क्रमित क्षेत्र: Difference between revisions

From Vigyanwiki
No edit summary
Line 75: Line 75:
==हैरिसन टोपोलॉजी==
==हैरिसन टोपोलॉजी==
'''हैरिसन टोपोलॉजी''' औपचारिक रूप से वास्तविक क्षेत्र F के क्रमित ''X<sub>F</sub>'' के समुच्चय पर टोपोलॉजी है। प्रत्येक क्रम को ''F''<sup>∗</sup> से ±1 तक गुणक समूह समरूपता के रूप में माना जा सकता है।। [[असतत टोपोलॉजी]] ±1 औरऔर [[उत्पाद टोपोलॉजी]] ±1<sup>''F''</sup> देने से पर ''X<sub>F</sub>'' [[सबस्पेस टोपोलॉजी]] को प्रेरित होती है। '''हैरिसन समुच्चय''' करता है <math>H(a) = \{ P \in X_F : a \in P \}</math> हैरिसन टोपोलॉजी के लिए उपआधार तैयार करें। उत्पाद [[बूलियन स्थान]] (कॉम्पैक्ट, हॉसडॉर्फ और पूरी तरह से डिस्कनेक्टेड) और ''X<sub>F</sub>'' है संवृत उपसमुच्चय है, इसलिए फिर से बूलियन है।<ref name=Lam271>Lam (2005) p. 271</ref><ref name=L8312>Lam (1983) pp.&nbsp;1–2</ref>
'''हैरिसन टोपोलॉजी''' औपचारिक रूप से वास्तविक क्षेत्र F के क्रमित ''X<sub>F</sub>'' के समुच्चय पर टोपोलॉजी है। प्रत्येक क्रम को ''F''<sup>∗</sup> से ±1 तक गुणक समूह समरूपता के रूप में माना जा सकता है।। [[असतत टोपोलॉजी]] ±1 औरऔर [[उत्पाद टोपोलॉजी]] ±1<sup>''F''</sup> देने से पर ''X<sub>F</sub>'' [[सबस्पेस टोपोलॉजी]] को प्रेरित होती है। '''हैरिसन समुच्चय''' करता है <math>H(a) = \{ P \in X_F : a \in P \}</math> हैरिसन टोपोलॉजी के लिए उपआधार तैयार करें। उत्पाद [[बूलियन स्थान]] (कॉम्पैक्ट, हॉसडॉर्फ और पूरी तरह से डिस्कनेक्टेड) और ''X<sub>F</sub>'' है संवृत उपसमुच्चय है, इसलिए फिर से बूलियन है।<ref name=Lam271>Lam (2005) p. 271</ref><ref name=L8312>Lam (1983) pp.&nbsp;1–2</ref>
==प्रशंसक और सुपर क्रमित क्षेत्र==
==फेन्स और सुपर क्रमित क्षेत्र==
''एफ'' पर एक पंखा ''टी'' का प्री क्रमित है, इस गुण के साथ कि यदि ''एस'' ''एफ'' में सूचकांक 2 का एक उपसमूह है<sup>∗</sup> जिसमें T − {0} है और −1 नहीं है तो S एक क्रम है (अर्थात, S जोड़ के अनुसार संवृत है)।<ref name=L8339>Lam (1983) p.&nbsp;39</ref> एक सुपरऑर्डर क्षेत्र एक पूरी तरह से वास्तविक क्षेत्र है जिसमें वर्गों के योग का समुच्चय एक प्रशंसक बनाता है।<ref name=L8345>Lam (1983) p.&nbsp;45</ref>
''F'' पर '''फेन्स''' इस गुण के साथ पूर्वक्रमित  ''T'' है, कि यदि ''S, F''<sup>∗</sup> में सूचकांक 2 का उपसमूह है जिसमें T − {0} है और −1 नहीं है तो ''S'' क्रम है (अर्थात, S जोड़ के अनुसार संवृत है)।<ref name=L8339>Lam (1983) p.&nbsp;39</ref> '''सुपरऑर्डर क्षेत्र''' पूरी तरह से वास्तविक क्षेत्र है जिसमें वर्गों के योग का समुच्चय फेन्स बनाता है।<ref name=L8345>Lam (1983) p.&nbsp;45</ref>
 
