मिलर प्रभाव: Difference between revisions

From Vigyanwiki
(minor change)
(Work done)
Line 43: Line 43:


=== शमन ===
=== शमन ===
कई स्थितियों में मिलर प्रभाव अवांछित हो सकता है, और इसके प्रभाव को कम करने के लिए दृष्टिकोण की मांग की जा सकती है। ऐसी कई तकनीकों का उपयोग प्रवर्धकों के डिजाइन में किया जाता है।
कई स्थितियों में मिलर प्रभाव अवांछित हो सकता है, और इसके प्रभाव को कम करने के उपाय खोजे जा सकते हैं। ऐसी कई तकनीकों का उपयोग प्रवर्धकों के डिजाइन में किया जाता है।


प्रवर्धक के निविष्ट और निर्गत टर्मिनलों के बीच लाभ <math>A_v</math> को कम करने के लिए निर्गत पर एक मौजूदा बफर चरण जोड़ा जा सकता है (हालांकि जरूरी नहीं कि समग्र लाभ)। उदाहरण के लिए, एक [[ सामान्य आधार |सामान्य आधार]] को एक [[ आम उत्सर्जक |आम उत्सर्जक]] स्टेज के निर्गत में करंट बफर के रूप में इस्तेमाल किया जा सकता है, जिससे एक [[ कैसकोड |कैसकोड]] बनता है। यह आम तौर पर मिलर प्रभाव को कम करेगा और प्रवर्धक की बैंडविड्थ में वृद्धि करेगा।
प्रवर्धक के निविष्ट और निर्गत टर्मिनलों के बीच लाभ <math>A_v</math> को कम करने के लिए निर्गत पर एक मौजूदा बफर चरण जोड़ा जा सकता है (हालांकि जरूरी नहीं कि समग्र लाभ)। उदाहरण के लिए, एक [[ सामान्य आधार |सामान्य आधार]] को एक [[ आम उत्सर्जक |आम उत्सर्जक]] चरण के निर्गत में करंट बफर के रूप में इस्तेमाल किया जा सकता है, जिससे एक [[ कैसकोड |कैसकोड]] बनता है। यह आम तौर पर मिलर प्रभाव को कम करेगा और प्रवर्धक की बैंडविड्थ में वृद्धि करेगा।


वैकल्पिक रूप से, प्रवर्धक निविष्ट से पहले एक विभव बफर का उपयोग किया जा सकता है, निविष्ट टर्मिनलों द्वारा देखे गए प्रभावी स्रोत प्रतिबाधा को कम करता है। यह परिपथ के <math>RC</math> समय को कम करता है और आमतौर पर बैंडविड्थ को बढ़ाता है।
वैकल्पिक रूप से, प्रवर्धक निविष्ट से पहले एक विभव बफर का उपयोग किया जा सकता है, निविष्ट टर्मिनलों द्वारा देखे गए प्रभावी स्रोत प्रतिबाधा को कम करता है। यह परिपथ के <math>RC</math> समय को कम करता है और आमतौर पर बैंडविड्थ को बढ़ाता है।


[[ न्यूट्रोडाइन |न्यूट्रलाइजेशन]] को नियोजित करके मिलर धारिता को कम किया जा सकता है। यह एक अतिरिक्त सिग्नल को वापस फीड करके प्राप्त किया जा सकता है जो कि चरण निर्गत में मौजूद है जो कि चरण के विरोध में है। एक उपयुक्त संधारित्र के माध्यम से इस तरह के संकेत को वापस खिलाकर, मिलर प्रभाव, कम से कम सिद्धांत में, पूरी तरह समाप्त हो सकता है। व्यवहार में, अलग-अलग एम्पलीफाइंग उपकरणों की धारिता में भिन्नताएं अन्य आवारा धारिता के साथ मिलकर, एक परिपथ को डिजाइन करना मुश्किल बना देती हैं जैसे कि कुल रद्दीकरण होता है। ऐतिहासिक रूप से, एम्पलीफाइंग डिवाइस से मेल खाने के लिए परीक्षण पर चुने जाने वाले न्यूट्रलाइजिंग संधारित्र के लिए यह अज्ञात नहीं था, विशेष रूप से शुरुआती ट्रांजिस्टर के साथ जिसमें बहुत खराब बैंडविंड थे। चरण उल्टे संकेत की व्युत्पत्ति के लिए आमतौर पर एक आगमनात्मक घटक की आवश्यकता होती है जैसे कि चोक या एक अंतर-चरण ट्रांसफार्मर।
[[ न्यूट्रोडाइन |निष्प्रभावन]] को नियोजित करके मिलर धारिता को कम किया जा सकता है। यह एक अतिरिक्त सिग्नल को वापस फीड करके प्राप्त किया जा सकता है जो कि चरण निर्गत में मौजूद है जो कि चरण के विरोध में है। एक उपयुक्त संधारित्र के माध्यम से इस तरह के संकेत को वापस खिलाकर, मिलर प्रभाव, कम से कम सिद्धांत में, पूरी तरह समाप्त हो सकता है। व्यवहार में, अलग-अलग एम्पलीफाइंग उपकरणों की धारिता में भिन्नताएं अन्य आवारा धारिता के साथ मिलकर, एक परिपथ को डिजाइन करना मुश्किल बना देती हैं जैसे कि कुल रद्दीकरण होता है। ऐतिहासिक रूप से, एम्पलीफाइंग डिवाइस से मेल खाने के लिए परीक्षण पर चुने जाने वाले न्यूट्रलाइजिंग संधारित्र के लिए यह अज्ञात नहीं था, विशेष रूप से शुरुआती ट्रांजिस्टर के साथ जिसमें बहुत खराब बैंडविंड थे। चरण उल्टे संकेत की व्युत्पत्ति के लिए आमतौर पर एक आगमनात्मक घटक की आवश्यकता होती है जैसे कि चोक या अंतरापादी ट्रांसफॉर्मर।


