अतिरिक्त अवयव प्रमेय: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 92: | Line 92: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 19/06/2023]] | [[Category:Created On 19/06/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 15:06, 4 July 2023
अतिरिक्त तत्व प्रमेय (ईईटी) रैखिक इलेक्ट्रॉनिक परिपथ के लिए चालन बिंदु और ट्रांसफर कार्य प्राप्त करने की प्रक्रिया को सरल बनाने के लिए आर डी मिडलब्रुक द्वारा विकसित एक विश्लेषणात्मक तकनीक है। थेवेनिन के प्रमेय की तरह अतिरिक्त तत्व प्रमेय एक जटिल समस्या को कई सरल समस्याओं में तोड़ देता है।[1]
चालन बिंदु और ट्रांसफर कार्य सामान्यतः किरचॉफ के परिपथ नियमो का उपयोग करके पाए जा सकते हैं। चूँकि कई जटिल समीकरण परिणामित हो सकते हैं जो परिपथ के वास्तव में बहुत कम जानकारी प्रदान करते हैं। अतिरिक्त तत्व प्रमेय का उपयोग करके एक परिपथ तत्व (जैसे एक अवरोधक) को परिपथ से हटाया जा सकता है, और वांछित चालन बिंदु या स्थानांतरण कार्य पाया जा सकता है। उस तत्व को हटाकर जो परिपथ को सबसे अधिक जटिल बनाता है (जैसे कि एक तत्व जो प्रतिक्रिया बनाता है), और वांछित कार्य प्राप्त करना आसान हो सकता है। इसके पश्चात स्पष्ट अभिव्यक्ति खोजने के लिए दो सुधारात्मक कारकों को खोजना होगा और पहले व्युत्पन्न कार्य के साथ जोड़ना होता है।
अतिरिक्त तत्व प्रमेय के सामान्य रूप को एन-अतिरिक्त तत्व प्रमेय कहा जाता है और यह एक साथ कई परिपथ तत्वों को हटाने की अनुमति देता है।
सामान्य सूत्रीकरण
(एकल) अतिरिक्त तत्व प्रमेय किसी भी स्थानांतरण कार्य को स्थानांतरण कार्य के उत्पाद के रूप में उस तत्व को हटाकर और सुधार कारक के रूप में व्यक्त करता है। सुधार कारक शब्द में अतिरिक्त तत्व का विद्युत प्रतिबाधा और अतिरिक्त तत्व द्वारा देखे जाने वाले दो चालन बिंदु प्रतिबाधा सम्मिलित हैं: जिसमे डबल नल इंजेक्शन चालन बिंदु प्रतिबाधा और एकल इंजेक्शन चालन बिंदु प्रतिबाधा क्योंकि अतिरिक्त तत्व को तत्व को लघु -परिपथ या ओपन-परिपथ करके सामान्य रूप से हटाया जा सकता है,जिसे ईईटी के दो समान रूप हैं:[2]
अतिरिक्त तत्व प्रमेय आकस्मिक रूप से सिद्ध करता है कि किसी भी विद्युत परिपथ ट्रांसफर कार्य को किसी विशेष परिपथ तत्व के बिलिनियर कार्य से अधिक नहीं व्यक्त किया जा सकता है।
चालन बिंदु प्रतिबाधा
एकल इंजेक्शन चालन बिंदु प्रतिबाधा
Zd(s) सिस्टम के ट्रांसफर कार्य शून्य (लघु परिपथ वोल्टेज स्रोत या ओपन परिपथ वर्तमान स्रोत) में इनपुट बनाकर पाया जाता है और टर्मिनलों में प्रतिबाधा निर्धारित करता है जिससे अतिरिक्त तत्व अनुपस्थित अतिरिक्त तत्व से जुड़ा हुआ होता है। यह प्रतिबाधा थिवेनिन के समकक्ष प्रतिबाधा के समान है।
डबल नल इंजेक्शन चालन बिंदु प्रतिबाधा
Zn(s) अतिरिक्त तत्व को दूसरे टेस्ट सिग्नल स्रोत (या तो उपस्थित स्रोत या वोल्टेज स्रोत के रूप में उपयुक्त) के साथ बदलकर पाया जाता है। तब, Zn(s) को इस दूसरे परीक्षण स्रोत के टर्मिनलों पर वोल्टेज के अनुपात के रूप में परिभाषित किया जाता है, जब सिस्टम के ट्रांसफर कार्य के आउटपुट को सिस्टम के ट्रांसफर कार्य के प्राथमिक इनपुट के किसी भी मूल्य के लिए शून्य कर दिया जाता है।
वास्तव में, Zn(s) इस तथ्य से पीछे की ओर काम करने से पाया जा सकता है कि ट्रांसफर कार्य का आउटपुट शून्य बना दिया गया है और ट्रांसफर कार्य का प्राथमिक इनपुट अज्ञात है। फिर अतिरिक्त तत्व परीक्षण स्रोत के टर्मिनलों पर दोनों वोल्टेज को व्यक्त करने के लिए पारंपरिक परिपथ विश्लेषण तकनीकों का उपयोग करना, vn(s), और अतिरिक्त तत्व परीक्षण स्रोत के सकारात्मक टर्मिनलों को छोड़कर वर्तमान, in(s), और गणना . चूँकि की गणना Zn(s) कई इंजीनियरों के लिए अपरिचित प्रक्रिया है, इसकी अभिव्यक्तियां अधिकांशतः Zd(s) की तुलना में बहुत सरल होती हैं क्योंकि ट्रांसफर कार्य के आउटपुट के अशक्त होने से अधिकांशतः परिपथ में अन्य वोल्टेज/धाराएं शून्य हो जाती हैं, जो विश्लेषण से कुछ घटकों को बाहर करने की अनुमति दे सकती हैं।
