पृथक्करण सम्बन्ध: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 22: | Line 22: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 02/07/2023]] | [[Category:Created On 02/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 10:46, 10 July 2023
गणित में, पृथक्करण संबंध वस्तुओं के समूह को एक असम्बद्ध वृत्त में व्यवस्थित करने की औपचारिक विधि होती है। इस प्रकार इसे चतुर्धातुक संबंध एस(ए, बी, सी, डी) के रूप में परिभाषित किया गया है, जो कुछ स्वयंसिद्ध सिद्धांतों को संतुष्ट करता है, जिसकी व्याख्या इस प्रकार की जाती है कि ए और सी बी को डी से भिन्न करते हैं। [1]
जबकि एक रैखिक क्रम एक सेट को एक धनात्मक अंत और एक ऋणात्मक अंत प्रदान करता है, एक पृथक्करण संबंध न केवल यह भूल जाता है कि कौन सा अंत है, जबकि यह भी भूल जाता है कि अंत कहाँ स्थित हैं। इस तरह यह बीच के संबंध और चक्रीय क्रम की अवधारणाओं को अंतिम और कमजोर करने वाला है। इस प्रकार ऐसा कुछ भी नहीं है जिसे भुलाया जा सके: अंतरनिश्चयता की प्रासंगिक भावना तक, ये तीन संबंध तर्कसंगत संख्याओं के क्रमबद्ध सेट के एकमात्र गैर-तुच्छ घटाव हैं।[2]
आवेदन
अधिकांशतः पृथक्करण का उपयोग यह दिखाने में किया जा सकता है कि वास्तविक प्रक्षेप्य तल पूर्ण स्थान होता है। इस प्रकार पृथक्करण संबंध का वर्णन सन्न 1898 में गियोवन्नी वैलाती द्वारा स्वयंसिद्ध शब्दों के साथ किया गया था।[3]
- एबीसीडी =बीएडीसी
- एबीसीडी =एडीसीबी
- एबीसीडी ⇒ ¬एडीसीबी
- एबीसीडी ∨ एसीडीबी ∨ एडीबीसी
- एबीसीडी ∧ एसीडीई ⇒एबीडीई
सामान्यतः बिंदुओं के पृथक्करण के संबंध को एच.एस.एम. कॉक्समूहर ने अपनी पाठ्यपुस्तक द रियल प्रोजेक्टिव प्लेन में एसी//बीडी लिखा था।[4] इस प्रकार निरंतरता का स्वयंसिद्ध प्रयोग इस प्रकार होता है। अतः "बिंदुओं के प्रत्येक मोनोटोनिक अनुक्रम की सीमा होती है।" पृथक्करण संबंध का उपयोग परिभाषाएँ प्रदान करने के लिए किया जाता है।
- {An} मोनोटोनिक होता है ≡ ∀ n > 1
- M 'सीमा' होती है ≡ (∀ n > 2 ) ∧ (∀ पी ⇒ ∃ एन ).
संदर्भ
- ↑ Huntington, Edward V. (July 1935), "Inter-Relations Among the Four Principal Types of Order" (PDF), Transactions of the American Mathematical Society, 38 (1): 1–9, doi:10.1090/S0002-9947-1935-1501800-1, retrieved 8 May 2011
- ↑ Macpherson, H. Dugald (2011), "A survey of homogeneous structures" (PDF), Discrete Mathematics, 311 (15): 1599–1634, doi:10.1016/j.disc.2011.01.024, retrieved 28 April 2011
- ↑ Bertrand Russell (1903) Principles of Mathematics, page 214
- ↑ H. S. M. Coxeter (1949) The Real Projective Plane, Chapter 10: Continuity, McGraw Hill