बूटस्ट्रैपिंग (इलेक्ट्रॉनिक्स): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
[[ इलेक्ट्रानिक्स ]] के क्षेत्र में, एक ऐसी तकनीक जहां प्रणाली के आउटपुट का कुछ भाग स्टार्टअप पर उपयोग किया जाता है, उसे बूटस्ट्रैपिंग के रूप में वर्णित किया जा सकता है।
[[ इलेक्ट्रानिक्स ]] के क्षेत्र में, एक ऐसी तकनीक जहां प्रणाली के आउटपुट का कुछ भाग स्टार्टअप पर उपयोग किया जाता है, उसे बूटस्ट्रैपिंग के रूप में वर्णित किया जा सकता है।


बूटस्ट्रैप परिपथ वह होता है जहां प्रवर्धक चरण के आउटपुट का भाग इनपुट पर लागू होता है, ताकि प्रवर्धक के इनपुट [[विद्युत प्रतिबाधा]] को बदल दिया जा सके। जब सोच-समझकर लागू किया जाता है, तो सामान्यतः  प्रतिबाधा को कम करने के स्थान पर बढ़ाने का योजना होता है।<ref>{{cite book |title=IEEE मानक शर्तों का IEEE मानक 100 आधिकारिक शब्दकोश|edition=7th |publisher=IEEE Press |date=2000 |isbn=0-7381-2601-2 |page=123}}</ref>  
बूटस्ट्रैप परिपथ वह होता है जहां प्रवर्धक चरण के आउटपुट का भाग इनपुट पर प्रयुक्त होता है, जिससे प्रवर्धक के इनपुट [[विद्युत प्रतिबाधा]] को बदला जा सके। जब सोच-समझकर प्रयुक्त किया जाता है, तो सामान्यतः  प्रतिबाधा को कम करने के स्थान पर बढ़ाने का योजना होता है।<ref>{{cite book |title=IEEE मानक शर्तों का IEEE मानक 100 आधिकारिक शब्दकोश|edition=7th |publisher=IEEE Press |date=2000 |isbn=0-7381-2601-2 |page=123}}</ref>  


