ग्राह्य निर्णय नियम: Difference between revisions
(Created page with "{{Short description|Type of "good" decision rule in Bayesian statistics}}{{Bayesian statistics}} <!-- The \,\! are to keep the formulas rendered as PNG instead of HTML. Pleas...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Type of "good" decision rule in Bayesian statistics}}{{Bayesian statistics}} | {{Short description|Type of "good" decision rule in Bayesian statistics}}{{Bayesian statistics}} | ||
[[सांख्यिकीय निर्णय सिद्धांत]] में, एक [[निर्णय नियम|ग्राह्यनिर्णयफलन]] नियम है जैसे कि कोई अन्य नियम नहीं है जो सदैव इससे अपेक्षाकृत अधिक होता है।<ref>[[Yadolah Dodge|Dodge, Y.]] (2003) ''The Oxford Dictionary of Statistical Terms''. OUP. {{ISBN|0-19-920613-9}} (entry for admissible decision function)</ref> (या कम से कम बेहतर और इससे बुरा कभी नहीं), नीचे बेहतर परिभाषित के त्रुटिहीन अर्थ में। यह अवधारणा [[पेरेटो दक्षता]] के अनुरूप है। | |||
[[सांख्यिकीय निर्णय सिद्धांत]] में, एक | |||
==परिभाषा== | ==परिभाषा== | ||
सेट को परिभाषित करें (गणित) <math>\Theta\,</math>, <math>\mathcal{X}</math> और <math>\mathcal{A}</math>, कहाँ <math>\Theta\,</math> प्रकृति की अवस्थाएँ हैं, <math>\mathcal{X}</math> संभावित अवलोकन, और <math>\mathcal{A}</math> जो कार्रवाई की जा सकती है. का एक अवलोकन <math>x \in \mathcal{X}\,\!</math> के रूप में वितरित किया जाता है <math>F(x\mid\theta)\,\!</math> और इसलिए प्रकृति की स्थिति के बारे में साक्ष्य प्रदान करता है <math>\theta\in\Theta\,\!</math>. निर्णय नियम एक फलन है (गणित) <math>\delta:{\mathcal{X}}\rightarrow {\mathcal{A}}</math>, जहां अवलोकन करने पर <math>x\in \mathcal{X}</math>, हम कार्रवाई करना चुनते हैं <math>\delta(x)\in \mathcal{A}\,\!</math>. | सेट को परिभाषित करें (गणित) <math>\Theta\,</math>, <math>\mathcal{X}</math> और <math>\mathcal{A}</math>, कहाँ <math>\Theta\,</math> प्रकृति की अवस्थाएँ हैं, <math>\mathcal{X}</math> संभावित अवलोकन, और <math>\mathcal{A}</math> जो कार्रवाई की जा सकती है. का एक अवलोकन <math>x \in \mathcal{X}\,\!</math> के रूप में वितरित किया जाता है <math>F(x\mid\theta)\,\!</math> और इसलिए प्रकृति की स्थिति के बारे में साक्ष्य प्रदान करता है <math>\theta\in\Theta\,\!</math>. निर्णय नियम एक फलन है (गणित) <math>\delta:{\mathcal{X}}\rightarrow {\mathcal{A}}</math>, जहां अवलोकन करने पर <math>x\in \mathcal{X}</math>, हम कार्रवाई करना चुनते हैं <math>\delta(x)\in \mathcal{A}\,\!</math>. | ||
