ऋणात्मक बहुपद वितरण: Difference between revisions
m (Abhishek moved page नकारात्मक बहुपद वितरण to ऋणात्मक बहुपद वितरण without leaving a redirect) |
No edit summary |
||
Line 17: | Line 17: | ||
संभाव्यता सिद्धांत और आंकड़ों में, ऋणात्मक बहुपद वितरण दो से अधिक परिणामों के लिए ऋणात्मक | संभाव्यता सिद्धांत और आंकड़ों में, ऋणात्मक बहुपद वितरण दो से अधिक परिणामों के लिए '''ऋणात्मक बहुपद वितरण''' (NB(''x''<sub>0</sub>, ''p'')) का एक सामान्यीकरण है।<ref name="LeGall">Le Gall, F. The modes of a negative multinomial distribution, Statistics & Probability Letters, Volume 76, Issue 6, 15 March 2006, Pages 619-624, ISSN 0167-7152, [http://www.sciencedirect.com/science/article/B6V1D-4H7T8P0-1/2/54b376fc96fdd6ad4331325a822df997 10.1016/j.spl.2005.09.009].</ref> | ||
इस प्रकार अविभाज्य ऋणात्मक | इस प्रकार अविभाज्य ऋणात्मक बहुपद वितरण के साथ, यदि पैरामीटर <math>x_0</math> एक धनात्मक पूर्णांक है, तो ऋणात्मक बहुपद वितरण में एक कलश मॉडल व्याख्या होती है। मान लीजिए कि हमारे पास एक प्रयोग है जो ''m''+1≥2 संभावित परिणाम, {''X''<sub>0</sub>,...,''X<sub>m</sub>''} उत्पन्न करता है, प्रत्येक क्रमशः गैर-ऋणात्मक संभावनाओं {''p''<sub>0</sub>,...,''p<sub>m</sub>''} के साथ होता है। यदि नमूनाकरण n अवलोकन किए जाने तक जारी रहता, तो {''X''<sub>0</sub>,...,''X<sub>m</sub>''} को बहुपद रूप से वितरित किया गया होता। चूँकि , यदि ''X''<sub>0</sub> पूर्व निर्धारित मान ''X''<sub>0</sub> पर पहुँच जाता है (यह मानते हुए कि ''X''<sub>0</sub> एक धनात्मक पूर्णांक है) तो प्रयोग रोक दिया जाता है, तो m-tuple {''X''<sub>1</sub>,...,''X<sub>m</sub>''} का वितरण ऋणात्मक बहुपद है। ये चर बहुपद रूप से वितरित नहीं हैं क्योंकि उनका योग ''X''<sub>1</sub>+...+''X<sub>m</sub>'' निश्चित नहीं है, जो एक ऋणात्मक बहुपद वितरण से लिया गया है। | ||
==गुण == | ==गुण == | ||
Line 46: | Line 46: | ||
<math display="block">q = 1-\sum_i p_i^{(2)} = p_0+\sum_i p_i^{(1)}</math><math>\boldsymbol X^{(1)}</math> का सीमांत वितरण <math>\mathrm{NM}(x_0,p_0/q, \boldsymbol p^{(1)}/q )</math> है। अथार्त सीमांत वितरण भी ऋणात्मक बहुपद है तथा जिसमें <math>\boldsymbol p^{(2)}</math> को हटा दिया गया है और शेष पी को उचित रूप से स्केल किया गया है जिससे एक में जोड़ा जा सकता है। | <math display="block">q = 1-\sum_i p_i^{(2)} = p_0+\sum_i p_i^{(1)}</math><math>\boldsymbol X^{(1)}</math> का सीमांत वितरण <math>\mathrm{NM}(x_0,p_0/q, \boldsymbol p^{(1)}/q )</math> है। अथार्त सीमांत वितरण भी ऋणात्मक बहुपद है तथा जिसमें <math>\boldsymbol p^{(2)}</math> को हटा दिया गया है और शेष पी को उचित रूप से स्केल किया गया है जिससे एक में जोड़ा जा सकता है। | ||
कहा जाता है कि अविभाज्य सीमांत <math>m=1</math> का ऋणात्मक | कहा जाता है कि अविभाज्य सीमांत <math>m=1</math> का ऋणात्मक बहुपद वितरण होता है। | ||
===नियमित वितरण === | ===नियमित वितरण === | ||
Line 92: | Line 92: | ||
==संबंधित वितरण == | ==संबंधित वितरण == | ||
* ऋणात्मक | * ऋणात्मक बहुपद वितरण | ||
* बहुपद वितरण | * बहुपद वितरण | ||
* व्युत्क्रम डिरिक्लेट वितरण, ऋणात्मक बहुपद के लिए एक संयुग्म पूर्व | * व्युत्क्रम डिरिक्लेट वितरण, ऋणात्मक बहुपद के लिए एक संयुग्म पूर्व | ||
Line 104: | Line 104: | ||
==अग्रिम पठन== | ==अग्रिम पठन== | ||