निर्वात ट्यूबों में, नियंत्रण ग्रिड और एनोड के बीच एक अतिरिक्त ग्रिड (स्क्रीन ग्रिड) डाला जा सकता है। इसका ग्रिड से एनोड की जांच करने और उनके बीच धारिता को काफी हद तक कम करने का प्रभाव था। जबकि तकनीक शुरू में सफल रही, अन्य कारकों ने इस तकनीक के लाभ को सीमित कर दिया क्योंकि ट्यूबों की बैंडविड्थ में सुधार हुआ। बाद में ट्यूबों को धारिता को कम करने के लिए बहुत छोटे ग्रिड (फ्रेम ग्रिड) को नियोजित करना पड़ा ताकि डिवाइस को आवृत्तियों पर संचालित करने की अनुमति मिल सके जो स्क्रीन ग्रिड के साथ असंभव थी।
निर्वात नलिकाओं में, नियंत्रण ग्रिड और एनोड के बीच एक अतिरिक्त ग्रिड (स्क्रीन ग्रिड) डाला जा सकता है। इसका ग्रिड से एनोड की जांच करने और उनके बीच धारिता को काफी हद तक कम करने का प्रभाव था। जबकि तकनीक शुरू में सफल रही, अन्य कारकों ने इस तकनीक के लाभ को सीमित कर दिया क्योंकि ट्यूबों की बैंडविड्थ में सुधार हुआ। बाद में ट्यूबों को धारिता को कम करने के लिए बहुत छोटे ग्रिड (फ्रेम ग्रिड) को नियोजित करना पड़ा ताकि डिवाइस को आवृत्तियों पर संचालित करने की अनुमति मिल सके जो स्क्रीन ग्रिड के साथ असंभव थी।


== आवृत्ति प्रतिक्रिया पर प्रभाव ==
== आवृत्ति प्रतिक्रिया पर प्रभाव ==
[[Image: Miller Effect Illustration 1.png|thumbnail|250px|चित्रा 2: पुनर्निवेशन संधारित्र सी के साथ प्रवर्धक<sub>C</sub>.]]
[[Image: Miller Effect Illustration 1.png|thumbnail|250px|चित्रा 2: पुनर्निवेशन संधारित्र सी के साथ प्रवर्धक ''C<sub>C</sub>'']]
चित्रा 2A चित्रा 1 का एक उदाहरण दिखाता है जहां प्रतिबाधा निर्गत में निविष्ट युग्मन युग्मन संधारित्र सीसी है। एक थेवेनिन विभव स्रोत वीए, थेवेनिन प्रतिरोध ''R<sub>A</sub>'' के साथ परिपथ को चलाता है। प्रवर्धक के निर्गत प्रतिबाधा को इतना कम माना जाता है कि संबंध ''V''<sub>o</sub>= ''-A''<sub>v</sub>''V''<sub>i</sub> को धारण करने के लिए माना जाता है। उत्पादन में ''Z''<sub>L</sub> भार के रूप में कार्य करता है। (लोड इस चर्चा के लिए अप्रासंगिक है: यह केवल परिपथ को छोड़ने के लिए वर्तमान के लिए एक पथ प्रदान करता है।) चित्रा 2A में, युग्मन संधारित्र निर्गत नोड को वर्तमान jω''C''<sub>C</sub>(''V''<sub>i</sub> − ''V''<sub>o</sub>) प्रदान करता है।
चित्रा 2A चित्रा 1 का एक उदाहरण दिखाया गया है जहां प्रतिबाधा निर्गत में निविष्ट युग्मन युग्मन संधारित्र ''C<sub>C</sub>'' है। एक थेवेनिन विभव स्रोत ''V<sub>A</sub>'', थेवेनिन प्रतिरोध ''R<sub>A</sub>'' के साथ परिपथ को चलाता है। प्रवर्धक के निर्गत प्रतिबाधा को इतना कम माना जाता है कि संबंध ''V''<sub>o</sub>= ''-A''<sub>v</sub>''V''<sub>i</sub> को धारण करने के लिए माना जाता है। उत्पादन में ''Z''<sub>L</sub> लोड के रूप में कार्य करता है। (लोड इस चर्चा के लिए अप्रासंगिक है: यह केवल परिपथ को छोड़ने के लिए वर्तमान के लिए एक पथ प्रदान करता है।) चित्रा 2A में, युग्मन संधारित्र निर्गत नोड को धारा jω''C''<sub>C</sub>(''V''<sub>i</sub> − ''V''<sub>o</sub>) प्रदान करता है।


