जॉर्डन सामान्य रूप: Difference between revisions
(Created page with "{{short description|Form of a matrix indicating its eigenvalues and their algebraic multiplicities}} File:Jordan canonical form.svg|thumb|360px|जॉर्डन साम...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Form of a matrix indicating its eigenvalues and their algebraic multiplicities}} | {{short description|Form of a matrix indicating its eigenvalues and their algebraic multiplicities}} | ||
[[File:Jordan canonical form.svg|thumb|360px|जॉर्डन सामान्य रूप में | [[File:Jordan canonical form.svg|thumb|360px|जॉर्डन सामान्य रूप में मैट्रिक्स का उदाहरण। नहीं दिखाई गई सभी मैट्रिक्स प्रविष्टियाँ शून्य हैं। रेखांकित वर्गों को जॉर्डन ब्लॉक के रूप में जाना जाता है। प्रत्येक जॉर्डन ब्लॉक में इसके मुख्य विकर्ण पर नंबर लैम्ब्डा होता है, और मुख्य विकर्ण के ऊपर नंबर होता है। लैम्ब्डा मैट्रिक्स के आइगेनवैल्यू हैं; उन्हें अलग होने की आवश्यकता नहीं है.]]रैखिक बीजगणित में, जॉर्डन सामान्य रूप, जिसे जॉर्डन विहित रूप (जेसीएफ) के रूप में भी जाना जाता है,<ref> | ||
Shilov defines the term ''Jordan canonical form'' and in a footnote says that ''Jordan normal form'' is synonymous. | Shilov defines the term ''Jordan canonical form'' and in a footnote says that ''Jordan normal form'' is synonymous. | ||
These terms are sometimes shortened to ''Jordan form''. (Shilov) | These terms are sometimes shortened to ''Jordan form''. (Shilov) | ||
The term ''Classical canonical form'' is also sometimes used in the sense of this article. (James & James, 1976) | The term ''Classical canonical form'' is also sometimes used in the sense of this article. (James & James, 1976) | ||
</ref><ref name="Holt 2009 9">{{harvtxt|Holt|Rumynin|2009|p=9}}</ref> | </ref><ref name="Holt 2009 9">{{harvtxt|Holt|Rumynin|2009|p=9}}</ref> | ||
विशेष रूप का [[ऊपरी त्रिकोणीय मैट्रिक्स]] है जिसे [[जॉर्डन मैट्रिक्स]] कहा जाता है जो कुछ [[आधार (रैखिक बीजगणित)]] के संबंध में [[परिमित-आयामी]] [[सदिश स्थल]] पर [[रैखिक ऑपरेटर]] का प्रतिनिधित्व करता है। ऐसे मैट्रिक्स में प्रत्येक गैर-शून्य ऑफ-विकर्ण प्रविष्टि 1 के बराबर होती है, मुख्य विकर्ण के ठीक ऊपर ([[ अतिविकर्ण | अतिविकर्ण]] पर), और बाईं ओर और उनके नीचे समान विकर्ण प्रविष्टियां होती हैं। | |||
मान लीजिए V | मान लीजिए V क्षेत्र (गणित) K पर सदिश समष्टि है। फिर आधार जिसके संबंध में मैट्रिक्स का आवश्यक रूप मौजूद है, मौजूद है यदि और केवल यदि मैट्रिक्स के सभी [[eigenvalue|इगनवैल्यूज]] K में हैं, या समकक्ष यदि ऑपरेटर की [[विशेषता बहुपद]] है K पर रैखिक गुणनखंडों में विभाजित हो जाता है। यदि K [[बीजगणितीय रूप से बंद]] है (उदाहरण के लिए, यदि यह [[जटिल संख्या]]ओं का क्षेत्र है) तो यह स्थिति हमेशा संतुष्ट होती है। सामान्य रूप की विकर्ण प्रविष्टियाँ इगनवैल्यूज (ऑपरेटर के) हैं, और प्रत्येक इगनवैल्यू होने की संख्या को इगनवैल्यू की [[बीजगणितीय बहुलता]] कहा जाता है। <ref name= Beauregard 1973 310–316 >{{harvtxt|Beauregard|Fraleigh|1973|pp=310–316}}</ref><ref name="Golub 1996 354">{{harvtxt|Golub|Van Loan|1996|p=355}}</ref><संदर्भ नाम = नेरिंग 1970 118-127 >{{harvtxt|Nering|1970|pp=118–127}}</ref> | ||