[[MOSFET|मोस्फेट(MOSFET)]] परिपथ के क्षेत्र में, बूटस्ट्रैपिंग का उपयोग सामान्यतः बिजली आपूर्ति धेरा के ऊपर एक ट्रांजिस्टर के [[Index.php?title=परिचालन बिंदु|परिचालन बिंदु]] को खींचने के लिए किया जाता है।<ref name="Uyemura1999">{{cite book|first=John P. |last=Uyemura|title=CMOS तर्क सर्किट डिजाइन|url=https://books.google.com/books?id=udv--YBwA7sC&pg=PA319|year=1999|publisher=Springer  |isbn=978-0-7923-8452-6|page=319}}</ref><ref name="Pelgrom2012">{{cite book|first=Marcel J.M. |last=Pelgrom|title=एनालॉग-टू-डिजिटल रूपांतरण|url=https://books.google.com/books?id=2WeXU9wD2Z0C&pg=PA210|year=2012|publisher=Springer |isbn=978-1-4614-1371-4|pages=210–211|edition=2nd}}</ref>आउटपुट विद्युत दाब दोलन (जमीन के सापेक्ष) को बढ़ाने के लिए एक परिचालन प्रवर्धक के परिचालन बिंदु को गतिशील रूप से बदलने (इसके सकारात्मक और नकारात्मक आपूर्ति धेरा दोनों को स्थानांतरित करके) के लिए समान शब्द का उपयोग कुछ हद तक अधिक किया गया है।<ref>{{cite journal|title=अपने ऑप एम्प को बूटस्ट्रैप करने से व्यापक वोल्टेज स्विंग्स प्राप्त होते हैं|url=http://m.eet.com/media/1152270/24127-45890.pdf|journal=EDN|first1=Grayson |last1=King |first2=Tim |last2=Watkins|date=May 13, 1999|pages=117–129}}</ref> इस अनुच्छेद में प्रयुक्त अर्थ में, प्रचालन प्रवर्धक को बूटस्ट्रैप करने का तात्पर्य है कि ऑप-एम्प की बिजली आपूर्ति के संदर्भ बिंदु को चलाने के लिए सिग्नल का उपयोग करना।<ref name="HickmanTravis1994">{{cite book|editor-first=Ian |editor-last=Hickman |editor2-first=Bill |editor2-last=Travis|title=EDN डिज़ाइनर का साथी|year=1994|publisher=Butterworth-Heinemann|isbn=978-0-7506-1721-5|pages=205|first=Jerald |last=Graeme|chapter=Op-amp distortion measurement bypasses test-equipment limitations}}</ref> इस धेरा बूटस्ट्रैपिंग तकनीक का एक अधिक परिष्कृत उपयोग इसकी विकृति को कम करने के लिए JFETऑप-एम्प के इनपुट की अतिरिक्त-रैखिक C/V विशेषता को बदलना है।<ref>{{cite web|first=Walt |last=Jung|url=http://www.analog.com/static/imported-files/application_notes/742022599AN232.pdf|publisher=Analog Devices application note AN-232|title=Bootstrapped IC Substrate Lowers Distortion in JFET Op Amps}}</ref><ref name="Self2014">{{cite book|author=Douglas Self|title=छोटा सिग्नल ऑडियो डिज़ाइन|edition=2nd|year=2014|publisher=Focal Press|isbn=978-1-134-63513-9|pages=136–142}}</ref>
[[MOSFET|मोस्फेट(MOSFET)]] परिपथ के क्षेत्र में, बूटस्ट्रैपिंग का उपयोग सामान्यतः बिजली आपूर्ति धेरा के ऊपर एक ट्रांजिस्टर के [[Index.php?title=परिचालन बिंदु|परिचालन बिंदु]] को खींचने के लिए किया जाता है।<ref name="Uyemura1999">{{cite book|first=John P. |last=Uyemura|title=CMOS तर्क सर्किट डिजाइन|url=https://books.google.com/books?id=udv--YBwA7sC&pg=PA319|year=1999|publisher=Springer  |isbn=978-0-7923-8452-6|page=319}}</ref><ref name="Pelgrom2012">{{cite book|first=Marcel J.M. |last=Pelgrom|title=एनालॉग-टू-डिजिटल रूपांतरण|url=https://books.google.com/books?id=2WeXU9wD2Z0C&pg=PA210|year=2012|publisher=Springer |isbn=978-1-4614-1371-4|pages=210–211|edition=2nd}}</ref>आउटपुट विद्युत दाब दोलन (जमीन के सापेक्ष) को बढ़ाने के लिए एक परिचालन प्रवर्धक के परिचालन बिंदु को गतिशील रूप से बदलने (इसके सकारात्मक और नकारात्मक आपूर्ति धेरा दोनों को स्थानांतरित करके) के लिए समान शब्द का उपयोग कुछ हद तक अधिक किया गया है।<ref>{{cite journal|title=अपने ऑप एम्प को बूटस्ट्रैप करने से व्यापक वोल्टेज स्विंग्स प्राप्त होते हैं|url=http://m.eet.com/media/1152270/24127-45890.pdf|journal=EDN|first1=Grayson |last1=King |first2=Tim |last2=Watkins|date=May 13, 1999|pages=117–129}}</ref> इस अनुच्छेद में प्रयुक्त अर्थ में, प्रचालन प्रवर्धक को बूटस्ट्रैप करने का तात्पर्य है कि ऑप-एम्प(op-amp) की बिजली आपूर्ति के संदर्भ बिंदु को चलाने के लिए संकेत का उपयोग करना है।<ref name="HickmanTravis1994">{{cite book|editor-first=Ian |editor-last=Hickman |editor2-first=Bill |editor2-last=Travis|title=EDN डिज़ाइनर का साथी|year=1994|publisher=Butterworth-Heinemann|isbn=978-0-7506-1721-5|pages=205|first=Jerald |last=Graeme|chapter=Op-amp distortion measurement bypasses test-equipment limitations}}</ref> इस धेरा बूटस्ट्रैपिंग तकनीक का एक अधिक परिष्कृत उपयोग इसकी विकृति को कम करने के लिए JFET ऑप-एम्प के इनपुट की अतिरिक्त-रैखिक C/V विशेषता को बदलना है।<ref>{{cite web|first=Walt |last=Jung|url=http://www.analog.com/static/imported-files/application_notes/742022599AN232.pdf|publisher=Analog Devices application note AN-232|title=Bootstrapped IC Substrate Lowers Distortion in JFET Op Amps}}</ref><ref name="Self2014">{{cite book|author=Douglas Self|title=छोटा सिग्नल ऑडियो डिज़ाइन|edition=2nd|year=2014|publisher=Focal Press|isbn=978-1-134-63513-9|pages=136–142}}</ref>
== इनपुट प्रतिबाधा ==
== इनपुट प्रतिबाधा ==
[[File:Emitter follower.png|thumb|400px|BJT एमिटर फॉलोअर परिपथ में बूटस्ट्रैप संधारित्र C1 और C2]][[एनालॉग सर्किट|एनालॉग परिपथ]] बनावट में, बूटस्ट्रैप परिपथ घटकों की एक व्यवस्था है जो सोच-समझकर परिपथ के इनपुट प्रतिबाधा को को बदलना है। सामान्यतः इसका उद्देश्य दो चरणों में सकारात्मक [[प्रतिक्रिया]] की एक छोटी मात्रा का उपयोग करके प्रतिबाधा को बढ़ाना होता है। द्विध्रुवी [[ट्रांजिस्टर]] के प्रारंभिक दिनों में यह प्रायः आवश्यक होता था, जिसमें स्वाभाविक रूप से पर्याप्त कम इनपुट प्रतिबाधा होती है। क्योंकि प्रतिक्रिया सकारात्मक है, ऐसे परिपथ बूटस्ट्रैप नहीं करने वाले की तुलना में खराब स्थिरता और आवाज़ प्रदर्शन से हानि हो सकते हैं।
[[File:Emitter follower.png|thumb|400px|BJT एमिटर फॉलोअर परिपथ में बूटस्ट्रैप संधारित्र C1 और C2]][[एनालॉग सर्किट|एनालॉग परिपथ]] बनावट में, बूटस्ट्रैप परिपथ घटकों की एक व्यवस्था है जो सोच-समझकर परिपथ के इनपुट प्रतिबाधा को बदलना है। सामान्यतः इसका उद्देश्य दो चरणों में सकारात्मक [[प्रतिक्रिया]] की एक छोटी मात्रा का उपयोग करके प्रतिबाधा को बढ़ाना होता है। द्विध्रुवी [[ट्रांजिस्टर]] के प्रारंभिक दिनों में यह प्रायः आवश्यक होता था, जिसमें स्वाभाविक रूप से पर्याप्त कम इनपुट प्रतिबाधा होती है। क्योंकि प्रतिक्रिया सकारात्मक है, ऐसे परिपथ बूटस्ट्रैप नहीं करने वाले की स्थिति में खराब स्थिरता और आवाज़ प्रदर्शन से हानि हो सकता हैं।