हानि फलन को भी परिभाषित करें <math>L: \Theta \times \mathcal{A} \rightarrow \mathbb{R}</math>, जो कार्रवाई करने से हमें होने वाले नुकसान को निर्दिष्ट करता है <math>a \in \mathcal{A}</math> जब प्रकृति की वास्तविक स्थिति है <math>\theta \in \Theta</math>. आमतौर पर हम डेटा देखने के बाद यह कार्रवाई करेंगे <math>x \in \mathcal{X}</math>, ताकि नुकसान हो <math>L(\theta,\delta(x))\,\!</math>. (अपरंपरागत होते हुए भी उपयोगिता | हानि फलन को भी परिभाषित करें <math>L: \Theta \times \mathcal{A} \rightarrow \mathbb{R}</math>, जो कार्रवाई करने से हमें होने वाले नुकसान को निर्दिष्ट करता है <math>a \in \mathcal{A}</math> जब प्रकृति की वास्तविक स्थिति है <math>\theta \in \Theta</math>. आमतौर पर हम डेटा देखने के बाद यह कार्रवाई करेंगे <math>x \in \mathcal{X}</math>, ताकि नुकसान हो <math>L(\theta,\delta(x))\,\!</math>. (अपरंपरागत होते हुए भी उपयोगिता फलन के संदर्भ में निम्नलिखित परिभाषाओं को दोबारा बनाना संभव है, जो नुकसान का नकारात्मक है।) | ||
जोखिम | जोखिम फलन को [[अपेक्षित मूल्य]] के रूप में परिभाषित करें | ||
:<math>R(\theta,\delta)=\operatorname{E}_{F(x\mid\theta)}[{L(\theta,\delta(x))]}.\,\!</math> | :<math>R(\theta,\delta)=\operatorname{E}_{F(x\mid\theta)}[{L(\theta,\delta(x))]}.\,\!</math> | ||
चाहे कोई निर्णय नियम हो <math>\delta\,\!</math> जोखिम कम होना प्रकृति की वास्तविक स्थिति पर निर्भर करता है <math>\theta\,\!</math>. एक निर्णय नियम <math>\delta^*\,\!</math> प्रभुत्वकारी निर्णय नियम एक निर्णय नियम <math>\delta\,\!</math> अगर और केवल अगर <math>R(\theta,\delta^*)\le R(\theta,\delta)</math> सभी के लिए <math>\theta\,\!</math>, और कुछ के लिए असमानता [[असमानता (गणित)]] है <math>\theta\,\!</math>. | चाहे कोई निर्णय नियम हो <math>\delta\,\!</math> जोखिम कम होना प्रकृति की वास्तविक स्थिति पर निर्भर करता है <math>\theta\,\!</math>. एक निर्णय नियम <math>\delta^*\,\!</math> प्रभुत्वकारी निर्णय नियम एक निर्णय नियम <math>\delta\,\!</math> अगर और केवल अगर <math>R(\theta,\delta^*)\le R(\theta,\delta)</math> सभी के लिए <math>\theta\,\!</math>, और कुछ के लिए असमानता [[असमानता (गणित)]] है <math>\theta\,\!</math>. | ||
एक निर्णय नियम स्वीकार्य है (नुकसान | एक निर्णय नियम स्वीकार्य है (नुकसान फलन के संबंध में) यदि और केवल तभी जब कोई अन्य नियम उस पर हावी न हो; अन्यथा यह अस्वीकार्य है. इस प्रकार उपरोक्त आंशिक आदेश के संबंध में एक स्वीकार्य निर्णय नियम एक [[अधिकतम तत्व]] है। | ||