 
== यह भी देखें ==
== यह भी देखें ==


* {{annotated link|Linearly ordered group}}
* {{annotated link|रैखिक रूप से क्रमबद्ध समूह}}
* {{annotated link|Ordered group}}
* {{annotated link|क्रमबद्ध समूह }}
* {{annotated link|Ordered ring}}
* {{annotated link|क्रमित रिंग }}
* {{annotated link|Ordered topological vector space}}
* {{annotated link|क्रमबद्ध टोपोलॉजिकल वेक्टर स्पेस}}
* {{annotated link|Ordered vector space}}
* {{annotated link|क्रमित सदिश समष्टि}}
* {{annotated link|Partially ordered ring}}
* {{annotated link|आंशिक रूप से ऑर्डर रिंग}}
* {{annotated link|Partially ordered space}}
* {{annotated link|आंशिक रूप से क्रमबद्ध समष्टि}}
* {{annotated link|Preorder field}}
* {{annotated link|प्रीऑर्डर फ़ील्ड}}
* {{annotated link|Riesz space}}
* {{annotated link|रिज़्ज़ स्पेस}}


==टिप्पणियाँ==
==टिप्पणियाँ==

Revision as of 16:32, 5 July 2023

गणित में, क्रमित क्षेत्र एक ऐसा क्षेत्र (गणित) है जिसमें इसके तत्वों का कुल क्रम क्षेत्र संचालन के साथ संगत होता है। क्रमित क्षेत्र का मूल उदाहरण वास्तविक संख्याओं का क्षेत्र है, और प्रत्येक डेडेकाइंड-पूर्ण क्रमित क्षेत्र वास्तविक के समरूपी है।

किसी क्रमित किए गए क्षेत्र का प्रत्येक उपक्षेत्र वंशानुगत क्रम में क्रमित किया गया क्षेत्र भी है। प्रत्येक क्रमित क्षेत्र में क्रमबद्ध उपक्षेत्र होता है जो परिमेय संख्याओं के समरूपी होता है। क्रमित क्षेत्र में वर्ग (बीजगणित) आवश्यक रूप से ऋणेतर संख्या होते हैं। इसका तात्पर्य यह है कि सम्मिश्र संख्याओं को क्रमबद्ध नहीं किया जा सकता क्योंकि अधिकल्पित इकाई i का वर्ग −1 है (जो किसी भी क्रमित क्षेत्र में ऋणात्मक है)। परिमित क्षेत्र का क्रम नहीं दिया जा सकता हैं।

ऐतिहासिक रूप से, डेविड हिल्बर्ट, ओटो होल्डर और हंस हैन (गणितज्ञ) सहित गणितज्ञों द्वारा क्रमित क्षेत्र के स्वयंसिद्धीकरण को वास्तविक संख्याओं से धीरे-धीरे अलग किया गया था। यह अंततः क्रमित क्षेत्रों और औपचारिक रूप से वास्तविक क्षेत्र के आर्टिन-श्रेयर सिद्धांत में विकसित हुआ हैं।

परिभाषाएँ

किसी क्रमित क्षेत्र की दो समान सामान्य परिभाषाएँ हैं। कुल क्रम की परिभाषा पहली बार ऐतिहासिक रूप से सामने आई और यह क्रम द्विआधारी विधेय के रूप में का प्रथम-क्रम स्वयंसिद्धीकरण है। आर्टिन और श्रेयर ने 1926 में धनात्मक शंकु के संदर्भ में परिभाषा दी, जो ऋणेतर संख्या तत्वों के उपसंग्रह को स्वयंसिद्ध करती है। हालाँकि बाद वाला उच्च-क्रम का है, धनात्मक शंकु को इस रूप में देखना अधिकतम उपसर्गणीय शंकु एक बड़ा संदर्भ प्रदान करता है जिसमें क्षेत्र क्रमित अतिशय आंशिक क्रम होते हैं।