यदि ऑपरेटर मूल रूप से | यदि ऑपरेटर मूल रूप से [[वर्ग मैट्रिक्स]] एम द्वारा दिया गया है, तो इसके जॉर्डन सामान्य रूप को एम का जॉर्डन सामान्य रूप भी कहा जाता है। किसी भी वर्ग मैट्रिक्स में जॉर्डन सामान्य रूप होता है यदि गुणांक के क्षेत्र को सभी इगनवैल्यूज से युक्त तक बढ़ाया जाता है आव्यूह। इसके नाम के बावजूद, किसी दिए गए एम के लिए सामान्य रूप पूरी तरह से अद्वितीय नहीं है, क्योंकि यह [[जॉर्डन ब्लॉक]] से बना ब्लॉक विकर्ण मैट्रिक्स है, जिसका क्रम निश्चित नहीं है; समान इगनवैल्यू के लिए ब्लॉकों को साथ समूहित करना पारंपरिक है, लेकिन इगनवैल्यूज के बीच कोई क्रम नहीं लगाया जाता है, न ही किसी दिए गए इगनवैल्यू के लिए ब्लॉकों के बीच, हालांकि बाद वाले को कमजोर रूप से घटते आकार के आधार पर ऑर्डर किया जा सकता है।<ref name= Beauregard 1973 310 -316/><ref name="Golub 1996 354"/><रेफ नाम = नेरिंग 1970 118-127 /> | ||
जॉर्डन-चेवेल्ली अपघटन उस आधार के संबंध में विशेष रूप से सरल है जिसके लिए ऑपरेटर अपने जॉर्डन को सामान्य रूप लेता है। [[विकर्णीय]] मैट्रिक्स के लिए विकर्ण रूप, उदाहरण के लिए [[सामान्य मैट्रिक्स]], जॉर्डन सामान्य रूप का | जॉर्डन-चेवेल्ली अपघटन उस आधार के संबंध में विशेष रूप से सरल है जिसके लिए ऑपरेटर अपने जॉर्डन को सामान्य रूप लेता है। [[विकर्णीय]] मैट्रिक्स के लिए विकर्ण रूप, उदाहरण के लिए [[सामान्य मैट्रिक्स]], जॉर्डन सामान्य रूप का विशेष मामला है।<ref>{{harvtxt|Beauregard|Fraleigh|1973|pp=270–274}}</ref><ref>{{harvtxt|Golub|Van Loan|1996|p=353}}</ref><ref>{{harvtxt|Nering|1970|pp=113–118}}</ref> | ||
जॉर्डन सामान्य रूप का नाम [[केमिली जॉर्डन]] के नाम पर रखा गया है, जिन्होंने पहली बार 1870 में जॉर्डन अपघटन प्रमेय को बताया था।<ref name="Brechenmacher-thesis">Brechenmacher, [https://tel.archives-ouvertes.fr/tel-00142786 "Histoire du théorème de Jordan de la décomposition matricielle (1870-1930). Formes de représentation et méthodes de décomposition"], Thesis, 2007</ref> | जॉर्डन सामान्य रूप का नाम [[केमिली जॉर्डन]] के नाम पर रखा गया है, जिन्होंने पहली बार 1870 में जॉर्डन अपघटन प्रमेय को बताया था।<ref name="Brechenmacher-thesis">Brechenmacher, [https://tel.archives-ouvertes.fr/tel-00142786 "Histoire du théorème de Jordan de la décomposition matricielle (1870-1930). Formes de représentation et méthodes de décomposition"], Thesis, 2007</ref> | ||
Line 22: | Line 22: | ||
=== प्रेरणा === | === प्रेरणा === | ||
n × n मैट्रिक्स A [[विकर्णीय मैट्रिक्स]] है यदि और केवल यदि ईजेनस्पेस के आयामों का योग n है। या, समकक्ष रूप से, यदि और केवल यदि A में n [[रैखिक रूप से स्वतंत्र]] [[eigenvectors|इगनवेक्टर्स]] हैं। सभी आव्यूह विकर्णीय नहीं होते; वे आव्यूह जो विकर्णीय नहीं होते, दोषपूर्ण आव्यूह आव्यूह कहलाते हैं। निम्नलिखित मैट्रिक्स पर विचार करें: | |||
: <math>A = | : <math>A = | ||
Line 32: | Line 32: | ||
\end{array}\right]. | \end{array}\right]. | ||
</math> | </math> | ||