{{cite book | last1=Johnson | first1= Norman L. | last2=Kotz | first2=Samuel | last3= Balakrishnan | first3=N.| title=Discrete Multivariate Distributions | chapter=Chapter 36: Negative Multinomial and Other Multinomial-Related Distributions | year=1997 | publisher=Wiley | isbn=978-0-471-12844-1 | {{cite book | last1=Johnson | first1= Norman L. | last2=Kotz | first2=Samuel | last3= Balakrishnan | first3=N.| title=Discrete Multivariate Distributions | chapter=Chapter 36: Negative Multinomial and Other Multinomial-Related Distributions | year=1997 | publisher=Wiley | isbn=978-0-471-12844-1}} | ||
{{DEFAULTSORT:Negative Multinomial Distribution}}[[Category: भाज्य और द्विपद विषय]] [[Category: बहुभिन्नरूपी असतत वितरण]] | {{DEFAULTSORT:Negative Multinomial Distribution}}[[Category: भाज्य और द्विपद विषय]] [[Category: बहुभिन्नरूपी असतत वितरण]] |
Revision as of 13:19, 12 July 2023
Notation | |||
---|---|---|---|
Parameters |
— the number of failures before the experiment is stopped, ∈ Rm — m-vector of "success" probabilities, p0 = 1 − (p1+…+pm) — the probability of a "failure". | ||
Support | |||
PMF |
where Γ(x) is the Gamma function. | ||
Mean | |||
Variance | |||
MGF | |||
CF |
संभाव्यता सिद्धांत और आंकड़ों में, ऋणात्मक बहुपद वितरण दो से अधिक परिणामों के लिए ऋणात्मक बहुपद वितरण (NB(x0, p)) का एक सामान्यीकरण है।[1]
इस प्रकार अविभाज्य ऋणात्मक बहुपद वितरण के साथ, यदि पैरामीटर एक धनात्मक पूर्णांक है, तो ऋणात्मक बहुपद वितरण में एक कलश मॉडल व्याख्या होती है। मान लीजिए कि हमारे पास एक प्रयोग है जो m+1≥2 संभावित परिणाम, {X0,...,Xm} उत्पन्न करता है, प्रत्येक क्रमशः गैर-ऋणात्मक संभावनाओं {p0,...,pm} के साथ होता है। यदि नमूनाकरण n अवलोकन किए जाने तक जारी रहता, तो {X0,...,Xm} को बहुपद रूप से वितरित किया गया होता। चूँकि , यदि X0 पूर्व निर्धारित मान X0 पर पहुँच जाता है (यह मानते हुए कि X0 एक धनात्मक पूर्णांक है) तो प्रयोग रोक दिया जाता है, तो m-tuple {X1,...,Xm} का वितरण ऋणात्मक बहुपद है। ये चर बहुपद रूप से वितरित नहीं हैं क्योंकि उनका योग X1+...+Xm निश्चित नहीं है, जो एक ऋणात्मक बहुपद वितरण से लिया गया है।
गुण
सीमांत वितरण
यदि m-आयामी 'x' को निम्नानुसार विभाजित किया गया है
कहा जाता है कि अविभाज्य सीमांत का ऋणात्मक बहुपद वितरण होता है।
नियमित वितरण
नियमित _संभावना_वितरण दिया गया है . है,
स्वतंत्र योग
यदि और यदि तो स्वतंत्रता (संभावना सिद्धांत) हैं जो की . इसी तरह और इसके विपरीत, विशेषता फलन से यह देखना आसान है कि ऋणात्मक बहुपद अनंत विभाज्यता (संभावना) है।
एकत्रीकरण
यदि
सहसंबंध आव्यूह
सहसंबंध आव्यूह या सहसंबंध आव्यूह की प्रविष्टियाँ हैं
पैरामीटर अनुमान
क्षणों की विधि
यदि हम ऋणात्मक बहुपद का माध्य सदिश होने दें
संबंधित वितरण
- ऋणात्मक बहुपद वितरण
- बहुपद वितरण
- व्युत्क्रम डिरिक्लेट वितरण, ऋणात्मक बहुपद के लिए एक संयुग्म पूर्व
- डिरिचलेट ऋणात्मक बहुपद वितरण
संदर्भ
- ↑ Le Gall, F. The modes of a negative multinomial distribution, Statistics & Probability Letters, Volume 76, Issue 6, 15 March 2006, Pages 619-624, ISSN 0167-7152, 10.1016/j.spl.2005.09.009.
Waller LA and Zelterman D. (1997). Log-linear modeling with the negative multi- nomial distribution. Biometrics 53: 971–82.
अग्रिम पठन
Johnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1997). "Chapter 36: Negative Multinomial and Other Multinomial-Related Distributions". Discrete Multivariate Distributions. Wiley. ISBN 978-0-471-12844-1.