वैकल्पिक रूप से एक इनपुट प्रतिबाधा को बूटस्ट्रैप करने के लिए नकारात्मक प्रतिक्रिया का उपयोग किया जा सकता है, जिससे स्पष्ट प्रतिबाधा कम हो सकती है। यह कदाचित् ही कभी सोच-समझकर किया जाता है, और सामान्यतः विशेष परिपथ बनावट का अवांछित परिणाम होता है। इसका एक प्रसिद्ध उदाहरण [[मिलर प्रभाव]] है, जिसमें एक अपरिहार्य प्रतिक्रिया समाई नकारात्मक प्रतिक्रिया द्वारा बढ़ी हुई दिखाई देती है (अर्थात इसकी प्रतिबाधा कम दिखाई देती है)। एक प्रचलित स्थिति जहां यह सोच-समझकर किया जाता है, एक एकीकृत परिपथ के अंदर कम-आवृत्ति पोल प्रदान करने के लिए मिलर प्रतिपूर्ति तकनीक है। आवश्यक संधारित्र के आकार को कम करने के लिए, इसे इनपुट और आउटपुट के बीच रखा जाता है जो विपरीत दिशा में झूलता है। यह बूटस्ट्रैपिंग जमीन पर एक बड़े संधारित्र की तरह कार्य करता है।
वैकल्पिक रूप से एक इनपुट प्रतिबाधा को बूटस्ट्रैप करने के लिए नकारात्मक प्रतिक्रिया का उपयोग किया जा सकता है, जिससे स्पष्ट प्रतिबाधा कम हो सकती है। यह कदाचित् ही कभी सोच-समझकर किया जाता है, और सामान्यतः विशेष परिपथ बनावट का अवांछित परिणाम होता है। इसका एक प्रसिद्ध उदाहरण [[मिलर प्रभाव]] है, जिसमें एक अपरिहार्य प्रतिक्रिया समाई नकारात्मक प्रतिक्रिया द्वारा बढ़ी हुई दिखाई देती है (अर्थात इसकी प्रतिबाधा कम दिखाई देती है)। एक प्रचलित स्थिति जहां यह सोच-समझकर किया जाता है, एक एकीकृत परिपथ के अंदर कम-आवृत्ति पोल प्रदान करने के लिए मिलर प्रतिपूर्ति तकनीक है। आवश्यक संधारित्र के आकार को कम करने के लिए, इसे इनपुट और आउटपुट के बीच रखा जाता है जो विपरीत दिशा में झूलता है। यह बूटस्ट्रैपिंग जमीन पर एक बड़े संधारित्र की तरह कार्य करता है।
Line 14: Line 14:
N-MOSFET/IGBT को प्रारंम्भ करने के लिए गेट पर एक महत्वपूर्ण सकारात्मक आवेश (VGS > Vth) लगाने की आवश्यकता होती है। सिर्फ N-प्रणाली MOSFET/IGBT उपकरणों का उपयोग करना लागत में कमी का एक सामान्य तरीका है, जो बड़े पैमाने पर डाई (एकीकृत परिपथ) आकार में कमी के कारण होता है।<!-- Source needed citing cost reduction from use of nMOS over pMOS devices. --> (अन्य लाभ भी हैं)। यद्यपि, pMOS उपकरणों के स्थान पर nMOS उपकरणों का उपयोग करने का तात्पर्य है कि ट्रांजिस्टर को रैखिक संचालन (न्यूनतम वर्तमान सीमित) में अभिनति करने के लिए बिजली धेरा आपूर्ति (V+) से अधिक विद्युत दाब की आवश्यकता होती है और इस प्रकार महत्वपूर्ण गर्मी के हानि से बचा जाता है।
N-MOSFET/IGBT को प्रारंम्भ करने के लिए गेट पर एक महत्वपूर्ण सकारात्मक आवेश (VGS > Vth) लगाने की आवश्यकता होती है। सिर्फ N-प्रणाली MOSFET/IGBT उपकरणों का उपयोग करना लागत में कमी का एक सामान्य तरीका है, जो बड़े पैमाने पर डाई (एकीकृत परिपथ) आकार में कमी के कारण होता है।<!-- Source needed citing cost reduction from use of nMOS over pMOS devices. --> (अन्य लाभ भी हैं)। यद्यपि, pMOS उपकरणों के स्थान पर nMOS उपकरणों का उपयोग करने का तात्पर्य है कि ट्रांजिस्टर को रैखिक संचालन (न्यूनतम वर्तमान सीमित) में अभिनति करने के लिए बिजली धेरा आपूर्ति (V+) से अधिक विद्युत दाब की आवश्यकता होती है और इस प्रकार महत्वपूर्ण गर्मी के हानि से बचा जाता है।