एक अस्वीकार्य नियम को प्राथमिकता नहीं दी जाती है (सरलता या कम्प्यूटेशनल दक्षता के कारणों को छोड़कर), क्योंकि परिभाषा के अनुसार कुछ अन्य नियम हैं जो ''सभी'' के लिए समान या कम जोखिम प्राप्त करेंगे। <math>\theta\,\!</math>. | एक अस्वीकार्य नियम को प्राथमिकता नहीं दी जाती है (सरलता या कम्प्यूटेशनल दक्षता के कारणों को छोड़कर), क्योंकि परिभाषा के अनुसार कुछ अन्य नियम हैं जो ''सभी'' के लिए समान या कम जोखिम प्राप्त करेंगे। <math>\theta\,\!</math>. किन्तु सिर्फ इसलिए कि एक नियम <math>\delta\,\!</math> स्वीकार्य है इसका मतलब यह नहीं है कि यह उपयोग करने के लिए एक अच्छा नियम है। स्वीकार्य होने का मतलब है कि कोई अन्य एकल नियम नहीं है जो सदैव उतना अच्छा या बेहतर हो - किन्तु अन्य स्वीकार्य नियम अधिकांश लोगों के लिए कम जोखिम प्राप्त कर सकते हैं <math>\theta\,\!</math> जो व्यवहार में घटित होता है। (नीचे चर्चा किया गया बेयस जोखिम स्पष्ट रूप से विचार करने का एक विधि है <math>\theta\,\!</math> व्यवहार में घटित होता है।) | ||
==बेयस नियम और सामान्यीकृत बेयस नियम== | ==बेयस नियम और सामान्यीकृत बेयस नियम== | ||
{{See also| | {{See also|बेयस अनुमानक स्वीकार्यता}} | ||
===बेयस नियम=== | ===बेयस नियम=== | ||
होने देना <math>\pi(\theta)\,\!</math> प्रकृति की अवस्थाओं पर संभाव्यता वितरण बनें। बायेसियन संभाव्यता दृष्टिकोण से, हम इसे [[पूर्व वितरण]] के रूप में मानेंगे। अर्थात्, डेटा के अवलोकन से पहले, यह प्रकृति की अवस्थाओं पर हमारा माना हुआ संभाव्यता वितरण है। [[आवृत्ति संभाव्यता]] के लिए, यह केवल एक | होने देना <math>\pi(\theta)\,\!</math> प्रकृति की अवस्थाओं पर संभाव्यता वितरण बनें। बायेसियन संभाव्यता दृष्टिकोण से, हम इसे [[पूर्व वितरण]] के रूप में मानेंगे। अर्थात्, डेटा के अवलोकन से पहले, यह प्रकृति की अवस्थाओं पर हमारा माना हुआ संभाव्यता वितरण है। [[आवृत्ति संभाव्यता]] के लिए, यह केवल एक फलन है <math>\Theta\,\!</math> ऐसी किसी विशेष व्याख्या के बिना। निर्णय नियम का बेयस जोखिम <math>\delta\,\!</math> इसके संबंध में <math>\pi(\theta)\,\!</math> अपेक्षा है | ||
:<math>r(\pi,\delta)=\operatorname{E}_{\pi(\theta)}[R(\theta,\delta)].\,\!</math> | :<math>r(\pi,\delta)=\operatorname{E}_{\pi(\theta)}[R(\theta,\delta)].\,\!</math> | ||
एक निर्णय नियम <math>\delta\,\!</math> वह न्यूनतम करता है <math>r(\pi,\delta)\,\!</math> के संबंध में [[बेयस अनुमानक]] कहा जाता है <math>\pi(\theta)\,\!</math> | एक निर्णय नियम <math>\delta\,\!</math> वह न्यूनतम करता है <math>r(\pi,\delta)\,\!</math> के संबंध में [[बेयस अनुमानक]] कहा जाता है <math>\pi(\theta)\,\!</math> ऐसे एक से अधिक बेयस नियम हो सकते हैं। यदि बेयस जोखिम सभी के लिए अनंत है <math>\delta\,\!</math>, तो कोई बेयस नियम परिभाषित नहीं है। | ||
===सामान्यीकृत बेयस नियम=== | ===सामान्यीकृत बेयस नियम=== | ||
{{See also| | {{See also|बेयस अनुमानक सामान्यीकृत बेयस अनुमानक}} | ||