बहुलता सहित, A के | बहुलता सहित, A के इगनवैल्यूज λ = 1, 2, 4, 4 हैं। इगनवैल्यू 4 के अनुरूप इगनस्पेस का Hamel आयाम 1 (और 2 नहीं) है, इसलिए A विकर्णीय नहीं है। हालाँकि, व्युत्क्रमणीय मैट्रिक्स P इस प्रकार है कि J = P<sup>−1</sup>एपी, कहां | ||
:<math>J = \begin{bmatrix} | :<math>J = \begin{bmatrix} | ||
Line 44: | Line 44: | ||
==संमिश्र आव्यूह == | ==संमिश्र आव्यूह == | ||
सामान्य तौर पर, | सामान्य तौर पर, वर्ग जटिल मैट्रिक्स ए ब्लॉक विकर्ण मैट्रिक्स के [[समान (रैखिक बीजगणित)]] होता है | ||
:<math>J = \begin{bmatrix} | :<math>J = \begin{bmatrix} | ||
Line 50: | Line 50: | ||
\; & \ddots & \; \\ | \; & \ddots & \; \\ | ||
\; & \; & J_p\end{bmatrix}</math> | \; & \; & J_p\end{bmatrix}</math> | ||
जहां प्रत्येक ब्लॉक जे<sub>i</sub>प्रपत्र का | जहां प्रत्येक ब्लॉक जे<sub>i</sub>प्रपत्र का वर्ग मैट्रिक्स है | ||
:<math>J_i = | :<math>J_i = | ||
Line 59: | Line 59: | ||
\; & \; & \; & \lambda_i | \; & \; & \; & \lambda_i | ||
\end{bmatrix}.</math> | \end{bmatrix}.</math> | ||
तो | तो व्युत्क्रमणीय मैट्रिक्स P मौजूद है जैसे कि P<sup>−1</sup>AP = J ऐसा है कि J की केवल गैर-शून्य प्रविष्टियाँ विकर्ण और अतिविकर्ण पर हैं। J को A का 'जॉर्डन सामान्य रूप' कहा जाता है। प्रत्येक J<sub>''i''</sub> ए का जॉर्डन ब्लॉक कहा जाता है। किसी दिए गए जॉर्डन ब्लॉक में, सुपरडायगोनल पर प्रत्येक प्रविष्टि 1 है। | ||
इस परिणाम को मानते हुए, हम निम्नलिखित गुण निकाल सकते हैं: | इस परिणाम को मानते हुए, हम निम्नलिखित गुण निकाल सकते हैं: | ||
* बहुलताओं की गणना करते हुए, J के | * बहुलताओं की गणना करते हुए, J के इगनवैल्यूज , और इसलिए A के, विकर्ण प्रविष्टियाँ हैं। | ||
* | * इगनवैल्यू λ दिया गया है<sub>''i''</sub>, इसकी [[ज्यामितीय बहुलता]] ker(''A'' − ''λ'' का आयाम है<sub>''i'' </sub>I), जहां I पहचान मैट्रिक्स है, और यह λ के अनुरूप जॉर्डन ब्लॉक की संख्या है<sub>''i''</sub>.<ref name="HJp321">{{harvtxt|Horn|Johnson|1985|loc=§3.2.1}}</ref> | ||
* | * इगनवैल्यू λ के अनुरूप सभी जॉर्डन ब्लॉकों के आकार का योग<sub>''i''</sub> इसकी बीजगणितीय बहुलता है.<ref name="HJp321" />* A विकर्णीय है यदि और केवल यदि, A के प्रत्येक इगनवैल्यू λ के लिए, इसकी ज्यामितीय और बीजगणितीय बहुलताएं मेल खाती हैं। विशेष रूप से, इस मामले में जॉर्डन ब्लॉक 1 × 1 मैट्रिक्स हैं; अर्थात् अदिश। | ||
* λ के अनुरूप जॉर्डन ब्लॉक λI + N के रूप का है, जहां N | * λ के अनुरूप जॉर्डन ब्लॉक λI + N के रूप का है, जहां N [[निलपोटेंट मैट्रिक्स]] है जिसे N के रूप में परिभाषित किया गया है<sub>''ij''</sub> =डी<sub>i</sub><sub>,''j''−1</sub> (जहाँ δ [[क्रोनकर डेल्टा]] है)। एफ(ए) की गणना करते समय एन की शून्यक्षमता का उपयोग किया जा सकता है जहां एफ जटिल विश्लेषणात्मक कार्य है। उदाहरण के लिए, सिद्धांत रूप में जॉर्डन फॉर्म घातीय exp(A) के लिए बंद-फॉर्म अभिव्यक्ति दे सकता है। | ||
* कम से कम j आकार के λ के अनुरूप जॉर्डन ब्लॉकों की संख्या मंद केर (A − λI) है<sup>j</sup> − dim ker(A − λI)<sup>ज</sup><sup>−1</sup>. इस प्रकार, j आकार के जॉर्डन ब्लॉकों की संख्या है | * कम से कम j आकार के λ के अनुरूप जॉर्डन ब्लॉकों की संख्या मंद केर (A − λI) है<sup>j</sup> − dim ker(A − λI)<sup>ज</sup><sup>−1</sup>. इस प्रकार, j आकार के जॉर्डन ब्लॉकों की संख्या है | ||