बूटस्ट्रैप  संधारित्र आपूर्ति धेरा (V+) से आउटपुट विद्युत दाब से जुड़ा होता है। सामान्यतः N-MOSFET का स्रोत टर्मिनल एक पुनरावर्तन [[डायोड]] के [[कैथोड]] से जुड़ा होता है, जो सामान्यतः आगमनात्मक भार में संग्रहीत ऊर्जा के कुशल प्रबंधन की अनुमति देता है ([[फ्लाईबैक डायोड]] देखें)। संधारित्र की आवेश भंडारण विशेषताओं के कारण, बूटस्ट्रैप विद्युत दाब आवश्यक गेट संचालन विद्युत दाब प्रदान करते हुए (V+) से ऊपर बढ़ जाएगा।
बूटस्ट्रैप  संधारित्र आपूर्ति धेरा (V+) से आउटपुट विद्युत दाब से जुड़ा होता है। सामान्यतः N-MOSFET का स्रोत टर्मिनल एक पुनरावर्तन [[डायोड]] के [[कैथोड]] से जुड़ा होता है, जो सामान्यतः आगमनात्मक भार में संग्रहीत ऊर्जा के कुशल प्रबंधन की अनुमति देता है ([[फ्लाईबैक डायोड]] देखें)। संधारित्र की आवेश भंडारण विशेषताओं के कारण, बूटस्ट्रैप विद्युत दाब आवश्यक गेट संचालन विद्युत दाब प्रदान करते हुए (V+) ऊपर बढ़ जाएगा।


सभी-N-MOSFET [[एच पुल]] के प्रत्येक आधे-पुल में बूटस्ट्रैप परिपथ का प्रायः उपयोग किया जाता है। जब निम्न पक्ष N-FET प्रारंम्भ होता है, तो बिजली धेरा (V+) से धारा बूटस्ट्रैप डायोड के माध्यम से प्रवाहित होता है और बूटस्ट्रैप संधारित्र को उस निम्न पक्ष N-FET के माध्यम से आवेश करता है।जब निम्न पक्ष N-FET बंद हो जाता है, तो बूटस्ट्रैप संधारित्र का निचला भाग उच्च पक्ष N-FET के स्रोत से जुड़ा रहता है, और संधारित्र उच्च पक्ष N-FET के गेट को चलाते हुए अपनी कुछ ऊर्जा का निर्वहन करता है। उच्च-पक्ष N-FET को पूरी तरह से प्रारंम्भ करने के लिए V+ से पर्याप्त रूप से ऊपर के विद्युत दाब पर FET जबकि बूटस्ट्रैप डायोड उस ऊपर-V+ विद्युत दाब को पावर धेरा V+ में वापस रिसाव होने से रोकता है।<ref>
सभी-N-MOSFET [[एच पुल]] के प्रत्येक आधे-पुल में बूटस्ट्रैप परिपथ का प्रायः उपयोग किया जाता है। जब निम्न पक्ष N-FET प्रारंम्भ होता है, तो बिजली धेरा (V+) से धारा बूटस्ट्रैप डायोड के माध्यम से प्रवाहित होता है और बूटस्ट्रैप संधारित्र को उस निम्न पक्ष N-FET के माध्यम से आवेश करता है।जब निम्न पक्ष N-FET बंद हो जाता है, तो बूटस्ट्रैप संधारित्र का निचला भाग उच्च पक्ष N-FET के स्रोत से जुड़ा रहता है, और संधारित्र उच्च पक्ष N-FET के गेट को चलाते हुए अपनी कुछ ऊर्जा का निर्वहन करता है। उच्च-पक्ष N-FET को पूरी तरह से प्रारंम्भ करने के लिए V+ से पर्याप्त रूप से ऊपर के विद्युत दाब पर FET जबकि बूटस्ट्रैप डायोड उस ऊपर-V+ विद्युत दाब को पावर धेरा V+ में वापस रिसाव होने से रोकता है।<ref>
Line 25: Line 25:


== स्विच-प्रकार बिजली की आपूर्ति ==
== स्विच-प्रकार बिजली की आपूर्ति ==
[[स्विच मोड बिजली की आपूर्ति|स्विच]] [[Index.php?title=स्विच प्रकार बिजली की आपूर्ति|प्रकार बिजली की आपूर्ति]] में नियंत्रण परिपथ आउटपुट से संचालित होते हैं। बिजली की आपूर्ति शुरू करने के लिए, नियंत्रण परिपथ के लिए आपूर्ति धेरा को दोलन शुरू करने के लिए एक रिसाव प्रतिरोध का उपयोग किया जा सकता है। नियामक परिपथ शुरू करने के लिए एक अलग रैखिक बिजली आपूर्ति प्रदान करने की दृष्टिकोण में यह कम महंगा और सरल है।<ref>{{cite book |first=Raymond A. |last=Mack |title=स्विचिंग बिजली की आपूर्ति को नष्ट करना|publisher=Newnes |date=2005  |isbn=0-7506-7445-8 |page=121}}</ref>
[[स्विच मोड बिजली की आपूर्ति|स्विच]] [[Index.php?title=स्विच प्रकार बिजली की आपूर्ति|प्रकार बिजली की आपूर्ति]] में नियंत्रण परिपथ आउटपुट से संचालित होते हैं। बिजली की आपूर्ति प्रारंम्भ, नियंत्रण परिपथ के लिए आपूर्ति धेरा को दोलन प्रारंम्भ करने के लिए एक रिसाव प्रतिरोध का उपयोग किया जा सकता है। नियामक परिपथ प्रारंम्भ करने के लिए एक अलग रैखिक बिजली आपूर्ति प्रदान करने की दृष्टिकोण में यह कम महंगा और सरल है।<ref>{{cite book |first=Raymond A. |last=Mack |title=स्विचिंग बिजली की आपूर्ति को नष्ट करना|publisher=Newnes |date=2005  |isbn=0-7506-7445-8 |page=121}}</ref>
== आउटपुट दोलन ==
== आउटपुट दोलन ==
एसी प्रवर्धक आउटपुट दोलन को बढ़ाने के लिए बूटस्ट्रैपिंग का उपयोग कर सकते हैं। एक संधारित्र (जिसे सामान्यतः बूटस्ट्रैप संधारित्र कहा जाता है) प्रवर्धक के आउटपुट से [[पक्षपात चल रहा है|अभिनति परिपथ]] से जुड़ा होता है, जो बिजली आपूर्ति विद्युत दाब से अधिक [[पक्षपात चल रहा है|अभिनति]] विद्युत दाब प्रदान करता है। एमिटर अनुयायियों इस तरह से धेरा-से-धेरा आउटपुट प्रदान कर सकते हैं, जो वर्ग AB ऑडियो प्रवर्धकों में एक सामान्य तकनीक है।
एसी प्रवर्धक आउटपुट दोलन को बढ़ाने के लिए बूटस्ट्रैपिंग का उपयोग कर सकते हैं। एक संधारित्र (जिसे सामान्यतः बूटस्ट्रैप संधारित्र कहा जाता है) प्रवर्धक के आउटपुट से [[पक्षपात चल रहा है|अभिनति परिपथ]] से जुड़ा होता है, जो बिजली आपूर्ति विद्युत दाब से अधिक [[पक्षपात चल रहा है|अभिनति]] विद्युत दाब प्रदान करता है। एमिटर अनुयायियों इस तरह से धेरा-से-धेरा आउटपुट प्रदान कर सकते हैं, जो वर्ग AB ऑडियो प्रवर्धकों में एक सामान्य तकनीक है।


== डिजिटल एकीकृत परिपथ ==
== डिजिटल एकीकृत परिपथ ==
एक एकीकृत परिपथ के भीतर एक बूटस्ट्रैप विधि का उपयोग आंतरिक पता और घड़ी वितरण लाइनों को बढ़े हुए विद्युत दाब दोलन की अनुमति देने के लिए किया जाता है। बूटस्ट्रैप परिपथ एक ट्रांजिस्टर के गेट/स्रोत कैपेसिटेंस से बने कपलिंग  संधारित्र का उपयोग करता है, जिससे सिग्नल लाइन को आपूर्ति विद्युत दाब से थोड़ा अधिक बढ़ाया जा सके। <ref>{{cite book |first1= William J. |last1=Dally |first2=John W. |last2=Poulton |title=डिजिटल सिस्टम इंजीनियरिंग|publisher=Cambridge University Press |date=1998  |isbn=0-521-59292-5 |pages=190–1}}</ref>
एक एकीकृत परिपथ के भीतर एक बूटस्ट्रैप विधि का उपयोग आंतरिक पता और घड़ी वितरण लाइनों को बढ़े हुए विद्युत दाब दोलन की अनुमति देने के लिए किया जाता है। बूटस्ट्रैप परिपथ एक युग्मन संधारित्र का उपयोग करता है, जो एक ट्रांजिस्टर के गेट/स्रोत समाई से बनता है, जिससे संकेत लाइन को आपूर्ति विद्युत दाब से थोड़ा अधिक बढ़ाया जा सके। <ref>{{cite book |first1= William J. |last1=Dally |first2=John W. |last2=Poulton |title=डिजिटल सिस्टम इंजीनियरिंग|publisher=Cambridge University Press |date=1998  |isbn=0-521-59292-5 |pages=190–1}}</ref>