निर्णय सिद्धांत के बायेसियन दृष्टिकोण में, देखा गया <math>x\,\!</math> तय माना जाता है. जबकि बारंबारवादी दृष्टिकोण (यानी, जोखिम) संभावित नमूनों पर औसत रहता है <math>x \in \mathcal{X}\,\!</math>, बायेसियन देखे गए नमूने को ठीक कर देगा <math>x\,\!</math> और परिकल्पनाओं पर औसत <math>\theta \in \Theta\,\!</math>. इस प्रकार, बायेसियन दृष्टिकोण हमारे अवलोकन के लिए विचार करने योग्य है <math>x\,\!</math> हानि | निर्णय सिद्धांत के बायेसियन दृष्टिकोण में, देखा गया <math>x\,\!</math> तय माना जाता है. जबकि बारंबारवादी दृष्टिकोण (यानी, जोखिम) संभावित नमूनों पर औसत रहता है <math>x \in \mathcal{X}\,\!</math>, बायेसियन देखे गए नमूने को ठीक कर देगा <math>x\,\!</math> और परिकल्पनाओं पर औसत <math>\theta \in \Theta\,\!</math>. इस प्रकार, बायेसियन दृष्टिकोण हमारे अवलोकन के लिए विचार करने योग्य है <math>x\,\!</math> हानि फलन #अपेक्षित हानि | ||
:<math>\rho(\pi,\delta \mid x)=\operatorname{E}_{\pi(\theta \mid x)} [ L(\theta,\delta(x)) ]. \,\!</math> | :<math>\rho(\pi,\delta \mid x)=\operatorname{E}_{\pi(\theta \mid x)} [ L(\theta,\delta(x)) ]. \,\!</math> | ||
Line 36: | Line 35: | ||
प्रत्येक दिए गए के लिए अपेक्षित हानि को स्पष्ट करना <math>x\,\!</math> अलग से, हम एक निर्णय नियम को परिभाषित कर सकते हैं <math>\delta\,\!</math> प्रत्येक के लिए निर्दिष्ट करके <math>x\,\!</math> एक कार्यवाही <math>\delta(x)\,\!</math> जो अपेक्षित हानि को कम करता है। इसके संबंध में इसे सामान्यीकृत बेयस नियम के रूप में जाना जाता है <math>\pi(\theta)\,\!</math>. एक से अधिक सामान्यीकृत बेयस नियम हो सकते हैं, क्योंकि कई विकल्प हो सकते हैं <math>\delta(x)\,\!</math> जिससे वही अपेक्षित हानि प्राप्त होती है। | प्रत्येक दिए गए के लिए अपेक्षित हानि को स्पष्ट करना <math>x\,\!</math> अलग से, हम एक निर्णय नियम को परिभाषित कर सकते हैं <math>\delta\,\!</math> प्रत्येक के लिए निर्दिष्ट करके <math>x\,\!</math> एक कार्यवाही <math>\delta(x)\,\!</math> जो अपेक्षित हानि को कम करता है। इसके संबंध में इसे सामान्यीकृत बेयस नियम के रूप में जाना जाता है <math>\pi(\theta)\,\!</math>. एक से अधिक सामान्यीकृत बेयस नियम हो सकते हैं, क्योंकि कई विकल्प हो सकते हैं <math>\delta(x)\,\!</math> जिससे वही अपेक्षित हानि प्राप्त होती है। | ||
सबसे पहले, यह पिछले अनुभाग के बेयस नियम दृष्टिकोण से भिन्न प्रतीत हो सकता है, सामान्यीकरण नहीं। | सबसे पहले, यह पिछले अनुभाग के बेयस नियम दृष्टिकोण से भिन्न प्रतीत हो सकता है, सामान्यीकरण नहीं। चूँकि , ध्यान दें कि बेयस जोखिम पहले ही औसत हो चुका है <math>\Theta\,\!</math> बायेसियन फैशन में, और उम्मीद खत्म होने पर बेयस जोखिम की भरपाई की जा सकती है <math>\mathcal{X}</math> अपेक्षित हानि का (जहाँ <math>x\sim\theta\,\!</math> और <math>\theta\sim\pi\,\!</math>). मोटे तौर पर, <math>\delta\,\!</math> अपेक्षित हानि की इस अपेक्षा को कम करता है (अर्थात्, एक बेयस नियम है) यदि और केवल यदि यह प्रत्येक के लिए अपेक्षित हानि को कम करता है <math>x \in \mathcal{X}</math> अलग से (अर्थात्, एक सामान्यीकृत बेयस नियम है)। | ||