चित्र 2B मिलर के प्रमेय का उपयोग करते हुए चित्र 2A के समान विद्युतीय रूप से एक परिपथ दिखाता है। युग्मन संधारित्र को परिपथ के निविष्ट पक्ष पर मिलर धारिता ''C''<sub>M</sub> द्वारा प्रतिस्थापित किया जाता है, जो चित्र 2A में युग्मन संधारित्र के समान चालक से धारा खींचता है। इसलिए, ड्राइवर दोनों परिपथों में बिल्कुल समान लोडिंग देखता है I निर्गत साइड पर, एक संधारित्र ''C''<sub>Mo</sub> = (1 + 1/''A''<sub>v</sub>)''C<sub>C</sub>'' निर्गत से वही करंट खींचता है, जैसा कि चित्र 2A में कपलिंग संधारित्र करता है।
चित्र 2B मिलर के प्रमेय का उपयोग करते हुए चित्र 2A के समान विद्युतीय रूप से एक परिपथ दिखाता है। युग्मन संधारित्र को परिपथ के निविष्ट पक्ष पर मिलर धारिता ''C<sub>M</sub>'' द्वारा प्रतिस्थापित किया जाता है, जो चित्र 2A में युग्मन संधारित्र के समान चालक से धारा खींचता है। इसलिए, ड्राइवर दोनों परिपथों में बिल्कुल समान लोडिंग देखता है I निर्गत साइड पर, संधारित्र ''C''<sub>Mo</sub> = (1 + 1/''A''<sub>v</sub>)''C<sub>C</sub>'' निर्गत से वही धारा संचित करता है, जैसा कि चित्र 2A में युग्मक संधारित्र करता है।


मिलर धारिता के लिए चित्र 2B में समान धारा को चित्र 2A में युग्मन संधारित्र के रूप में खींचने के लिए, मिलर परिवर्तन का उपयोग ''C''<sub>M</sub> को ''C<sub>C</sub>'' से जोड़ने के लिए किया जाता है। इस उदाहरण में, यह परिवर्तन धाराओं को बराबर सेट करने के बराबर है, अर्थात
मिलर धारिता के लिए चित्र 2B में समान धारा को चित्र 2A में युग्मन संधारित्र के रूप में खींचने के लिए, मिलर परिवर्तन का उपयोग ''C<sub>M</sub>'' को ''C<sub>C</sub>'' से जोड़ने के लिए किया जाता है। इस उदाहरण में, यह परिवर्तन धाराओं को बराबर सेट करने के बराबर है, अर्थात
::<math>\  j\omega C_C (V _i - V _O ) = j \omega C_M V _i, </math>
::<math>\  j\omega C_C (V _i - V _O ) = j \omega C_M V _i, </math>
या, इस समीकरण को पुनर्व्यवस्थित करना
या, इस समीकरण को पुनर्व्यवस्थित करना
:: <math> C_M = C_C \left( 1 - \frac { V _o} { V _i} \right )  = C_C (1 + A_v). </math>
:: <math> C_M = C_C \left( 1 - \frac { V _o} { V _i} \right )  = C_C (1 + A_v). </math>
यह परिणाम व्युत्पत्ति अनुभाग के C<sub>M</sub> के समान है।
यह परिणाम व्युत्पत्ति अनुभाग के ''C<sub>M</sub>'' के समान है।


