड्राइवरों और रिसीवरों का प्रतिनिधित्व करने के लिए किया जा सकता है।
- प्रत्येक रव घटना के लिए, यह तय करें कि परिपथ को कैसे उत्तेजित किया जाए ताकि रव की घटना घटित हो।
- एक स्पाइस (या अन्य परिपथ सिम्युलेटर) नेटलिस्ट बनाएं जो वांछित उत्तेजना का प्रतिनिधित्व करता है।
- SPICE चलाएँ और परिणाम रिकॉर्ड करें।
- सिमुलेशन परिणामों का विश्लेषण करें और तय करें कि क्या किसी री-डिजाइन की आवश्यकता है। परिणामों का विश्लेषण करने के लिए अक्सर एक डेटा आई उत्पन्न होती है और एक समयबद्ध बजट की गणना की जाती है। डेटा आई बनाने के लिए एक उदाहरण वीडियो YouTube पर पाया जा सकता है: एन आई इज़ बॉर्न।
विशेष प्रयोजन के इलेक्ट्रॉनिक डिजाइन स्वचालन उपकरण हैं[12] जो इंजीनियर को डिज़ाइन में प्रत्येक संकेत पर इन सभी चरणों को करने में मदद करता है, समस्याओं को इंगित करता है या डिज़ाइन की पुष्टि करता है कि निर्माण के लिए तैयार है। किसी विशेष कार्य के लिए कौन सा उपकरण सबसे अच्छा है, इसका चयन करने के लिए प्रत्येक की विशेषताओं जैसे क्षमता (कितने नोड या तत्व), निष्पादन (सिमुलेशन गति), सटीकता (मॉडल कितने अच्छे हैं), अभिसरण (सॉल्वर कितना अच्छा है) पर विचार करना चाहिए ), क्षमता (गैर-रेखीय बनाम रैखिक, आवृत्ति निर्भर बनाम आवृत्ति स्वतंत्र आदि), और उपयोग में आसानी।
संकेत की समग्रता समस्याओं को ठीक करना
एक आईसी पैकेज या पीसीबी डिजाइनर इन तकनीकों के माध्यम से संकेत की समग्रता की समस्याओं को दूर करता है:
- अप्रासंगिक संकेत को नियंत्रित करने के लिए संकेत ट्रेस के निकट एक ठोस समतल ज़मीन रखना
- सुसंगत ट्रेस विद्युत प्रतिबाधा बनाने के लिए संदर्भ तल पर ट्रेस चौड़ाई रिक्ति को नियंत्रित करना
- निनाद (संकेत) को नियंत्रित करने के लिए विद्युत समाप्ति का उपयोग करना
- अप्रासंगिक संकेत को कम करने के लिए आसन्न परतों पर लंबवत मार्ग का पता लगाएं
- अप्रासंगिक संकेत को कम करने के लिए निशानों के बीच की दूरी बढ़ाना
- आधार प्रस्कन्द को सीमित करने के लिए पर्याप्त ग्राउंड (और पावर) संपर्क प्रदान करना (संकेत इंटीग्रिटी के इस उप-अनुशासन को कभी-कभी शक्ति समग्रता के रूप में अलग से कहा जाता है)
- विद्युत आपूर्ति रव को सीमित करने के लिए ठोस विमान परतों के साथ विद्युत का वितरण
- ट्रांसमीटर ड्राइविंग सेल में प्री-एम्फेसिस फ़िल्टर (संकेत प्रोसेसिंग) जोड़ना[13]
- प्राप्त करने वाले सेल में एक समानता (संचार) जोड़ना[13]
- कम जिटर/फेज नॉइज़ के साथ बेहतर घड़ी की वसूली (सीडीआर) परिपथ्री[14]
इनमें से प्रत्येक सुधार संभवतः अन्य समस्याओं का कारण बन सकता है। इस प्रकार के समस्या को डिज़ाइन फ़्लो (ईडीए) और डिज़ाइन क्लोजर के भाग के रूप में संबोधित किया जाना चाहिए।
यह भी देखें
- शक्ति समग्रता
- विद्युतचुंबकीय व्यवधान
- विद्युत चुम्बकीय संगतता
टिप्पणियाँ
- ↑ 1.0 1.1 Louis Kossuth Scheffer; Luciano Lavagno; Grant Martin (eds) (2006). Electronic design automation for integrated circuits handbook. Boca Raton, Florida: CRC/Taylor & Francis. ISBN 0-8493-3096-3.
{{cite book}}
:|author=
has generic name (help)CS1 maint: multiple names: authors list (link) A survey of the field of electronic design automation. Portions of IC section of this article were derived (with permission) from Vol II, Chapter 21, Noise Considerations in Digital ICs, by Vinod Kariat. - ↑ Howard W. Johnson; Martin Graham (1993). High speed digital design a handbook of black magic. Englewood Cliffs, New Jersey: Prentice Hall PTR. ISBN 0-13-395724-1. A book for digital PCB designers, highlighting and explaining analog circuit principles relevant to high-speed digital design.