तो फिर सामान्यीकृत बेयस नियम की धारणा में सुधार क्यों है? यह वास्तव में बेयस नियम की धारणा के बराबर है जब एक बेयस नियम | तो फिर सामान्यीकृत बेयस नियम की धारणा में सुधार क्यों है? यह वास्तव में बेयस नियम की धारणा के बराबर है जब एक बेयस नियम सम्मलित होता है <math>x\,\!</math> सकारात्मक संभावना है. चूँकि , यदि बेयस जोखिम अनंत है (सभी के लिए) तो कोई बेयस नियम सम्मलित नहीं है <math>\delta\,\!</math>). इस स्थिति में सामान्यीकृत बेयस नियम को परिभाषित करना अभी भी उपयोगी है <math>\delta\,\!</math>, जो कम से कम न्यूनतम-अपेक्षित-नुकसान वाली कार्रवाई चुनता है <math>\delta(x)\!\,</math> उन लोगों के लिए <math>x\,\!</math> जिसके लिए एक सीमित-अपेक्षित-हानि कार्रवाई सम्मलित होता है। इसके अतिरिक्त, एक सामान्यीकृत बेयस नियम वांछनीय हो सकता है क्योंकि इसमें न्यूनतम-अपेक्षित-नुकसान वाली कार्रवाई का चयन करना होगा <math>\delta(x)\,\!</math> हरएक के लिए <math>x\,\!</math>, जबकि बेयस नियम को सेट पर इस नीति से विचलित होने की अनुमति दी जाएगी <math>X \subseteq \mathcal{X}</math> बेयस जोखिम को प्रभावित किए बिना माप 0 का। | ||
अधिक महत्वपूर्ण बात यह है कि कभी-कभी अनुचित पूर्व का उपयोग करना सुविधाजनक होता है <math>\pi(\theta)\,\!</math>. इस | अधिक महत्वपूर्ण बात यह है कि कभी-कभी अनुचित पूर्व का उपयोग करना सुविधाजनक होता है <math>\pi(\theta)\,\!</math>. इस स्थिति में, बेयस जोखिम भी अच्छी तरह से परिभाषित नहीं है, न ही कोई अच्छी तरह से परिभाषित वितरण है <math>x\,\!</math>. चूँकि , पश्च <math>\pi(\theta\mid x)\,\!</math>-और इसलिए अपेक्षित हानि-प्रत्येक के लिए अच्छी तरह से परिभाषित हो सकती है <math>x\,\!</math>, ताकि सामान्यीकृत बेयस नियम को परिभाषित करना अभी भी संभव हो सके। | ||
===(सामान्यीकृत) बेयस नियमों की स्वीकार्यता=== | ===(सामान्यीकृत) बेयस नियमों की स्वीकार्यता=== | ||
संपूर्ण वर्ग प्रमेयों के अनुसार, हल्की परिस्थितियों में प्रत्येक स्वीकार्य नियम एक (सामान्यीकृत) बेयस नियम है (कुछ पूर्व के संबंध में) <math>\pi(\theta)\,\!</math>- संभवतः एक अनुचित - जो वितरण का पक्ष लेता है <math>\theta\,\!</math> जहां वह नियम कम जोखिम प्राप्त करता है)। इस प्रकार, बारंबारतावादी [[निर्णय सिद्धांत]] में केवल (सामान्यीकृत) बेयस नियमों पर विचार करना पर्याप्त है। | संपूर्ण वर्ग प्रमेयों के अनुसार, हल्की परिस्थितियों में प्रत्येक स्वीकार्य नियम एक (सामान्यीकृत) बेयस नियम है (कुछ पूर्व के संबंध में) <math>\pi(\theta)\,\!</math>- संभवतः एक अनुचित - जो वितरण का पक्ष लेता है <math>\theta\,\!</math> जहां वह नियम कम जोखिम प्राप्त करता है)। इस प्रकार, बारंबारतावादी [[निर्णय सिद्धांत]] में केवल (सामान्यीकृत) बेयस नियमों पर विचार करना पर्याप्त है। | ||