*:<math>2 \dim \ker (A - \lambda_i I)^j - \dim \ker (A - \lambda_i I)^{j+1} - \dim \ker (A - \lambda_i I)^{j-1}</math> | *:<math>2 \dim \ker (A - \lambda_i I)^j - \dim \ker (A - \lambda_i I)^{j+1} - \dim \ker (A - \lambda_i I)^{j-1}</math> | ||
* | * इगनवैल्यू λ दिया गया है<sub>''i''</sub>, न्यूनतम बहुपद में इसकी बहुलता इसके सबसे बड़े जॉर्डन ब्लॉक के आकार के बराबर है। | ||
=== उदाहरण === | === उदाहरण === | ||
Line 88: | Line 88: | ||
:<math> (A - 4 I) p_3 = 0 </math> | :<math> (A - 4 I) p_3 = 0 </math> | ||
:<math> (A - 4 I) p_4 = p_3. </math> | :<math> (A - 4 I) p_4 = p_3. </math> | ||
के लिए <math>i = 1,2,3</math> अपने पास <math>p_i \in \ker(A-\lambda_{i} I)</math>, वह है, <math>p_i</math> का | के लिए <math>i = 1,2,3</math> अपने पास <math>p_i \in \ker(A-\lambda_{i} I)</math>, वह है, <math>p_i</math> का इगनवेक्टर है <math>A</math> इगनवैल्यू के अनुरूप <math>\lambda_i</math>. के लिए <math>i=4</math>, दोनों पक्षों को गुणा करने पर <math>(A-4I)</math> देता है | ||
:<math> (A-4I)^2 p_4 = (A-4I) p_3. </math> | :<math> (A-4I)^2 p_4 = (A-4I) p_3. </math> | ||
लेकिन <math>(A-4I)p_3 = 0</math>, इसलिए | लेकिन <math>(A-4I)p_3 = 0</math>, इसलिए | ||
:<math> (A-4I)^2 p_4 = 0. </math> | :<math> (A-4I)^2 p_4 = 0. </math> | ||
इस प्रकार, <math>p_4 \in \ker(A-4 I)^2.</math> | इस प्रकार, <math>p_4 \in \ker(A-4 I)^2.</math> | ||
वेक्टर जैसे <math>p_4</math> A के [[सामान्यीकृत eigenvector]] | वेक्टर जैसे <math>p_4</math> A के [[सामान्यीकृत eigenvector|सामान्यीकृत इगनवेक्टर्स]] कहलाते हैं। | ||
=== उदाहरण: सामान्य रूप प्राप्त करना === | === उदाहरण: सामान्य रूप प्राप्त करना === | ||
Line 111: | Line 111: | ||
A का अभिलक्षणिक बहुपद है | A का अभिलक्षणिक बहुपद है | ||
:<math> \begin{align} \chi(\lambda) & = \det(\lambda I - A) \\ & = \lambda^4 - 11 \lambda^3 + 42 \lambda^2 - 64 \lambda + 32 \\ & = (\lambda-1)(\lambda-2)(\lambda-4)^2. \, \end{align} </math> | :<math> \begin{align} \chi(\lambda) & = \det(\lambda I - A) \\ & = \lambda^4 - 11 \lambda^3 + 42 \lambda^2 - 64 \lambda + 32 \\ & = (\lambda-1)(\lambda-2)(\lambda-4)^2. \, \end{align} </math> | ||
इससे पता चलता है कि बीजगणितीय बहुलता के अनुसार | इससे पता चलता है कि बीजगणितीय बहुलता के अनुसार इगनवैल्यूज 1, 2, 4 और 4 हैं। इगनवैल्यू 1 के अनुरूप इगनस्पेस समीकरण Av = λv को हल करके पाया जा सकता है। यह कॉलम वेक्टर v = (−1, 1, 0, 0) द्वारा फैलाया गया है<sup>टी</sup>. इसी प्रकार, इगनवैल्यू 2 के संगत इगनस्पेस को w = (1, −1, 0, 1) द्वारा फैलाया गया है।<sup>टी</sup>. अंत में, इगनवैल्यू 4 के अनुरूप इगनस्पेस भी एक-आयामी है (भले ही यह दोहरा इगनवैल्यू है) और x = (1, 0, −1, 1) द्वारा फैला हुआ है<sup>टी</sup>. तो, तीनों इगनवैल्यूज में से प्रत्येक की ज्यामितीय बहुलता (यानी, दिए गए इगनवैल्यू के इगनस्पेस का आयाम) है। इसलिए, 4 के बराबर दो इगनवैल्यूज एकल जॉर्डन ब्लॉक के अनुरूप हैं, और मैट्रिक्स ए का जॉर्डन सामान्य रूप मैट्रिक्स जोड़ # प्रत्यक्ष योग है | ||