स्व-प्रतिबाधा के रूप में स्थानांतरण कार्य के साथ विशेष स्थिति
एक विशेष स्थिति के रूप में, ईईटी का उपयोग नेटवर्क के इनपुट प्रतिबाधा को खोजने के लिए किया जा सकता है, जिसमें अतिरिक्त के रूप में नामित तत्व सम्मिलित है। इस स्थिति में, Zd इनपुट परीक्षण धारा सोर्स सिग्नल की प्रतिबाधा के समान है जो इनपुट ओपन परिपथ के साथ शून्य या समकक्ष बना है। इसी तरह चूंकि ट्रांसफर कार्य आउटपुट सिग्नल को इनपुट टर्मिनलों पर वोल्टेज माना जा सकता है, तब Zn पाया जाता है जब इनपुट वोल्टेज शून्य होता है अथार्त इनपुट टर्मिनल लघु -परिपथ होते हैं। इस प्रकार इस विशेष आवेदन के लिए, ईईटी को इस प्रकार लिखा जा सकता है:
- अतिरिक्त तत्व के रूप में चुना गया प्रतिबाधा है
- इनपुट प्रतिबाधा है जिसमें Z को हटा दिया गया है (या अनंत बना दिया गया है)
- अतिरिक्त तत्व Z द्वारा इनपुट को छोटा (या शून्य बनाया) के साथ देखा जाने वाला प्रतिबाधा है
- अतिरिक्त तत्व Z द्वारा इनपुट खुले (या अनंत बना) के साथ देखा जाने वाला प्रतिबाधा है
इन तीन शब्दों की गणना करना अतिरिक्त प्रयास की तरह लग सकता है, किंतु समग्र इनपुट प्रतिबाधा की तुलना में उनकी गणना करना अधिकांशतः आसान होता है।
उदाहरण
ईईटी का उपयोग करके चित्र 1 में परिपथ के लिए खोजने की समस्या पर विचार करें (ध्यान दें कि सभी घटक मान सरलता के लिए एकता हैं)। यदि संधारित्र (ग्रे शेडिंग) को अतिरिक्त तत्व निरूपित किया जाता है
इस संधारित्र को परिपथ से हटाने पर,
प्रतिक्रिया एम्पलीफायर्स
ईईटी एकल और मल्टी-लूप प्रतिक्रिया एम्पलीफायरों के विश्लेषण के लिए भी उपयोगी है। इस स्थिति में, ईईटी स्पर्शोन्मुख लाभ मॉडल का रूप ले सकता है।
यह भी देखें
- स्पर्शोन्मुख लाभ मॉडल
- ब्लैकमैन की प्रमेय
- रिटर्न अनुपात
- सिग्नल-फ्लो ग्राफ
अग्रिम पठन
- Christophe Basso Linear Circuit Transfer Functions: An Introduction to Fast Analytical Techniques first edition, Wiley, IEEE Press, 2016, 978-1119236375
संदर्भ
- ↑ Vorpérian, Vatché (2002). इलेक्ट्रिकल और इलेक्ट्रॉनिक सर्किट के लिए तेज़ विश्लेषणात्मक तकनीकें. Cambridge UK/NY: Cambridge University Press. pp. 61–106. ISBN 978-0-521-62442-8. </ रेफ> थिवेनिन के प्रमेय की तरह, अतिरिक्त तत्व प्रमेय एक जटिल समस्या को कई सरल लोगों में तोड़ देता है। ड्राइविंग पॉइंट और ट्रांसफर फ़ंक्शंस को आमतौर पर किरचॉफ के सर्किट कानूनों का उपयोग करके पाया जा सकता है। हालाँकि, कई जटिल समीकरण परिणाम दे सकते हैं जो सर्किट के व्यवहार में थोड़ी अंतर्दृष्टि प्रदान करते हैं। अतिरिक्त तत्व प्रमेय का उपयोग करके, सर्किट से एक सर्किट तत्व (जैसे प्रतिरोधी) को हटाया जा सकता है, और वांछित ड्राइविंग बिंदु या स्थानांतरण फ़ंक्शन पाया जाता है। उस तत्व को हटाकर जो सर्किट को सबसे अधिक जटिल करता है (जैसे कि एक तत्व जो प्रतिक्रिया बनाता है), वांछित फ़ंक्शन को प्राप्त करना आसान हो सकता है। इसके बाद, सटीक अभिव्यक्ति खोजने के लिए दो सुधारात्मक कारकों को पहले से व्युत्पन्न फ़ंक्शन के साथ मिलना चाहिए और जोड़ा जाना चाहिए। अतिरिक्त तत्व प्रमेय के सामान्य रूप को एन-अतिरिक्त तत्व प्रमेय कहा जाता है और कई सर्किट तत्वों को एक बार में निकालने की अनुमति देता है।<ref name="Vorpérian2">Vorpérian, Vatché (2002-05-23). इलेक्ट्रिकल और इलेक्ट्रॉनिक सर्किट के लिए तेज़ विश्लेषणात्मक तकनीकें. pp. 137–139. ISBN 978-0-521-62442-8.
- ↑ Middlebrook R.D. (1989). "नल डबल इंजेक्शन और अतिरिक्त तत्व प्रमेय" (PDF). IEEE Transactions on Education. 32 (3): 167–180. doi:10.1109/13.34149.