इसके विपरीत, जबकि उचित पुजारियों के संबंध में बेयस नियम वस्तुतः | इसके विपरीत, जबकि उचित पुजारियों के संबंध में बेयस नियम वस्तुतः सदैव स्वीकार्य होते हैं, पूर्व संभाव्यता अनुचित पुजारियों के अनुरूप सामान्यीकृत बेयस नियमों को स्वीकार्य प्रक्रियाएं प्रदान करने की आवश्यकता नहीं होती है। स्टीन का उदाहरण ऐसी ही एक प्रसिद्ध स्थिति है। | ||
==उदाहरण== | ==उदाहरण== | ||
जेम्स-स्टीन अनुमानक | जेम्स-स्टीन अनुमानक गॉसियन यादृच्छिक वैक्टर के माध्य का एक गैर-रेखीय अनुमानक है जिसे माध्य-वर्ग त्रुटि हानि फलन के संबंध में सामान्य न्यूनतम वर्ग तकनीक पर हावी होने या बेहतर प्रदर्शन करने के लिए दिखाया जा सकता है।<ref>{{harvnb|Cox|Hinkley|1974|loc=Section 11.8}}</ref> इस प्रकार इस संदर्भ में न्यूनतम वर्ग अनुमान एक स्वीकार्य अनुमान प्रक्रिया नहीं है। [[सामान्य वितरण]] से जुड़े कुछ अन्य मानक अनुमान भी अस्वीकार्य हैं: उदाहरण के लिए, जनसंख्या माध्य और विचरण अज्ञात होने पर [[नमूना विचरण]]।<ref>{{harvnb|Cox|Hinkley|1974|loc=Exercise 11.7}}</ref> | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{Reflist}} | {{Reflist}} |
Revision as of 11:48, 6 July 2023
Part of a series on |
Bayesian statistics |
---|
Posterior = Likelihood × Prior ÷ Evidence |
Background |
Model building |
Posterior approximation |
Estimators |
Evidence approximation |
Model evaluation |
|
सांख्यिकीय निर्णय सिद्धांत में, एक ग्राह्यनिर्णयफलन नियम है जैसे कि कोई अन्य नियम नहीं है जो सदैव इससे अपेक्षाकृत अधिक होता है।[1] (या कम से कम बेहतर और इससे बुरा कभी नहीं), नीचे बेहतर परिभाषित के त्रुटिहीन अर्थ में। यह अवधारणा पेरेटो दक्षता के अनुरूप है।
परिभाषा
सेट को परिभाषित करें (गणित) , और , कहाँ प्रकृति की अवस्थाएँ हैं, संभावित अवलोकन, और जो कार्रवाई की जा सकती है. का एक अवलोकन के रूप में वितरित किया जाता है और इसलिए प्रकृति की स्थिति के बारे में साक्ष्य प्रदान करता है . निर्णय नियम एक फलन है (गणित) , जहां अवलोकन करने पर , हम कार्रवाई करना चुनते हैं .
हानि फलन को भी परिभाषित करें , जो कार्रवाई करने से हमें होने वाले नुकसान को निर्दिष्ट करता है जब प्रकृति की वास्तविक स्थिति है . आमतौर पर हम डेटा देखने के बाद यह कार्रवाई करेंगे , ताकि नुकसान हो . (अपरंपरागत होते हुए भी उपयोगिता फलन के संदर्भ में निम्नलिखित परिभाषाओं को दोबारा बनाना संभव है, जो नुकसान का नकारात्मक है।)
जोखिम फलन को अपेक्षित मूल्य के रूप में परिभाषित करें
चाहे कोई निर्णय नियम हो जोखिम कम होना प्रकृति की वास्तविक स्थिति पर निर्भर करता है . एक निर्णय नियम प्रभुत्वकारी निर्णय नियम एक निर्णय नियम अगर और केवल अगर सभी के लिए , और कुछ के लिए असमानता असमानता (गणित) है .