कुछ सभी-pMOS एकीकृत परिपथ जैसे [[इंटेल 4004]] और [[इंटेल 8008]] उस 2-ट्रांजिस्टर बूटस्ट्रैप लोड परिपथ का उपयोग करते हैं।<ref>
कुछ सभी-pMOS एकीकृत परिपथ जैसे [[इंटेल 4004]] और [[इंटेल 8008]] उस 2-ट्रांजिस्टर बूटस्ट्रैप भार परिपथ का उपयोग करते हैं।<ref>
{{cite web
{{cite web
| url = http://www.intel4004.com/mrld.htm
| url = http://www.intel4004.com/mrld.htm

Revision as of 10:50, 30 June 2023

इलेक्ट्रानिक्स के क्षेत्र में, एक ऐसी तकनीक जहां प्रणाली के आउटपुट का कुछ भाग स्टार्टअप पर उपयोग किया जाता है, उसे बूटस्ट्रैपिंग के रूप में वर्णित किया जा सकता है।

बूटस्ट्रैप परिपथ वह होता है जहां प्रवर्धक चरण के आउटपुट का भाग इनपुट पर प्रयुक्त होता है, जिससे प्रवर्धक के इनपुट विद्युत प्रतिबाधा को बदला जा सके। जब सोच-समझकर प्रयुक्त किया जाता है, तो सामान्यतः प्रतिबाधा को कम करने के स्थान पर बढ़ाने का योजना होता है।[1]

मोस्फेट(MOSFET) परिपथ के क्षेत्र में, बूटस्ट्रैपिंग का उपयोग सामान्यतः बिजली आपूर्ति धेरा के ऊपर एक ट्रांजिस्टर के परिचालन बिंदु को खींचने के लिए किया जाता है।[2][3]आउटपुट विद्युत दाब दोलन (जमीन के सापेक्ष) को बढ़ाने के लिए एक परिचालन प्रवर्धक के परिचालन बिंदु को गतिशील रूप से बदलने (इसके सकारात्मक और नकारात्मक आपूर्ति धेरा दोनों को स्थानांतरित करके) के लिए समान शब्द का उपयोग कुछ हद तक अधिक किया गया है।[4] इस अनुच्छेद में प्रयुक्त अर्थ में, प्रचालन प्रवर्धक को बूटस्ट्रैप करने का तात्पर्य है कि ऑप-एम्प(op-amp) की बिजली आपूर्ति के संदर्भ बिंदु को चलाने के लिए संकेत का उपयोग करना है।[5] इस धेरा बूटस्ट्रैपिंग तकनीक का एक अधिक परिष्कृत उपयोग इसकी विकृति को कम करने के लिए JFET ऑप-एम्प के इनपुट की अतिरिक्त-रैखिक C/V विशेषता को बदलना है।[6][7]

इनपुट प्रतिबाधा

BJT एमिटर फॉलोअर परिपथ में बूटस्ट्रैप संधारित्र C1 और C2

एनालॉग परिपथ बनावट में, बूटस्ट्रैप परिपथ घटकों की एक व्यवस्था है जो सोच-समझकर परिपथ के इनपुट प्रतिबाधा को बदलना है। सामान्यतः इसका उद्देश्य दो चरणों में सकारात्मक प्रतिक्रिया की एक छोटी मात्रा का उपयोग करके प्रतिबाधा को बढ़ाना होता है। द्विध्रुवी ट्रांजिस्टर के प्रारंभिक दिनों में यह प्रायः आवश्यक होता था, जिसमें स्वाभाविक रूप से पर्याप्त कम इनपुट प्रतिबाधा होती है। क्योंकि प्रतिक्रिया सकारात्मक है, ऐसे परिपथ बूटस्ट्रैप नहीं करने वाले की स्थिति में खराब स्थिरता और आवाज़ प्रदर्शन से हानि हो सकता हैं।