एवी आवृत्ति स्वतंत्र के साथ वर्तमान उदाहरण मिलर प्रभाव के प्रभाव को दर्शाता है, और इसलिए सीसी के, इस परिपथ की आवृत्ति प्रतिक्रिया पर, और मिलर प्रभाव के प्रभाव की विशिष्ट है (उदाहरण के लिए, [[ सामान्य स्रोत |सामान्य स्रोत]] देखें)। यदि सीसी = 0 एफ, परिपथ का निर्गत विभव केवल एवी वीए, आवृत्ति से स्वतंत्र है। हालांकि, जब सीसी शून्य नहीं होता है, तो चित्रा 2 बी दिखाता है कि परिपथ के निविष्ट पर बड़ी मिलर धारिता दिखाई देती है। परिपथ का वोल्टता निर्गम अब बन जाता है
''A<sub>v</sub>'' आवृत्ति स्वतंत्र के साथ धारा उदाहरण मिलर प्रभाव के प्रभाव को दर्शाता है, और इसलिए ''C<sub>C</sub>'' के, इस परिपथ की आवृत्ति प्रतिक्रिया पर, और मिलर प्रभाव के प्रभाव की विशिष्ट है (उदाहरण के लिए, [[ सामान्य स्रोत |सामान्य स्रोत]] देखें)। यदि ''C<sub>C</sub>'' = 0 F, परिपथ का निर्गत विभव केवल ''A<sub>v</sub> v<sub>A</sub>'', आवृत्ति से स्वतंत्र है। हालांकि, जब ''C<sub>C</sub>'' शून्य नहीं होता है, तो चित्रा 2 बी दिखाता है कि परिपथ के निविष्ट पर बड़ी मिलर धारिता दिखाई देती है। परिपथ का वोल्टता निर्गम अब बन जाता है


::<math> V _o =- A_v V _i = - A_v \frac { V _A} {1+j \omega C_M R_A}, </math>
::<math> V _o =- A_v V _i = - A_v \frac { V _A} {1+j \omega C_M R_A}, </math>
और एक बार फ़्रीक्वेंसी के इतना अधिक होने पर फ़्रीक्वेंसी के साथ लुढ़क जाता है कि ω''C<sub>M</sub>R<sub>A</sub>'' ≥ 1 यह एक [[ लो पास फिल्टर |लो पास फिल्टर]] है। एनालॉग प्रवर्धकों में आवृत्ति प्रतिक्रिया की यह कमी मिलर प्रभाव का एक प्रमुख प्रभाव है। इस उदाहरण में, आवृत्ति ω3dB जैसे कि ω3dB CMRA = 1 कम आवृत्ति प्रतिक्रिया क्षेत्र के अंत को चिह्नित करता है और प्रवर्धक की [[ बैंडविड्थ (सिग्नल प्रोसेसिंग) |बैंडविड्थ]] या कटऑफ आवृत्ति सेट करता है।
और एक बार आवृत्ति के इतना अधिक होने पर आवृत्ति के साथ उपस्थितिपंजित हो जाती है कि ω''C<sub>M</sub>R<sub>A</sub>'' ≥ 1 यह एक [[ लो पास फिल्टर |निम्न पास फिल्टर]] है। एनालॉग प्रवर्धकों में आवृत्ति प्रतिक्रिया की यह कमी मिलर प्रभाव का एक प्रमुख प्रभाव है। इस उदाहरण में, आवृत्ति ω''<sub>3dB</sub>'' जैसे कि ω''<sub>3dB</sub>'' ''C<sub>M</sub>R<sub>A</sub>'' = 1 कम आवृत्ति प्रतिक्रिया क्षेत्र के अंत को चिह्नित करता है और प्रवर्धक की [[ बैंडविड्थ (सिग्नल प्रोसेसिंग) |बैंडविड्थ]] या कटऑफ आवृत्ति सेट करता है।


प्रवर्धक बैंडविड्थ पर ''C''<sub>M</sub> का प्रभाव कम प्रतिबाधा वाले ड्राइवरों के लिए बहुत कम हो जाता है (यदि ''R''<sub>A</sub> छोटा है तो ''C''<sub>M</sub> ''R''<sub>A</sub> छोटा है)। नतीजतन, बैंडविड्थ पर मिलर प्रभाव को कम करने का एक तरीका कम प्रतिबाधा चालक का उपयोग करना है, उदाहरण के लिए, ड्राइवर और प्रवर्धक के बीच [[ वोल्टेज अनुयायी |विभव अनुयायी]] चरण को इंटरपोज करके, जो प्रवर्धक द्वारा देखे गए स्पष्ट चालक प्रतिबाधा को कम करता है।
प्रवर्धक बैंडविड्थ पर ''C''<sub>M</sub> का प्रभाव कम प्रतिबाधा वाले ड्राइवरों के लिए बहुत कम हो जाता है (यदि ''R''<sub>A</sub> छोटा है तो ''C''<sub>M</sub> ''R''<sub>A</sub> छोटा है)। नतीजतन, बैंडविड्थ पर मिलर प्रभाव को कम करने का एक तरीका कम प्रतिबाधा चालक का उपयोग करना है, उदाहरण के लिए, ड्राइवर और प्रवर्धक के बीच [[ वोल्टेज अनुयायी |विभव अनुयायी]] चरण को इंटरपोज करके, जो प्रवर्धक द्वारा देखे गए स्पष्ट चालक प्रतिबाधा को कम करता है।
Line 75: Line 75:


===मिलर सन्निकटन ===
===मिलर सन्निकटन ===
यह उदाहरण यह भी मानता है कि एवी फ्रीक्वेंसी स्वतंत्र है, लेकिन आम तौर पर एवी में निहित प्रवर्धक की आवृत्ति निर्भरता होती है। एवी की ऐसी आवृत्ति निर्भरता भी मिलर धारिता आवृत्ति निर्भर करती है, इसलिए सीएम की धारिता के रूप में व्याख्या अधिक कठिन हो जाती है। हालांकि, आम तौर पर एवी की कोई आवृत्ति निर्भरता मिलर प्रभाव के कारण आवृत्ति के साथ रोल-ऑफ की तुलना में बहुत अधिक आवृत्तियों पर उत्पन्न होती है, इसलिए लाभ के मिलर-प्रभाव रोल-ऑफ तक आवृत्तियों के लिए, एवी को इसके निम्न से सटीक रूप से अनुमानित किया जाता है -आवृत्ति मान। कम आवृत्तियों पर एवी का उपयोग करते हुए सीएम का निर्धारण तथाकथित मिलर सन्निकटन है।<ref name=Spencer/> मिलर सन्निकटन के साथ, सीएम आवृत्ति स्वतंत्र हो जाता है, और कम आवृत्तियों पर धारिता के रूप में इसकी व्याख्या सुरक्षित है।
यह उदाहरण यह भी मानता है कि ''A<sub>v</sub>'' आवृत्ति स्वतंत्र है, लेकिन आम तौर पर ''A<sub>v</sub>'' में निहित प्रवर्धक की आवृत्ति निर्भरता होती है। ''A<sub>v</sub>'' की ऐसी आवृत्ति निर्भरता भी मिलर धारिता आवृत्ति निर्भर करती है, इसलिए ''C<sub>M</sub>'' की धारिता के रूप में व्याख्या अधिक कठिन हो जाती है। हालांकि, आम तौर पर ''A<sub>v</sub>'' की कोई आवृत्ति निर्भरता मिलर प्रभाव के कारण आवृत्ति के साथ रोल-ऑफ की तुलना में बहुत अधिक आवृत्तियों पर उत्पन्न होती है, इसलिए लाभ के मिलर-प्रभाव रोल-ऑफ तक आवृत्तियों के लिए, ''A<sub>v</sub>'' को इसके निम्न से सटीक रूप से अनुमानित किया जाता है -आवृत्ति मान। कम आवृत्तियों पर ''A<sub>v</sub>'' का उपयोग करते हुए ''C<sub>M</sub>'' का निर्धारण तथाकथित मिलर सन्निकटन है।<ref name=Spencer/> मिलर सन्निकटन के साथ, ''C<sub>M</sub>'' आवृत्ति स्वतंत्र हो जाता है, और कम आवृत्तियों पर धारिता के रूप में इसकी व्याख्या सुरक्षित है।


==संदर्भ और नोट्स==
==संदर्भ और नोट्स==

Revision as of 14:23, 26 October 2022

इलेक्ट्रानिक्स में, निविष्ट और निर्गत टर्मिनलों के बीच धारिता के प्रभाव के प्रवर्धन के कारण मिलर प्रभाव प्रतिलोम विभव प्रवर्धक (एम्पलीफायर) के बराबर निविष्ट धारिता में वृद्धि के लिए जिम्मेदार है। मिलर प्रभाव के कारण वस्तुतः बढ़ी हुई निविष्ट धारिता निम्न द्वारा दी गई है

जहां प्रतिलोम प्रवर्धक ( धनात्मक) का विभव प्राप्ति है और पुनर्निवेशन धारिता है।

यद्यपि शब्द मिलर प्रभाव सामान्य रूप से धारिता को संदर्भित करता है, निविष्ट और अन्य नोड के बीच जुड़ा कोई भी प्रतिबाधा इस प्रभाव के माध्यम से प्रवर्धक निविष्ट प्रतिबाधा को संशोधित कर सकती है। मिलर प्रमेय में मिलर प्रभाव के इन गुणों को सामान्यीकृत किया गया है। ट्रांजिस्टर और निर्वात-नलिका जैसे सक्रिय उपकरणों के निर्गत और निविष्ट के बीच ऊर्जाह्रासी धारिता के कारण मिलर धारिता उच्च आवृत्तियों पर उनके लाभ को सीमित करने वाला एक प्रमुख कारक है। 1920 में जॉन मिल्टन मिलर द्वारा ट्रायोड निर्वात-नलिका में मिलर धारिता की पहचान की गई थी।

इतिहास

मिलर प्रभाव का नाम जॉन मिल्टन मिलर के नाम पर रखा गया था।[1] जब मिलर ने 1920 में अपना काम प्रकाशित किया, तो वे निर्वात-नलिका ट्रायोड पर काम कर रहे थे। यही विश्लेषण आधुनिक उपकरणों जैसे द्विध्रुवीय संधि और क्षेत्र प्रभावी ट्रांजिस्टर पर भी लागू होता है।