एक निर्णय नियम स्वीकार्य है (नुकसान फलन के संबंध में) यदि और केवल तभी जब कोई अन्य नियम उस पर हावी न हो; अन्यथा यह अस्वीकार्य है. इस प्रकार उपरोक्त आंशिक आदेश के संबंध में एक स्वीकार्य निर्णय नियम एक अधिकतम तत्व है। एक अस्वीकार्य नियम को प्राथमिकता नहीं दी जाती है (सरलता या कम्प्यूटेशनल दक्षता के कारणों को छोड़कर), क्योंकि परिभाषा के अनुसार कुछ अन्य नियम हैं जो सभी के लिए समान या कम जोखिम प्राप्त करेंगे। . किन्तु सिर्फ इसलिए कि एक नियम स्वीकार्य है इसका मतलब यह नहीं है कि यह उपयोग करने के लिए एक अच्छा नियम है। स्वीकार्य होने का मतलब है कि कोई अन्य एकल नियम नहीं है जो सदैव उतना अच्छा या बेहतर हो - किन्तु अन्य स्वीकार्य नियम अधिकांश लोगों के लिए कम जोखिम प्राप्त कर सकते हैं जो व्यवहार में घटित होता है। (नीचे चर्चा किया गया बेयस जोखिम स्पष्ट रूप से विचार करने का एक विधि है व्यवहार में घटित होता है।)
बेयस नियम और सामान्यीकृत बेयस नियम
बेयस नियम
होने देना प्रकृति की अवस्थाओं पर संभाव्यता वितरण बनें। बायेसियन संभाव्यता दृष्टिकोण से, हम इसे पूर्व वितरण के रूप में मानेंगे। अर्थात्, डेटा के अवलोकन से पहले, यह प्रकृति की अवस्थाओं पर हमारा माना हुआ संभाव्यता वितरण है। आवृत्ति संभाव्यता के लिए, यह केवल एक फलन है ऐसी किसी विशेष व्याख्या के बिना। निर्णय नियम का बेयस जोखिम इसके संबंध में अपेक्षा है
एक निर्णय नियम वह न्यूनतम करता है के संबंध में बेयस अनुमानक कहा जाता है ऐसे एक से अधिक बेयस नियम हो सकते हैं। यदि बेयस जोखिम सभी के लिए अनंत है , तो कोई बेयस नियम परिभाषित नहीं है।
सामान्यीकृत बेयस नियम
निर्णय सिद्धांत के बायेसियन दृष्टिकोण में, देखा गया तय माना जाता है. जबकि बारंबारवादी दृष्टिकोण (यानी, जोखिम) संभावित नमूनों पर औसत रहता है , बायेसियन देखे गए नमूने को ठीक कर देगा और परिकल्पनाओं पर औसत . इस प्रकार, बायेसियन दृष्टिकोण हमारे अवलोकन के लिए विचार करने योग्य है हानि फलन #अपेक्षित हानि
जहाँ अपेक्षा पीछे के भाग से अधिक है दिया गया (से प्राप्त और बेयस प्रमेय का उपयोग करके)।
प्रत्येक दिए गए के लिए अपेक्षित हानि को स्पष्ट करना अलग से, हम एक निर्णय नियम को परिभाषित कर सकते हैं प्रत्येक के लिए निर्दिष्ट करके एक कार्यवाही जो अपेक्षित हानि को कम करता है। इसके संबंध में इसे सामान्यीकृत बेयस नियम के रूप में जाना जाता है . एक से अधिक सामान्यीकृत बेयस नियम हो सकते हैं, क्योंकि कई विकल्प हो सकते हैं जिससे वही अपेक्षित हानि प्राप्त होती है।
सबसे पहले, यह पिछले अनुभाग के बेयस नियम दृष्टिकोण से भिन्न प्रतीत हो सकता है, सामान्यीकरण नहीं। चूँकि , ध्यान दें कि बेयस जोखिम पहले ही औसत हो चुका है बायेसियन फैशन में, और उम्मीद खत्म होने पर बेयस जोखिम की भरपाई की जा सकती है अपेक्षित हानि का (जहाँ और ). मोटे तौर पर, अपेक्षित हानि की इस अपेक्षा को कम करता है (अर्थात्, एक बेयस नियम है) यदि और केवल यदि यह प्रत्येक के लिए अपेक्षित हानि को कम करता है अलग से (अर्थात्, एक सामान्यीकृत बेयस नियम है)।