कुल क्रम

एक क्षेत्र (गणित) एक साथ कुल क्रम के साथ पर यदि क्रम सभी के लिए निम्नलिखित गुणों को संतुष्ट करता है

  • यदि तब और
  • यदि और तब

धनात्मक शंकु

किसी क्षेत्र का उपसर्गणीय शंकु या पूर्वक्रम एक उपसमुच्चय है जिसमें निम्नलिखित गुण हैं:[1]

  • और में के लिए दोनों और में हैं
  • यदि तब विशेष रूप से,
  • तत्व इसमें नहीं है

पूर्वक्रमित क्षेत्र पूर्वक्रम से सुसज्जित एक क्षेत्र है इसके गैर-शून्य तत्व के गुणक समूह का उपसमूहउपसमूह बनाता है।

यदि इसके अतिरिक्त, समुच्चय का और संयोजन मिलन है का धनात्मक शंकु है गैर-शून्य तत्व के धनात्मक तत्व कहलाते हैं।

क्रमित क्षेत्र धनात्मक शंकु के साथ क्षेत्र है।

पूर्वक्रम वास्तव में धनात्मक शंकु के परिवारों के प्रतिच्छेदन हैं। धनात्मक शंकु अधिकतम पूर्वक्रम हैं।[1]

दो परिभाषाओं की समानता

मान लीजिये एक क्षेत्र है। और धनात्मक शंकु के क्षेत्र क्रमों के बीच द्विअंतथक्षेपण है।

पहली परिभाषा के अनुसार क्षेत्र क्रम ≤ को देखते हुए, तत्वों का समुच्चय ऐसा होता है का धनात्मक शंकु बनता है इसके विपरीत, धनात्मक शंकु दिया गया है का जैसा कि दूसरी परिभाषा में है, कोई कुल क्रम को जोड़ सकता है पर सेटिंग द्वारा का मतलब है यह कुल क्रम पहली परिभाषा के गुणों को संतुष्ट करता है।

क्रमित क्षेत्र के उदाहरण

क्रमित क्षेत्र के उदाहरण हैं:

  • परिमेय संख्या
  • वास्तविक संख्याएँ
  • किसी क्रमित क्षेत्र का कोई उपक्षेत्र, जैसे वास्तविक बीजगणितीय संख्याएँ या गणना योग्य संख्याएँ
  • क्षेत्र परिमेय फलन का, जहाँ और परिमेय गुणांक वाले बहुपद हैं, , वास्तविक प्रागनुभविक संख्या को निश्चित करके क्रमित क्षेत्र में बनाया जा सकता है और परिभाषित करना यदि और केवल यदि हैं यह एम्बेडिंग के बराबर है में और के क्रम को प्रतिबंधित करना की छवि के एक क्रम के लिए हैं।
  • क्षेत्र परिमेय कार्यों का , जहाँ और वास्तविक गुणांक वाले बहुपद हैं, , एक क्रमित क्षेत्र में बनाया जा सकता है जहां बहुपद परिभाषित करके, किसी भी अचर बहुपद से बड़ा है इसका मतलब यह है , जहाँ और के प्रमुख गुणांक हैं और , क्रमश हैं। यह क्रमित क्षेत्र आर्किमिडीयन क्षेत्र नहीं है।
  • क्षेत्र वास्तविक गुणांकों के साथ औपचारिक घात श्रेणी का, जहां x को अतिसूक्ष्म और धनात्मक माना जाता है
  • ट्रांससीरीज़
  • वास्तविक संवृत क्षेत्र
  • अतियथार्थवादी संख्याएँ
  • अतिवास्तविक संख्याएँ

अवास्तविक संख्याएँ एक समुच्चय (गणित) के अतिरिक्त वर्ग (समुच्चय सिद्धांत) बनाती हैं, लेकिन अन्यथा क्रमित क्षेत्र के सिद्धांतों का पालन करती हैं। प्रत्येक क्रमित क्षेत्र को अवास्तविक संख्याओं में सन्निहित किया जा सकता है।