:<math> J = J_1(1) \oplus J_1(2) \oplus J_2(4) = | :<math> J = J_1(1) \oplus J_1(2) \oplus J_2(4) = | ||
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}. </math> | \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}. </math> | ||
तीन सामान्यीकृत ईजेनवेक्टर#जॉर्डन श्रृंखलाएं हैं। दो की लंबाई | तीन सामान्यीकृत ईजेनवेक्टर#जॉर्डन श्रृंखलाएं हैं। दो की लंबाई है: {v} और {w}, जो क्रमशः इगनवैल्यूज 1 और 2 के अनुरूप हैं। इगनवैल्यू 4 के अनुरूप लंबाई दो की श्रृंखला है। इस श्रृंखला को खोजने के लिए, गणना करें | ||
: <math>\ker(A-4I)^2 = \operatorname{span} \, \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \left[ \begin{array}{r} 1 \\ 0 \\ -1 \\ 1 \end{array} \right] \right\}</math> | : <math>\ker(A-4I)^2 = \operatorname{span} \, \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \left[ \begin{array}{r} 1 \\ 0 \\ -1 \\ 1 \end{array} \right] \right\}</math> | ||
जहां I 4 × 4 पहचान मैट्रिक्स है। उपरोक्त अवधि में | जहां I 4 × 4 पहचान मैट्रिक्स है। उपरोक्त अवधि में वेक्टर चुनें जो A − 4I के कर्नेल में नहीं है; उदाहरण के लिए, y = (1,0,0,0)<sup>टी</sup>. अब, (A − 4I)y = x और (A − 4I)x = 0, इसलिए {y, x} इगनवैल्यू 4 के अनुरूप लंबाई दो की श्रृंखला है। | ||
संक्रमण मैट्रिक्स P इस प्रकार है कि P<sup>−1</sup>AP = J इन सदिशों को | संक्रमण मैट्रिक्स P इस प्रकार है कि P<sup>−1</sup>AP = J इन सदिशों को दूसरे के बगल में रखकर इस प्रकार बनाया जाता है | ||
:<math> P = \left[\begin{array}{c|c|c|c} v & w & x & y \end{array}\right] = | :<math> P = \left[\begin{array}{c|c|c|c} v & w & x & y \end{array}\right] = | ||
\left[ \begin{array}{rrrr} | \left[ \begin{array}{rrrr} | ||
Line 126: | Line 126: | ||
0 & 1 & 1 & 0 | 0 & 1 & 1 & 0 | ||
\end{array} \right]. </math> | \end{array} \right]. </math> | ||
गणना से पता चलता है कि समीकरण पी<sup>−1</sup>एपी = जे वास्तव में कायम है। | |||
:<math>P^{-1}AP=J=\begin{bmatrix} | :<math>P^{-1}AP=J=\begin{bmatrix} | ||
Line 133: | Line 133: | ||
0 & 0 & 4 & 1 \\ | 0 & 0 & 4 & 1 \\ | ||
0 & 0 & 0 & 4 \end{bmatrix}.</math> | 0 & 0 & 0 & 4 \end{bmatrix}.</math> | ||
यदि हमने उस क्रम को बदल दिया है जिसमें चेन वैक्टर दिखाई देते हैं, अर्थात, v, w और {x, y} के क्रम को | यदि हमने उस क्रम को बदल दिया है जिसमें चेन वैक्टर दिखाई देते हैं, अर्थात, v, w और {x, y} के क्रम को साथ बदलते हुए, जॉर्डन ब्लॉकों को आपस में बदल दिया जाएगा। हालाँकि, जॉर्डन रूप जॉर्डन रूपों के समकक्ष हैं। | ||
== सामान्यीकृत ईजेनवेक्टर == | == सामान्यीकृत ईजेनवेक्टर == | ||
{{main| | {{main|सामान्यीकृत ईजेनवेक्टर}} | ||