तो फिर सामान्यीकृत बेयस नियम की धारणा में सुधार क्यों है? यह वास्तव में बेयस नियम की धारणा के बराबर है जब एक बेयस नियम सम्मलित होता है सकारात्मक संभावना है. चूँकि , यदि बेयस जोखिम अनंत है (सभी के लिए) तो कोई बेयस नियम सम्मलित नहीं है ). इस स्थिति में सामान्यीकृत बेयस नियम को परिभाषित करना अभी भी उपयोगी है , जो कम से कम न्यूनतम-अपेक्षित-नुकसान वाली कार्रवाई चुनता है उन लोगों के लिए जिसके लिए एक सीमित-अपेक्षित-हानि कार्रवाई सम्मलित होता है। इसके अतिरिक्त, एक सामान्यीकृत बेयस नियम वांछनीय हो सकता है क्योंकि इसमें न्यूनतम-अपेक्षित-नुकसान वाली कार्रवाई का चयन करना होगा हरएक के लिए , जबकि बेयस नियम को सेट पर इस नीति से विचलित होने की अनुमति दी जाएगी बेयस जोखिम को प्रभावित किए बिना माप 0 का।
अधिक महत्वपूर्ण बात यह है कि कभी-कभी अनुचित पूर्व का उपयोग करना सुविधाजनक होता है . इस स्थिति में, बेयस जोखिम भी अच्छी तरह से परिभाषित नहीं है, न ही कोई अच्छी तरह से परिभाषित वितरण है . चूँकि , पश्च -और इसलिए अपेक्षित हानि-प्रत्येक के लिए अच्छी तरह से परिभाषित हो सकती है , ताकि सामान्यीकृत बेयस नियम को परिभाषित करना अभी भी संभव हो सके।
(सामान्यीकृत) बेयस नियमों की स्वीकार्यता
संपूर्ण वर्ग प्रमेयों के अनुसार, हल्की परिस्थितियों में प्रत्येक स्वीकार्य नियम एक (सामान्यीकृत) बेयस नियम है (कुछ पूर्व के संबंध में) - संभवतः एक अनुचित - जो वितरण का पक्ष लेता है जहां वह नियम कम जोखिम प्राप्त करता है)। इस प्रकार, बारंबारतावादी निर्णय सिद्धांत में केवल (सामान्यीकृत) बेयस नियमों पर विचार करना पर्याप्त है।
इसके विपरीत, जबकि उचित पुजारियों के संबंध में बेयस नियम वस्तुतः सदैव स्वीकार्य होते हैं, पूर्व संभाव्यता अनुचित पुजारियों के अनुरूप सामान्यीकृत बेयस नियमों को स्वीकार्य प्रक्रियाएं प्रदान करने की आवश्यकता नहीं होती है। स्टीन का उदाहरण ऐसी ही एक प्रसिद्ध स्थिति है।
उदाहरण
जेम्स-स्टीन अनुमानक गॉसियन यादृच्छिक वैक्टर के माध्य का एक गैर-रेखीय अनुमानक है जिसे माध्य-वर्ग त्रुटि हानि फलन के संबंध में सामान्य न्यूनतम वर्ग तकनीक पर हावी होने या बेहतर प्रदर्शन करने के लिए दिखाया जा सकता है।[2] इस प्रकार इस संदर्भ में न्यूनतम वर्ग अनुमान एक स्वीकार्य अनुमान प्रक्रिया नहीं है। सामान्य वितरण से जुड़े कुछ अन्य मानक अनुमान भी अस्वीकार्य हैं: उदाहरण के लिए, जनसंख्या माध्य और विचरण अज्ञात होने पर नमूना विचरण।[3]
टिप्पणियाँ
- ↑ Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms. OUP. ISBN 0-19-920613-9 (entry for admissible decision function)
- ↑ Cox & Hinkley 1974, Section 11.8
- ↑ Cox & Hinkley 1974, Exercise 11.7
संदर्भ
- Cox, D. R.; Hinkley, D. V. (1974). Theoretical Statistics. Wiley. ISBN 0-412-12420-3.
- Berger, James O. (1980). Statistical Decision Theory and Bayesian Analysis (2nd ed.). Springer-Verlag. ISBN 0-387-96098-8.
- DeGroot, Morris (2004) [1st. pub. 1970]. Optimal Statistical Decisions. Wiley Classics Library. ISBN 0-471-68029-X.
- Robert, Christian P. (1994). The Bayesian Choice. Springer-Verlag. ISBN 3-540-94296-3.