क्रमित क्षेत्र के गुण

गुण
गुण

F में प्रत्येक a,b,c,d के लिए:

  • या तो −a ≤ 0 ≤ a या a ≤ 0 ≤ −a.
  • कोई "असमानताएं जोड़" सकता है: यदि a ≤ b और c ≤ d, तो a + c ≤ b + d है
  • कोई "असमानताओं को धनात्मक तत्वों से गुणा" कर सकता है: यदि a ≤ b और 0 ≤ c, तो ac ≤ bc है।
  • असमानता का सकर्मक गुण: यदि a < b और b < c, तो a < c है।
  • यदि a < b और a, b > 0, तो 1/b < 1/a है
  • क्रमित क्षेत्र में अभिलक्षण (बीजगणित) 0 होती है। (चूंकि 1 > 0, फिर 1 + 1 > 0, और 1 + 1 + 1 > 0, आदि। यदि क्षेत्र में अभिलक्षण p > 0 है, तो −1 होगा p − 1 वाले का योग, लेकिन −1 धनात्मक नहीं है।) विशेष रूप से, परिमित क्षेत्र का क्रम नहीं दिया जा सकता है।
  • वर्ग गैर-ऋणात्मक हैं: 0 ≤ a2 ,F में सभी a के लिए हैं।
  • वर्गों का प्रत्येक गैर-तुच्छ योग शून्य नहीं होता है। समान रूप से: [2][3]

क्रमित क्षेत्र का प्रत्येक उपक्षेत्र भी क्रमित क्षेत्र है (प्रेरित क्रम को वंशानुगत मिला हुआ)। सबसे छोटा उपक्षेत्र परिमेय संख्या के समरूपता है (अभिलक्षण 0 के किसी भी अन्य क्षेत्र के लिए), और इस परिमेय उपक्षेत्र पर क्रम स्वयं परिमेय के क्रम के समान है। यदि किसी क्रमित क्षेत्र का प्रत्येक तत्व उसके परिमेय उपक्षेत्र के दो तत्वों के बीच स्थित है, तो क्षेत्र को आर्किमिडीयन गुण कहा जाता है। अन्यथा, ऐसा क्षेत्र गैर-आर्किमिडीयन क्रमित क्षेत्र है और इसमें अत्यणु सम्मिलित हैं। उदाहरण के लिए, वास्तविक संख्याएँ आर्किमिडीयन क्षेत्र बनाती हैं, लेकिन हाइपररियल संख्याएँ गैर-आर्किमिडीयन क्षेत्र बनाती हैं, क्योंकि यह किसी भी मानक प्राकृतिक संख्या से अधिक तत्वों के साथ वास्तविक संख्याओं का विस्तार करती है।[4]

क्रमित क्षेत्र F, वास्तविक संख्या क्षेत्र R के समरूपी है यदि F में ऊपरी सीमा वाले F के प्रत्येक गैर-रिक्त उपसमुच्चय में F में न्यूनतम उपरि परिबंध है। यह गुण बताता है कि क्षेत्र आर्किमिडीयन है।

क्रमित क्षेत्र पर सदिश समष्टि

क्रमित क्षेत्र पर सदिश समष्टि (विशेष रूप से, एन-स्पेस) कुछ विशेष गुण प्रदर्शित करते हैं और कुछ विशिष्ट संरचनाएं रखते हैं, अर्थात्: अभिविन्यास (सदिश स्थल), उत्तल विश्लेषण, और धनात्मक-निश्चित आंतरिक उत्पाद है। Rn के उन गुणों की चर्चा के लिए वास्तविक समन्वय स्थान#ज्यामितीय गुण और उपयोग देखें, जिसे अन्य क्रमित किए गए क्षेत्र पर सदिश समष्टि के लिए सामान्यीकृत किया जा सकता है।

क्षेत्र की क्रमबद्धता

प्रत्येक क्रमित क्षेत्र औपचारिक रूप से वास्तविक क्षेत्र है, अर्थात, 0 को गैर-शून्य वर्गों के योग के रूप में नहीं लिखा जा सकता है।[2][3]