=== | इगनवैल्यू λ दिया गया है, प्रत्येक संबंधित जॉर्डन ब्लॉक रैखिक रूप से स्वतंत्र वैक्टर पी की '[[जॉर्डन श्रृंखला]]' को जन्म देता है<sub>i</sub>, i = 1, ..., b, जहां b जॉर्डन ब्लॉक का आकार है। 'जनरेटर', या 'लीड वेक्टर', पी<sub>b</sub>श्रृंखला का सामान्यीकृत इगनवेक्टर है जैसे कि (A − λ'I')<sup>बी</sup>प<sub>''b''</sub> = 0. वेक्टर पी<sub>1</sub> = (ए - λ'आई')<sup>b−1</sup>p<sub>''b''</sub> λ के अनुरूप साधारण इगनवेक्टर है। सामान्य तौर पर, पी<sub>''i''</sub> पी की पूर्व छवि है<sub>''i''−1</sub> A - λ'I' के अंतर्गत। तो लीड वेक्टर A - λ'I' से गुणा करके श्रृंखला उत्पन्न करता है।<ref>{{harvtxt|Bronson|1970|pp=189,194}}</ref><ref name="Holt 2009 9" />इसलिए यह कथन कि प्रत्येक वर्ग मैट्रिक्स ए को जॉर्डन में सामान्य रूप में रखा जा सकता है, इस दावे के बराबर है कि अंतर्निहित वेक्टर स्थान का आधार जॉर्डन श्रृंखलाओं से बना है। | ||
हम प्रेरण द्वारा | |||
=== प्रमाण === | |||
हम प्रेरण द्वारा प्रमाण देते हैं कि किसी भी जटिल-मूल्य वर्ग मैट्रिक्स ए को जॉर्डन सामान्य रूप में रखा जा सकता है। चूँकि अंतर्निहित सदिश स्थान दिखाया जा सकता है<ref>Roe Goodman and Nolan R. Wallach, ''Representations and Invariants of Classical Groups'', Cambridge UP 1998, Appendix B.1.</ref> इगनवैल्यूज से जुड़े अपरिवर्तनीय उप-स्थानों का प्रत्यक्ष योग होने के लिए, A को केवल इगनवैल्यू λ माना जा सकता है। 1×1 मामला मामूली है. मान लीजिए A n × n मैट्रिक्स है। A - λ'I' के फलन की सीमा, जिसे Ran(A - λ'I'' द्वारा निरूपित किया जाता है, A का [[अपरिवर्तनीय उपस्थान]] है। इसके अलावा, चूँकि λ A का इगनवैल्यू है, Ran(A - λ) का आयाम 'I'), r, n से बिल्कुल कम है, इसलिए, आगमनात्मक परिकल्पना के अनुसार, Ran(A - λ'I') का आधार है (रैखिक बीजगणित) {p<sub>1</sub>, …, पी''r''</sub>}जॉर्डन श्रृंखलाओं से बना है। | |||
इसके बाद [[कर्नेल (रैखिक बीजगणित)]] पर विचार करें, यानी, [[रैखिक उपस्थान]] केर (ए − λ'I')। अगर | इसके बाद [[कर्नेल (रैखिक बीजगणित)]] पर विचार करें, यानी, [[रैखिक उपस्थान]] केर (ए − λ'I')। अगर | ||
Line 150: | Line 151: | ||
:<math>Q = \operatorname{Ran}(A - \lambda I) \cap \ker(A - \lambda I) \neq \{0\},</math> | :<math>Q = \operatorname{Ran}(A - \lambda I) \cap \ker(A - \lambda I) \neq \{0\},</math> | ||
माना Q का आयाम s ≤ r है। Q में प्रत्येक वेक्टर | माना Q का आयाम s ≤ r है। Q में प्रत्येक वेक्टर इगनवेक्टर है, इसलिए Ran(A − λ'I') में s रैखिक रूप से स्वतंत्र इगनवेक्टर्स के अनुरूप s जॉर्डन श्रृंखला होनी चाहिए। इसलिए आधार {p<sub>1</sub>, ..., पी<sub>''r''</sub>} में s सदिश होना चाहिए, मान लीजिए {p<sub>''r''−''s''+1</sub>, ..., पी<sub>''r''</sub>}, जो इन जॉर्डन श्रृंखलाओं के प्रमुख वैक्टर हैं। हम इन लीड वैक्टरों की पूर्वछवियाँ लेकर श्रृंखलाओं का विस्तार कर सकते हैं। (यह मुख्य कदम है।) चलो q<sub>''i''</sub> ऐसा हो कि | ||
:<math>\; (A - \lambda I) q_i = p_i \mbox{ for } i = r-s+1, \ldots, r.</math> | :<math>\; (A - \lambda I) q_i = p_i \mbox{ for } i = r-s+1, \ldots, r.</math> | ||
सेट {q<sub>''i''</sub>}, रैखिक रूप से स्वतंत्र सेट {p. की पूर्वछवियाँ होने के नाते<sub>''i''</sub>}ए - λ 'आई' के तहत, भी रैखिक रूप से स्वतंत्र है। स्पष्टतः q का कोई गैर-तुच्छ रैखिक संयोजन नहीं है<sub>''i''</sub> {p के लिए ker(A − λI) में स्थित हो सकता है<sub>''i''</sub>}<sub>''i''=''r''−''s''+1, ..., ''r''</sub> रैखिक रूप से स्वतंत्र है. इसके अलावा, q का कोई गैर-तुच्छ रैखिक संयोजन नहीं है<sub>''i''</sub> Ran(A − λ 'I') से संबंधित हो सकता है क्योंकि तब यह मूल वैक्टर