व्युत्पत्ति

चित्रा 1: निविष्ट के लिए निर्गत को जोड़ने वाले प्रतिबाधा के साथ एक आदर्श विभव प्रतिलोम प्रवर्धक।

अपने निविष्ट और निर्गत नोड्स के बीच जुड़े एक प्रतिबाधा के साथ लाभ के एक आदर्श प्रतिलोम विभव प्रवर्धक पर विचार करें। निर्गत विभव इसलिए है। यह मानते हुए कि प्रवर्धक निविष्ट कोई करंट नहीं खींचता है, सभी निविष्ट करंट से होकर बहते हैं, और इसलिए इसे दिया जाता है

.

परिपथ का निविष्ट प्रतिबाधा है

.

यदि प्रतिबाधा के साथ एक संधारित्र का प्रतिनिधित्व करता है , परिणामी निविष्ट प्रतिबाधा है

.

इस प्रकार प्रभावी या मिलर धारिता CM भौतिक C गुणनफल से गुणा किया जाता है।[2]

प्रभाव

जैसा कि अधिकांश प्रवर्धकों प्रतिलोम हैं ( जैसा कि ऊपर परिभाषित किया गया है सकारात्मक है), मिलर प्रभाव के कारण उनके निविष्ट पर प्रभावी धारिता बढ़ जाती है। यह प्रवर्धक की बैंडविड्थ को कम कर सकता है, इसके संचालन की सीमा को कम आवृत्तियों तक सीमित कर सकता है। उदाहरण के लिए, डार्लिंगटन ट्रांजिस्टर के आधार और संग्राही टर्मिनलों के बीच छोटे जंक्शन और अवांछित धारिता, उपकरण की उच्च आवृत्ति प्रतिक्रिया को कम करते हुए, इसके उच्च लाभ के कारण मिलर प्रभावों से काफी बढ़ सकते हैं।

यह भी ध्यान रखना महत्वपूर्ण है कि मिलर धारिता वह धारिता है जिसे निविष्ट में देखा जाता है। यदि सभी RC समय स्थिरांक (ध्रुव) की खोज में है तो निर्गत द्वारा देखी गई क्षमता को भी शामिल करना महत्वपूर्ण है। निर्गत पर धारिता अक्सर उपेक्षित होती है क्योंकि यह देखता है और प्रवर्धक निर्गत आमतौर पर कम प्रतिबाधा होते हैं। हालांकि, अगर प्रवर्धक में उच्च प्रतिबाधा निर्गत होता है, जैसे कि लाभ चरण भी निर्गत चरण है, तो यह RC प्रवर्धक के प्रदर्शन पर महत्वपूर्ण प्रभाव डाल सकता है। यह तब होता है जब ध्रुव विभाजन तकनीक का उपयोग किया जाता है।

मिलर प्रभाव का उपयोग छोटे से बड़े संधारित्र को संश्लेषित करने के लिए भी किया जा सकता है। ऐसा ही एक उदाहरण पुनर्निवेशन प्रवर्धक के स्थिरीकरण में है, जहां आवश्यक धारिता वास्तव में परिपथ में शामिल करने के लिए बहुत बड़ी हो सकती है। यह एकीकृत परिपथों के डिजाइन में विशेष रूप से महत्वपूर्ण हो सकता है, जहां संधारित्र महत्वपूर्ण क्षेत्र का उपभोग कर सकते हैं, जिससे लागत बढ़ जाती है।

शमन

कई स्थितियों में मिलर प्रभाव अवांछित हो सकता है, और इसके प्रभाव को कम करने के उपाय खोजे जा सकते हैं। ऐसी कई तकनीकों का उपयोग प्रवर्धकों के डिजाइन में किया जाता है।

प्रवर्धक के निविष्ट और निर्गत टर्मिनलों के बीच लाभ को कम करने के लिए निर्गत पर एक मौजूदा बफर चरण जोड़ा जा सकता है (हालांकि जरूरी नहीं कि समग्र लाभ)। उदाहरण के लिए, एक सामान्य आधार को एक आम उत्सर्जक चरण के निर्गत में करंट बफर के रूप में इस्तेमाल किया जा सकता है, जिससे एक कैसकोड बनता है। यह आम तौर पर मिलर प्रभाव को कम करेगा और प्रवर्धक की बैंडविड्थ में वृद्धि करेगा।

वैकल्पिक रूप से, प्रवर्धक निविष्ट से पहले एक विभव बफर का उपयोग किया जा सकता है, निविष्ट टर्मिनलों द्वारा देखे गए प्रभावी स्रोत प्रतिबाधा को कम करता है। यह परिपथ के समय को कम करता है और आमतौर पर बैंडविड्थ को बढ़ाता है।