इसके विपरीत, प्रत्येक औपचारिक रूप से वास्तविक क्षेत्र को संगत कुल क्रम से सुसज्जित किया जा सकता है, जो इसे क्रमित क्षेत्र में बदलता है। (इस क्रम को विशिष्ट रूप से निर्धारित करने की आवश्यकता नहीं है।) प्रमाण ज़ोर्न के लेम्मा का उपयोग करता है।[5]

परिमित क्षेत्र और अधिक सामान्यतः धनात्मक अभिलक्षण (बीजगणित) के क्षेत्र को क्रमित क्षेत्र में नहीं बदला जा सकता है, क्योंकि अभिलक्षण p में, तत्व -1 को (p - 1) वर्ग 12 के योग के रूप में लिखा जा सकता है। सम्मिश्र संख्याओं को भी क्रमित क्षेत्र में नहीं बदला जा सकता, क्योंकि −1 अधिकल्पित इकाई i का वर्ग है। इसके अतिरिक्त, p-एडिक संख्याओं को क्रमबद्ध नहीं किया जा सकता है, क्योंकि हेंसेल की लेम्मा Q2 के अनुसार इसमें −7 का वर्गमूल होता है, इस प्रकार 12 +12 +12 +22+−7)2= 0, और Qp (p > 2) में 1 − p का वर्गमूल होता है, इस प्रकार (p − 1)⋅12 + (1 − p)2=0 है।[6]

क्रम द्वारा प्रेरित टोपोलॉजी

यदि F कुल क्रमित ≤ से उत्पन्न होने वाले क्रमित टोपोलॉजी से सुसज्जित है, तो स्वयंसिद्ध गारंटी देते हैं कि ऑपरेशन + और × निरंतर फलन (टोपोलॉजी) हैं, जिससे कि F टोपोलॉजिकल क्षेत्र हो।

हैरिसन टोपोलॉजी

हैरिसन टोपोलॉजी औपचारिक रूप से वास्तविक क्षेत्र F के क्रमित XF के समुच्चय पर टोपोलॉजी है। प्रत्येक क्रम को F से ±1 तक गुणक समूह समरूपता के रूप में माना जा सकता है।। असतत टोपोलॉजी ±1 औरऔर उत्पाद टोपोलॉजी ±1F देने से पर XF सबस्पेस टोपोलॉजी को प्रेरित होती है। हैरिसन समुच्चय करता है हैरिसन टोपोलॉजी के लिए उपआधार तैयार करें। उत्पाद बूलियन स्थान (कॉम्पैक्ट, हॉसडॉर्फ और पूरी तरह से डिस्कनेक्टेड) और XF है संवृत उपसमुच्चय है, इसलिए फिर से बूलियन है।[7][8]

फेन्स और सुपर क्रमित क्षेत्र

F पर फेन्स इस गुण के साथ पूर्वक्रमित T है, कि यदि S, F में सूचकांक 2 का उपसमूह है जिसमें T − {0} है और −1 नहीं है तो S क्रम है (अर्थात, S जोड़ के अनुसार संवृत है)।[9] सुपरऑर्डर क्षेत्र पूरी तरह से वास्तविक क्षेत्र है जिसमें वर्गों के योग का समुच्चय फेन्स बनाता है।[10]

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 Lam (2005) p. 289
  2. 2.0 2.1 Lam (2005) p. 41
  3. 3.0 3.1 Lam (2005) p. 232
  4. Bair, Jaques; Henry, Valérie. "सूक्ष्मदर्शी के साथ निहित भेदभाव" (PDF). University of Liège. Retrieved 2013-05-04.
  5. Lam (2005) p. 236
  6. The squares of the square roots −7 and 1 − p are in Q, but are < 0, so that these roots cannot be in Q which means that their p-adic expansions are not periodic.
  7. Lam (2005) p. 271
  8. Lam (1983) pp. 1–2
  9. Lam (1983) p. 39
  10. Lam (1983) p. 45


संदर्भ