- ↑ Ruckerbauer, Hermann. "An Eye is Born". YouTube. Gives an example video of construction of an eye pattern
- ↑ Banas, David. "Using Digitally Controlled Impedance: Signal Integrity vs. Power Dissipation Considerations, XAPP863 (v1.0)" (PDF).
- ↑ "Rule of Thumb #3 Signal speed on an interconnect". EDN. Retrieved 2018-03-17.
- ↑ "Signal Integrity: Problems and Solutions," Eric Bogatin, Bogatin Enterprises
- ↑ "Eight Hints for Debugging and Validating High-Speed Buses," Application Note 1382-10, Agilent Technologies
- ↑ "Why 50 Ohms?". Microwaves101. Retrieved 2008-06-02.
- ↑ Rako, Paul (April 23, 2009). "Voices: Signal-integrity experts speak out: Two experts discuss signal-integrity challenges and their expectations for signal integrity". EDN.
For cost-driven consumer applications ... [i]t's tempting to compact [the parallel buses], but the risk is postlayout failure ... For performance-driven applications, the pinch points [is] prelayout design-space exploration ...
- ↑ "Hurdle the multigigabit per second barrier"
- ↑ IEEE P802.3ap Task Force Channel Models
- ↑ Breed, Gary (August 2008). "High Speed Digital Design Benefits from Recent EDA Tools Development" (PDF). High Frequency Electronics. p. 52. Retrieved May 1, 2009.
...with continued increase in clock rates of digital circuits, the realms of RF and digital circuits are now more closely tied than ever before.
- ↑ 13.0 13.1 "स्ट्रैटिक्स जीएक्स के साथ पूर्व-जोर और समानता का उपयोग करना" (PDF). Altera.
- ↑ "Using Clock Jitter Analysis to Reduce BER in Serial Data Applications", Application Note, literature number 5989-5718EN, Agilent Technologies
संदर्भ
- Howard Johnson; Martin Graham. (2002). High-speed signal propagation : advanced black magic. Upper Saddle River, New Jersey: Prentice Hall PTR. ISBN 0-13-084408-X. Advanced-level reference text for experienced digital designers who want to press their designs to the upper limits of speed and distance.
- Eric Bogatin. (2009). Signal and Power Integrity - Simplified, Second Edition. Upper Saddle River, New Jersey: Prentice Hall. ISBN 978-0-13-234979-6. Archived from the original on 2011-09-10. From the backcover: Draws from author's industrial experience and his work teaching more than five thousand engineers.
- Stephen H. Hall; Garrett W. Hall; James A. McCall. (2000). High speed digital system design : a handbook of interconnect theory and design practices. New York: Wiley. ISBN 0-471-36090-2.
- William J. Dally; John W. Poulton. (1999). Digital systems engineering. Cambridge: Cambridge Univ. Press. ISBN 0-521-59292-5. Textbook on the problems of building digital systems, including signal integrity.
- Douglas Brooks. (2003). Signal integrity issues and printed circuit board design. Upper Saddle River, New Jersey: Prentice Hall PTR. ISBN 0-13-141884-X. This book approaches electrical engineering and signal integrity principles from a basic level, assuming little prior understanding.
- Geoff Lawday; David Ireland & Greg Edlund. (2008). A signal integrity engineer's companion : real-time test and measurement and design simulation. Upper Saddle River, New Jersey: Prentice Hall. ISBN 978-0-13-186006-3.
- Raj; A. Ege Engin. (2008). Power integrity modeling and design for semiconductors and systems. Upper Saddle River, New Jersey: Prentice Hall. ISBN 978-0-13-615206-4. Using realistic case studies and downloadable software examples, two leading experts demonstrate today's best techniques for designing and modeling interconnects to efficiently distribute power and minimize noise. The authors carefully introduce the core concepts of power distribution design, systematically present and compare leading techniques for modeling noise, and link these techniques to specific applications. Their many examples range from the simplest (using analytical equations to compute power supply noise) through complex system-level applications.
- Signal Integrity for PCB Designers
- Altera Signal Integrity Center
- Basic Principles of Signal Integrity
- Agilent EEsof ईडीए - Signal Integrity Analysis Resources
- "Design tip: Model instruments to improve signal integrity simulation", EETimes, John Olah, 2007-October-25
- Topics in signal integrity were discussed at DesignCon 2008 February 4, 2008 to February 7, 2008
- "Understanding Signal Integrity - Signal integrity is becoming a more significant problem as clock frequencies increase" by Eric Bogatin, GigaTest Labs, Agilent Application Note 5988-5978EN, April 2002, 8 pages, PDF, 0.9MB
- "Signal Integrity Analysis Series Part 1: Single-Port TDR, TDR/TDT, and 2-Port TDR" (Agilent Application Note 5989-5763EN, February 2007, 72 pages, PDF, 5.2MB)
- "Signal Integrity Analysis Series Part 2: 4-Port TDR/VNA/PLTS" (Agilent Application Note 5989-5764EN, February 2007, 56 pages, PDF, 3.6MB)
- "Signal Integrity Analysis Series Part 3: The ABC's of De-Embedding" (Agilent Application Note 5989-5765EN, July 2007, 48 pages, PDF, 2.5MB)