p का | सेट {q<sub>''i''</sub>}, रैखिक रूप से स्वतंत्र सेट {p. की पूर्वछवियाँ होने के नाते<sub>''i''</sub>}ए - λ 'आई' के तहत, भी रैखिक रूप से स्वतंत्र है। स्पष्टतः q का कोई गैर-तुच्छ रैखिक संयोजन नहीं है<sub>''i''</sub> {p के लिए ker(A − λI) में स्थित हो सकता है<sub>''i''</sub>}<sub>''i''=''r''−''s''+1, ..., ''r''</sub> रैखिक रूप से स्वतंत्र है. इसके अलावा, q का कोई गैर-तुच्छ रैखिक संयोजन नहीं है<sub>''i''</sub> Ran(A − λ 'I') से संबंधित हो सकता है क्योंकि तब यह मूल वैक्टर p का रैखिक संयोजन होगा<sub>1</sub>, ..., पी<sub>''r''</sub>, और इस रैखिक संयोजन में मूल वैक्टर का योगदान होगा जो कि केर (ए - λI) में नहीं है क्योंकि अन्यथा यह केर (ए - λI) से संबंधित होगा। दोनों रैखिक संयोजनों पर ए - λI की कार्रवाई तब लीड वैक्टर के गैर-तुच्छ रैखिक संयोजन और गैर-लीड वैक्टर के ऐसे रैखिक संयोजन की समानता उत्पन्न करेगी, जो (पी) की रैखिक स्वतंत्रता का खंडन करेगी।<sub>1</sub>, ..., पी<sub>''r''</sub>). | ||
अंततः, हम कोई भी रैखिकतः स्वतंत्र समुच्चय {z चुन सकते हैं<sub>1</sub>, ..., साथ<sub>''t''</sub>} जिसका प्रक्षेपण फैला हुआ है | अंततः, हम कोई भी रैखिकतः स्वतंत्र समुच्चय {z चुन सकते हैं<sub>1</sub>, ..., साथ<sub>''t''</sub>} जिसका प्रक्षेपण फैला हुआ है | ||
:<math>\ker(A - \lambda I) / Q.</math> | :<math>\ker(A - \lambda I) / Q.</math> | ||
प्रत्येक z<sub>''i''</sub> 1 लंबाई की जॉर्डन श्रृंखला बनाता है। निर्माण से, तीन सेटों का मिलन {पी<sub>1</sub>, ..., पी<sub>''r''</sub>}, {क्यू<sub>''r''−''s'' +1</sub>, ..., क्यू<sub>''r''</sub>}, और {z<sub>1</sub>, ..., साथ<sub>''t''</sub>} रैखिक रूप से स्वतंत्र है, और इसके सदस्य मिलकर जॉर्डन श्रृंखला बनाते हैं। अंत में, रैंक-शून्यता प्रमेय द्वारा, संघ की कार्डिनैलिटी n है। दूसरे शब्दों में, हमें जॉर्डन श्रृंखलाओं से बना | प्रत्येक z<sub>''i''</sub> 1 लंबाई की जॉर्डन श्रृंखला बनाता है। निर्माण से, तीन सेटों का मिलन {पी<sub>1</sub>, ..., पी<sub>''r''</sub>}, {क्यू<sub>''r''−''s'' +1</sub>, ..., क्यू<sub>''r''</sub>}, और {z<sub>1</sub>, ..., साथ<sub>''t''</sub>} रैखिक रूप से स्वतंत्र है, और इसके सदस्य मिलकर जॉर्डन श्रृंखला बनाते हैं। अंत में, रैंक-शून्यता प्रमेय द्वारा, संघ की कार्डिनैलिटी n है। दूसरे शब्दों में, हमें जॉर्डन श्रृंखलाओं से बना आधार मिला है, और इससे पता चलता है कि ए को जॉर्डन के सामान्य रूप में रखा जा सकता है। | ||
=== विशिष्टता === | === विशिष्टता === | ||
Line 164: | Line 165: | ||
यह दिखाया जा सकता है कि किसी दिए गए मैट्रिक्स ए का जॉर्डन सामान्य रूप जॉर्डन ब्लॉक के क्रम तक अद्वितीय है। | यह दिखाया जा सकता है कि किसी दिए गए मैट्रिक्स ए का जॉर्डन सामान्य रूप जॉर्डन ब्लॉक के क्रम तक अद्वितीय है। | ||
आइजेनवैल्यू की बीजगणितीय और ज्यामितीय बहुलताओं को जानना ए के जॉर्डन सामान्य रूप को निर्धारित करने के लिए पर्याप्त नहीं है। यह मानते हुए कि आइजेनवैल्यू λ की बीजगणितीय बहुलता एम(λ) ज्ञात है, जॉर्डन फॉर्म की संरचना को रैंकों का विश्लेषण करके पता लगाया जा सकता है। शक्तियां (ए - λI)<sup>एम(λ)</sup>. इसे देखने के लिए, मान लीजिए कि | आइजेनवैल्यू की बीजगणितीय और ज्यामितीय बहुलताओं को जानना ए के जॉर्डन सामान्य रूप को निर्धारित करने के लिए पर्याप्त नहीं है। यह मानते हुए कि आइजेनवैल्यू λ की बीजगणितीय बहुलता एम(λ) ज्ञात है, जॉर्डन फॉर्म की संरचना को रैंकों का विश्लेषण करके पता लगाया जा सकता है। शक्तियां (ए - λI)<sup>एम(λ)</sup>. इसे देखने के लिए, मान लीजिए कि n × n मैट्रिक्स A का केवल इगनवैल्यू λ है। तो m(λ) = n. सबसे छोटा पूर्णांक k<sub>1</sub> ऐसा है कि | ||