वैकल्पिक रूप से एक इनपुट प्रतिबाधा को बूटस्ट्रैप करने के लिए नकारात्मक प्रतिक्रिया का उपयोग किया जा सकता है, जिससे स्पष्ट प्रतिबाधा कम हो सकती है। यह कदाचित् ही कभी सोच-समझकर किया जाता है, और सामान्यतः विशेष परिपथ बनावट का अवांछित परिणाम होता है। इसका एक प्रसिद्ध उदाहरण मिलर प्रभाव है, जिसमें एक अपरिहार्य प्रतिक्रिया समाई नकारात्मक प्रतिक्रिया द्वारा बढ़ी हुई दिखाई देती है (अर्थात इसकी प्रतिबाधा कम दिखाई देती है)। एक प्रचलित स्थिति जहां यह सोच-समझकर किया जाता है, एक एकीकृत परिपथ के अंदर कम-आवृत्ति पोल प्रदान करने के लिए मिलर प्रतिपूर्ति तकनीक है। आवश्यक संधारित्र के आकार को कम करने के लिए, इसे इनपुट और आउटपुट के बीच रखा जाता है जो विपरीत दिशा में झूलता है। यह बूटस्ट्रैपिंग जमीन पर एक बड़े संधारित्र की तरह कार्य करता है।

संचालन एमओएस ट्रांजिस्टर

N-MOSFET/IGBT को प्रारंम्भ करने के लिए गेट पर एक महत्वपूर्ण सकारात्मक आवेश (VGS > Vth) लगाने की आवश्यकता होती है। सिर्फ N-प्रणाली MOSFET/IGBT उपकरणों का उपयोग करना लागत में कमी का एक सामान्य तरीका है, जो बड़े पैमाने पर डाई (एकीकृत परिपथ) आकार में कमी के कारण होता है। (अन्य लाभ भी हैं)। यद्यपि, pMOS उपकरणों के स्थान पर nMOS उपकरणों का उपयोग करने का तात्पर्य है कि ट्रांजिस्टर को रैखिक संचालन (न्यूनतम वर्तमान सीमित) में अभिनति करने के लिए बिजली धेरा आपूर्ति (V+) से अधिक विद्युत दाब की आवश्यकता होती है और इस प्रकार महत्वपूर्ण गर्मी के हानि से बचा जाता है।

बूटस्ट्रैप संधारित्र आपूर्ति धेरा (V+) से आउटपुट विद्युत दाब से जुड़ा होता है। सामान्यतः N-MOSFET का स्रोत टर्मिनल एक पुनरावर्तन डायोड के कैथोड से जुड़ा होता है, जो सामान्यतः आगमनात्मक भार में संग्रहीत ऊर्जा के कुशल प्रबंधन की अनुमति देता है (फ्लाईबैक डायोड देखें)। संधारित्र की आवेश भंडारण विशेषताओं के कारण, बूटस्ट्रैप विद्युत दाब आवश्यक गेट संचालन विद्युत दाब प्रदान करते हुए (V+) ऊपर बढ़ जाएगा।

सभी-N-MOSFET एच पुल के प्रत्येक आधे-पुल में बूटस्ट्रैप परिपथ का प्रायः उपयोग किया जाता है। जब निम्न पक्ष N-FET प्रारंम्भ होता है, तो बिजली धेरा (V+) से धारा बूटस्ट्रैप डायोड के माध्यम से प्रवाहित होता है और बूटस्ट्रैप संधारित्र को उस निम्न पक्ष N-FET के माध्यम से आवेश करता है।जब निम्न पक्ष N-FET बंद हो जाता है, तो बूटस्ट्रैप संधारित्र का निचला भाग उच्च पक्ष N-FET के स्रोत से जुड़ा रहता है, और संधारित्र उच्च पक्ष N-FET के गेट को चलाते हुए अपनी कुछ ऊर्जा का निर्वहन करता है। उच्च-पक्ष N-FET को पूरी तरह से प्रारंम्भ करने के लिए V+ से पर्याप्त रूप से ऊपर के विद्युत दाब पर FET जबकि बूटस्ट्रैप डायोड उस ऊपर-V+ विद्युत दाब को पावर धेरा V+ में वापस रिसाव होने से रोकता है।[8]

MOSFET/IGBT एक विद्युत दाब-नियंत्रित उपकरण है, जिसमें,सैद्धांतिक रूप में, कोई गेट धारा नहीं होगा। यह नियंत्रण उद्देश्यों के लिए संधारित्र के अंदर आवेश का उपयोग करना संभव हो जाता है। यद्यपि, अंततः संधारित्र परजीवी गेट धारा और अतिरिक्त-आदर्श (यानी परिमित) आंतरिक प्रतिरोध के कारण संधारित्र अपना आवेश खो देगा, इसलिए इस योजना का उपयोग सिर्फ वहीं किया जाता है जहां एक स्थिर स्पंद उपस्थित हो। ऐसा इसलिए है क्योंकि स्पंद क्रिया संधारित्र को रिसाव करने की अनुमति देता है (कम से कम आंशिक रूप से नहीं तो पूरी तरह से)। अधिकांश नियंत्रण योजनाएँ जो बूटस्ट्रैप संधारित्र का उपयोग करती हैं, को फिर से भरने की अनुमति देने के लिए उच्च पक्ष संचालक (N-MOSFET) को न्यूनतम समय के लिए बंद कर देती हैं। इसका तात्पर्य यह है कि जब तक रिसाव को किसी अन्य तरीके से समायोजित नहीं किया जाता है, तब तक परजीवी निर्वहन को समायोजित करने के लिए कर्तव्य चक्र निरंतर 100% से कम होना चाहिए।