निष्प्रभावन को नियोजित करके मिलर धारिता को कम किया जा सकता है। यह एक अतिरिक्त सिग्नल को वापस फीड करके प्राप्त किया जा सकता है जो कि चरण निर्गत में मौजूद है जो कि चरण के विरोध में है। एक उपयुक्त संधारित्र के माध्यम से इस तरह के संकेत को वापस खिलाकर, मिलर प्रभाव, कम से कम सिद्धांत में, पूरी तरह समाप्त हो सकता है। व्यवहार में, अलग-अलग एम्पलीफाइंग उपकरणों की धारिता में भिन्नताएं अन्य आवारा धारिता के साथ मिलकर, एक परिपथ को डिजाइन करना मुश्किल बना देती हैं जैसे कि कुल रद्दीकरण होता है। ऐतिहासिक रूप से, एम्पलीफाइंग डिवाइस से मेल खाने के लिए परीक्षण पर चुने जाने वाले न्यूट्रलाइजिंग संधारित्र के लिए यह अज्ञात नहीं था, विशेष रूप से शुरुआती ट्रांजिस्टर के साथ जिसमें बहुत खराब बैंडविंड थे। चरण उल्टे संकेत की व्युत्पत्ति के लिए आमतौर पर एक आगमनात्मक घटक की आवश्यकता होती है जैसे कि चोक या अंतरापादी ट्रांसफॉर्मर।

निर्वात नलिकाओं में, नियंत्रण ग्रिड और एनोड के बीच एक अतिरिक्त ग्रिड (स्क्रीन ग्रिड) डाला जा सकता है। इसका ग्रिड से एनोड की जांच करने और उनके बीच धारिता को काफी हद तक कम करने का प्रभाव था। जबकि तकनीक शुरू में सफल रही, अन्य कारकों ने इस तकनीक के लाभ को सीमित कर दिया क्योंकि ट्यूबों की बैंडविड्थ में सुधार हुआ। बाद में ट्यूबों को धारिता को कम करने के लिए बहुत छोटे ग्रिड (फ्रेम ग्रिड) को नियोजित करना पड़ा ताकि डिवाइस को आवृत्तियों पर संचालित करने की अनुमति मिल सके जो स्क्रीन ग्रिड के साथ असंभव थी।

आवृत्ति प्रतिक्रिया पर प्रभाव

चित्रा 2: पुनर्निवेशन संधारित्र सी के साथ प्रवर्धक CC

चित्रा 2A चित्रा 1 का एक उदाहरण दिखाया गया है जहां प्रतिबाधा निर्गत में निविष्ट युग्मन युग्मन संधारित्र CC है। एक थेवेनिन विभव स्रोत VA, थेवेनिन प्रतिरोध RA के साथ परिपथ को चलाता है। प्रवर्धक के निर्गत प्रतिबाधा को इतना कम माना जाता है कि संबंध Vo= -AvVi को धारण करने के लिए माना जाता है। उत्पादन में ZL लोड के रूप में कार्य करता है। (लोड इस चर्चा के लिए अप्रासंगिक है: यह केवल परिपथ को छोड़ने के लिए वर्तमान के लिए एक पथ प्रदान करता है।) चित्रा 2A में, युग्मन संधारित्र निर्गत नोड को धारा jωCC(ViVo) प्रदान करता है।

चित्र 2B मिलर के प्रमेय का उपयोग करते हुए चित्र 2A के समान विद्युतीय रूप से एक परिपथ दिखाता है। युग्मन संधारित्र को परिपथ के निविष्ट पक्ष पर मिलर धारिता CM द्वारा प्रतिस्थापित किया जाता है, जो चित्र 2A में युग्मन संधारित्र के समान चालक से धारा खींचता है। इसलिए, ड्राइवर दोनों परिपथों में बिल्कुल समान लोडिंग देखता है I निर्गत साइड पर, संधारित्र CMo = (1 + 1/Av)CC निर्गत से वही धारा संचित करता है, जैसा कि चित्र 2A में युग्मक संधारित्र करता है।

मिलर धारिता के लिए चित्र 2B में समान धारा को चित्र 2A में युग्मन संधारित्र के रूप में खींचने के लिए, मिलर परिवर्तन का उपयोग CM को CC से जोड़ने के लिए किया जाता है। इस उदाहरण में, यह परिवर्तन धाराओं को बराबर सेट करने के बराबर है, अर्थात

या, इस समीकरण को पुनर्व्यवस्थित करना

यह परिणाम व्युत्पत्ति अनुभाग के CM के समान है।

Av आवृत्ति स्वतंत्र के साथ धारा उदाहरण मिलर प्रभाव के प्रभाव को दर्शाता है, और इसलिए CC के, इस परिपथ की आवृत्ति प्रतिक्रिया पर, और मिलर प्रभाव के प्रभाव की विशिष्ट है (उदाहरण के लिए, सामान्य स्रोत देखें)। यदि CC = 0 F, परिपथ का निर्गत विभव केवल Av vA, आवृत्ति से स्वतंत्र है। हालांकि, जब CC शून्य नहीं होता है, तो चित्रा 2 बी दिखाता है कि परिपथ के निविष्ट पर बड़ी मिलर धारिता दिखाई देती है। परिपथ का वोल्टता निर्गम अब बन जाता है

