घातीय भाज्य: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 23: Line 23:
यह योग पारलौकिक है क्योंकि यह एक लिउविले संख्या है।
यह योग पारलौकिक है क्योंकि यह एक लिउविले संख्या है।


[[tetration]] की तरह, वर्तमान में फैक्टोरियल फ़ंक्शन के विपरीत, घातांकीय फैक्टोरियल फ़ंक्शन को [[वास्तविक संख्या]] और उसके तर्क के [[जटिल संख्या]] मानों तक विस्तारित करने की कोई स्वीकृत विधि नहीं है, जिसके लिए [[गामा फ़ंक्शन]] द्वारा ऐसा विस्तार प्रदान किया जाता है। लेकिन इसका विस्तार करना संभव है यदि इसे 1 की पट्टी चौड़ाई में परिभाषित किया गया हो।
[[tetration]] की तरह, वर्तमान में फैक्टोरियल फ़ंक्शन के विपरीत, घातांकीय फैक्टोरियल फ़ंक्शन को [[वास्तविक संख्या]] और उसके तर्क के [[जटिल संख्या]] मानों तक विस्तारित करने की कोई स्वीकृत विधि नहीं है, जिसके लिए [[गामा फ़ंक्शन]] द्वारा ऐसा विस्तार प्रदान किया जाता है। किन्तु इसका विस्तार करना संभव है यदि इसे 1 की पट्टी चौड़ाई में परिभाषित किया गया हो।


इसी प्रकार, 0 पर उचित मान के बारे में भी असहमति है; कोई भी मान पुनरावर्ती परिभाषा के अनुरूप होगा। वास्तविकताओं का सहज विस्तार संतुष्ट करेगा <math>f(0) = f'(1)</math>, जो सख्ती से 0 और 1 के बीच का मान सुझाता है।
इसी प्रकार, 0 पर उचित मान के बारे में भी असहमति है; कोई भी मान पुनरावर्ती परिभाषा के अनुरूप होगा। वास्तविकताओं का सहज विस्तार संतुष्ट करेगा <math>f(0) = f'(1)</math>, जो सख्ती से 0 और 1 के बीच का मान सुझाता है।

Revision as of 18:59, 7 July 2023

घातांकीय भाज्य n − 1 का एक सकारात्मक पूर्णांक n घातांक है, जो बदले में n − 2 की घात तक बढ़ा दिया जाता है, और इसी तरह एक सही-समूहन तरीके से। वह है,

घातीय तथ्यात्मक को पुनरावृत्ति संबंध के साथ भी परिभाषित किया जा सकता है

पहले कुछ घातीय भाज्य हैं 1 (संख्या), 2 (संख्या), 9 (संख्या), 262144, ... (OEISA049384 या OEISA132859). उदाहरण के लिए, 262144 एक घातीय भाज्य है

पुनरावृत्ति संबंध का उपयोग करते हुए, पहले घातीय भाज्य हैं:

1
21=2
32=9
49=262144
5262144 = 6206069878...8212890625 (183231 अंक)

घातांकीय कारख़ाने का नियमित फैक्टोरियल या यहां तक ​​कि हाइपरफैक्टोरियल की तुलना में बहुत तेजी से बढ़ते हैं। 6 के घातांकीय भाज्य में अंकों की संख्या लगभग 5× 10 है183 230.

1 से आगे तक घातांकीय भाज्यों के गुणात्मक व्युत्क्रम का योग निम्नलिखित पारलौकिक संख्या है:

यह योग पारलौकिक है क्योंकि यह एक लिउविले संख्या है।

tetration की तरह, वर्तमान में फैक्टोरियल फ़ंक्शन के विपरीत, घातांकीय फैक्टोरियल फ़ंक्शन को वास्तविक संख्या और उसके तर्क के जटिल संख्या मानों तक विस्तारित करने की कोई स्वीकृत विधि नहीं है, जिसके लिए गामा फ़ंक्शन द्वारा ऐसा विस्तार प्रदान किया जाता है। किन्तु इसका विस्तार करना संभव है यदि इसे 1 की पट्टी चौड़ाई में परिभाषित किया गया हो।

इसी प्रकार, 0 पर उचित मान के बारे में भी असहमति है; कोई भी मान पुनरावर्ती परिभाषा के अनुरूप होगा। वास्तविकताओं का सहज विस्तार संतुष्ट करेगा , जो सख्ती से 0 और 1 के बीच का मान सुझाता है।

संबंधित कार्य, अंकन और परंपराएँ

संदर्भ