स्विच-प्रकार बिजली की आपूर्ति

स्विच प्रकार बिजली की आपूर्ति में नियंत्रण परिपथ आउटपुट से संचालित होते हैं। बिजली की आपूर्ति प्रारंम्भ, नियंत्रण परिपथ के लिए आपूर्ति धेरा को दोलन प्रारंम्भ करने के लिए एक रिसाव प्रतिरोध का उपयोग किया जा सकता है। नियामक परिपथ प्रारंम्भ करने के लिए एक अलग रैखिक बिजली आपूर्ति प्रदान करने की दृष्टिकोण में यह कम महंगा और सरल है।[9]

आउटपुट दोलन

एसी प्रवर्धक आउटपुट दोलन को बढ़ाने के लिए बूटस्ट्रैपिंग का उपयोग कर सकते हैं। एक संधारित्र (जिसे सामान्यतः बूटस्ट्रैप संधारित्र कहा जाता है) प्रवर्धक के आउटपुट से अभिनति परिपथ से जुड़ा होता है, जो बिजली आपूर्ति विद्युत दाब से अधिक अभिनति विद्युत दाब प्रदान करता है। एमिटर अनुयायियों इस तरह से धेरा-से-धेरा आउटपुट प्रदान कर सकते हैं, जो वर्ग AB ऑडियो प्रवर्धकों में एक सामान्य तकनीक है।

डिजिटल एकीकृत परिपथ

एक एकीकृत परिपथ के भीतर एक बूटस्ट्रैप विधि का उपयोग आंतरिक पता और घड़ी वितरण लाइनों को बढ़े हुए विद्युत दाब दोलन की अनुमति देने के लिए किया जाता है। बूटस्ट्रैप परिपथ एक युग्मन संधारित्र का उपयोग करता है, जो एक ट्रांजिस्टर के गेट/स्रोत समाई से बनता है, जिससे संकेत लाइन को आपूर्ति विद्युत दाब से थोड़ा अधिक बढ़ाया जा सके। [10]

कुछ सभी-pMOS एकीकृत परिपथ जैसे इंटेल 4004 और इंटेल 8008 उस 2-ट्रांजिस्टर बूटस्ट्रैप भार परिपथ का उपयोग करते हैं।[11][12][13]

यह भी देखें

  • मिलर प्रमेय प्रयोग (आभासी अनंत प्रतिबाधा बनाना)
  • बूटिंग, कंप्यूटर के लिए प्रारंभिक प्रोग्राम लोड

संदर्भ

  1. IEEE मानक शर्तों का IEEE मानक 100 आधिकारिक शब्दकोश (7th ed.). IEEE Press. 2000. p. 123. ISBN 0-7381-2601-2.
  2. Uyemura, John P. (1999). CMOS तर्क सर्किट डिजाइन. Springer. p. 319. ISBN 978-0-7923-8452-6.
  3. Pelgrom, Marcel J.M. (2012). एनालॉग-टू-डिजिटल रूपांतरण (2nd ed.). Springer. pp. 210–211. ISBN 978-1-4614-1371-4.
  4. King, Grayson; Watkins, Tim (May 13, 1999). "अपने ऑप एम्प को बूटस्ट्रैप करने से व्यापक वोल्टेज स्विंग्स प्राप्त होते हैं" (PDF). EDN: 117–129.
  5. Graeme, Jerald (1994). "Op-amp distortion measurement bypasses test-equipment limitations". In Hickman, Ian; Travis, Bill (eds.). EDN डिज़ाइनर का साथी. Butterworth-Heinemann. p. 205. ISBN 978-0-7506-1721-5.
  6. Jung, Walt. "Bootstrapped IC Substrate Lowers Distortion in JFET Op Amps" (PDF). Analog Devices application note AN-232.
  7. Douglas Self (2014). छोटा सिग्नल ऑडियो डिज़ाइन (2nd ed.). Focal Press. pp. 136–142. ISBN 978-1-134-63513-9.
  8. Diallo, Mamadou (2018). "Bootstrap Circuitry Selection for Half-Bridge Configurations" (PDF). Texas Instruments.
  9. Mack, Raymond A. (2005). स्विचिंग बिजली की आपूर्ति को नष्ट करना. Newnes. p. 121. ISBN 0-7506-7445-8.
  10. Dally, William J.; Poulton, John W. (1998). डिजिटल सिस्टम इंजीनियरिंग. Cambridge University Press. pp. 190–1. ISBN 0-521-59292-5.
  11. Faggin, Federico. "The New Methodology for Random Logic Design". Retrieved June 3, 2017.
  12. Faggin, Federico. "The Bootstrap Load". Retrieved June 3, 2017.
  13. Shirriff, Ken (October 2020). "How the bootstrap load made the historic Intel 8008 processor possible".