और एक बार आवृत्ति के इतना अधिक होने पर आवृत्ति के साथ उपस्थितिपंजित हो जाती है कि ωCMRA ≥ 1 यह एक निम्न पास फिल्टर है। एनालॉग प्रवर्धकों में आवृत्ति प्रतिक्रिया की यह कमी मिलर प्रभाव का एक प्रमुख प्रभाव है। इस उदाहरण में, आवृत्ति ω3dB जैसे कि ω3dB CMRA = 1 कम आवृत्ति प्रतिक्रिया क्षेत्र के अंत को चिह्नित करता है और प्रवर्धक की बैंडविड्थ या कटऑफ आवृत्ति सेट करता है।

प्रवर्धक बैंडविड्थ पर CM का प्रभाव कम प्रतिबाधा वाले ड्राइवरों के लिए बहुत कम हो जाता है (यदि RA छोटा है तो CM RA छोटा है)। नतीजतन, बैंडविड्थ पर मिलर प्रभाव को कम करने का एक तरीका कम प्रतिबाधा चालक का उपयोग करना है, उदाहरण के लिए, ड्राइवर और प्रवर्धक के बीच विभव अनुयायी चरण को इंटरपोज करके, जो प्रवर्धक द्वारा देखे गए स्पष्ट चालक प्रतिबाधा को कम करता है।

इस साधारण परिपथ का निर्गत विभव हमेशा Av vi होता है। हालांकि, असली प्रवर्धकों में निर्गत प्रतिरोध होता है। यदि प्रवर्धक निर्गत प्रतिरोध को विश्लेषण में शामिल किया गया है, तो निर्गत विभव अधिक जटिल आवृत्ति प्रतिक्रिया प्रदर्शित करता है और निर्गत पक्ष पर आवृत्ति-निर्भर वर्तमान स्रोत के प्रभाव को ध्यान में रखा जाना चाहिए।[3] आम तौर पर ये प्रभाव केवल मिलर धारिता के कारण रोल-ऑफ की तुलना में बहुत अधिक आवृत्तियों पर दिखाई देते हैं, इसलिए यहां प्रस्तुत विश्लेषण मिलर प्रभाव के प्रभुत्व वाले प्रवर्धक की उपयोगी आवृत्ति रेंज निर्धारित करने के लिए पर्याप्त है।

मिलर सन्निकटन

यह उदाहरण यह भी मानता है कि Av आवृत्ति स्वतंत्र है, लेकिन आम तौर पर Av में निहित प्रवर्धक की आवृत्ति निर्भरता होती है। Av की ऐसी आवृत्ति निर्भरता भी मिलर धारिता आवृत्ति निर्भर करती है, इसलिए CM की धारिता के रूप में व्याख्या अधिक कठिन हो जाती है। हालांकि, आम तौर पर Av की कोई आवृत्ति निर्भरता मिलर प्रभाव के कारण आवृत्ति के साथ रोल-ऑफ की तुलना में बहुत अधिक आवृत्तियों पर उत्पन्न होती है, इसलिए लाभ के मिलर-प्रभाव रोल-ऑफ तक आवृत्तियों के लिए, Av को इसके निम्न से सटीक रूप से अनुमानित किया जाता है -आवृत्ति मान। कम आवृत्तियों पर Av का उपयोग करते हुए CM का निर्धारण तथाकथित मिलर सन्निकटन है।[2] मिलर सन्निकटन के साथ, CM आवृत्ति स्वतंत्र हो जाता है, और कम आवृत्तियों पर धारिता के रूप में इसकी व्याख्या सुरक्षित है।

संदर्भ और नोट्स

  1. John M. Miller, "Dependence of the input impedance of a three-electrode vacuum tube upon the load in the plate circuit," Scientific Papers of the Bureau of Standards, vol.15, no. 351, pages 367-385 (1920). Available on-line at: http://web.mit.edu/klund/www/papers/jmiller.pdf .
  2. 2.0 2.1 R.R. Spencer and M.S. Ghausi (2003). Introduction to electronic circuit design. Upper Saddle River NJ: Prentice Hall/Pearson Education, Inc. p. 533. ISBN 0-201-36183-3.
  3. See article on pole splitting.


यह भी देखें

श्रेणी:इलेक्ट्रिकल इंजीनियरिंग श्रेणी:इलेक्ट्रॉनिक डिजाइन श्रेणी:एनालॉग परिपथ