वैकल्पिक समुच्चय सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
Line 52: Line 52:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 30/06/2023]]
[[Category:Created On 30/06/2023]]
[[Category:Vigyan Ready]]

Revision as of 11:20, 10 July 2023

सामान्य अर्थ में, वैकल्पिक समुच्चय सिद्धांत समुच्चय की अवधारणा के लिए वैकल्पिक गणितीय दृष्टिकोणों में से है और ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के सिद्धांतों द्वारा स्वयंसिद्ध समुच्चय सिद्धांत में वर्णित वास्तविक मानक समुच्चय सिद्धांत का कोई भी विकल्प है। अधिक विशेष रूप से, वैकल्पिक समुच्चय सिद्धांत (या एएसटी) 1970 और 1980 के दशक में पेट्र वोपंका और उनके छात्रों द्वारा विकसित विशेष समुच्चय सिद्धांत को संदर्भित कर सकता है।

वोपेंका का वैकल्पिक समुच्चय सिद्धांत

वोपेंका का वैकल्पिक समुच्चय सिद्धांत अर्ध समुच्चय के सिद्धांत के कुछ विचारों पर आधारित है, किंतु अधिक मौलिक परिवर्तन भी प्रस्तुत करता है: उदाहरण के लिए, सभी समुच्चय औपचारिक रूप से परिमित हैं, जिसका अर्थ है कि एएसटी में समुच्चय-समीकरण के लिए गणितीय प्रेरण के नियम को पूर्ण करते हैं अधिक त्रुटिहीन रूप से: एएसटी का वह भाग जिसमें केवल समुच्चय से संबंधित स्वयंसिद्ध सिद्धांत सम्मिलित हैं, ज़र्मेलो-फ़्रैन्केल (या जेडएफ) समुच्चय सिद्धांत के समान है। जिसमें अनंत के स्वयंसिद्ध को इसके निषेध द्वारा प्रतिस्थापित किया जाता है)। चूँकि, इनमें से कुछ समुच्चयों में ऐसे उपवर्ग सम्मिलित हैं जो समुच्चय नहीं हैं, जो उन्हें जॉर्ज कैंटर (जेडएफ) परिमित समुच्चय से भिन्न करता है और उन्हें एएसटी में अनंत कहा जाता है।

अन्य वैकल्पिक समुच्चय सिद्धांत

अन्य वैकल्पिक समुच्चय सिद्धांतों में सम्मिलित हैं:[1]

यह भी देखें

टिप्पणियाँ

  1. Holmes, M. Randall. "वैकल्पिक स्वयंसिद्ध सेट सिद्धांत". Stanford Encyclopedia of Philosophy. Retrieved 17 January 2020.


संदर्भ