:<math>(A - \lambda I)^{k_1} = 0</math> | :<math>(A - \lambda I)^{k_1} = 0</math> | ||
Line 175: | Line 176: | ||
k आकार के जॉर्डन ब्लॉकों की संख्या दोगुनी है<sub>1</sub> साथ ही k आकार के जॉर्डन ब्लॉकों की संख्या<sub>1</sub>- 1. सामान्य मामला समान है। | k आकार के जॉर्डन ब्लॉकों की संख्या दोगुनी है<sub>1</sub> साथ ही k आकार के जॉर्डन ब्लॉकों की संख्या<sub>1</sub>- 1. सामान्य मामला समान है। | ||
इसका उपयोग जॉर्डन रूप की विशिष्टता दिखाने के लिए किया जा सकता है। चलो जे<sub>1</sub> और जे<sub>2</sub> ए के दो जॉर्डन सामान्य रूप बनें। फिर जे<sub>1</sub> और जे<sub>2</sub> समान हैं और इनका स्पेक्ट्रम भी समान है, जिसमें आइगेनवैल्यू की बीजगणितीय बहुलताएं भी शामिल हैं। पिछले पैराग्राफ में उल्लिखित प्रक्रिया का उपयोग इन मैट्रिक्स की संरचना निर्धारित करने के लिए किया जा सकता है। चूँकि मैट्रिक्स की रैंक समानता परिवर्तन द्वारा संरक्षित होती है, जे के जॉर्डन ब्लॉकों के बीच | इसका उपयोग जॉर्डन रूप की विशिष्टता दिखाने के लिए किया जा सकता है। चलो जे<sub>1</sub> और जे<sub>2</sub> ए के दो जॉर्डन सामान्य रूप बनें। फिर जे<sub>1</sub> और जे<sub>2</sub> समान हैं और इनका स्पेक्ट्रम भी समान है, जिसमें आइगेनवैल्यू की बीजगणितीय बहुलताएं भी शामिल हैं। पिछले पैराग्राफ में उल्लिखित प्रक्रिया का उपयोग इन मैट्रिक्स की संरचना निर्धारित करने के लिए किया जा सकता है। चूँकि मैट्रिक्स की रैंक समानता परिवर्तन द्वारा संरक्षित होती है, जे के जॉर्डन ब्लॉकों के बीच आपत्ति होती है<sub>1</sub> और जे<sub>2</sub>. यह कथन की विशिष्टता वाले भाग को सिद्ध करता है। | ||
== वास्तविक आव्यूह == | == वास्तविक आव्यूह == | ||
यदि A | यदि A वास्तविक मैट्रिक्स है, तो इसका जॉर्डन रूप अभी भी गैर-वास्तविक हो सकता है। जैसा कि ऊपर चर्चा की गई है, इसे जटिल इगनवैल्यूज और सुपरडायगोनल पर प्रस्तुत करने के बजाय, वास्तविक उलटा मैट्रिक्स P मौजूद है जैसे कि P<sup>−1</sup>एपी = जे वास्तविक ब्लॉक विकर्ण मैट्रिक्स है जिसमें प्रत्येक ब्लॉक वास्तविक जॉर्डन ब्लॉक है।<ref>{{harvtxt|Horn|Johnson|1985|loc=Theorem 3.4.5}}</ref> वास्तविक जॉर्डन ब्लॉक या तो जटिल जॉर्डन ब्लॉक के समान होता है (यदि संबंधित इगनवैल्यू <math>\lambda_i</math> वास्तविक है), या स्वयं ब्लॉक मैट्रिक्स है, जिसमें 2×2 ब्लॉक शामिल हैं (गैर-वास्तविक आइजेनवैल्यू के लिए)। <math>\lambda_i = a_i+ib_i</math> फॉर्म की दी गई बीजगणितीय बहुलता के साथ)। | ||
:<math>C_i = | :<math>C_i = | ||
Line 194: | Line 195: | ||
& & & C_i | & & & C_i | ||
\end{bmatrix}.</math> | \end{bmatrix}.</math> | ||
यह वास्तविक जॉर्डन स्वरूप जटिल जॉर्डन स्वरूप का परिणाम है। | यह वास्तविक जॉर्डन स्वरूप जटिल जॉर्डन स्वरूप का परिणाम है। वास्तविक मैट्रिक्स के लिए गैर-वास्तविक ईजेनवेक्टर और सामान्यीकृत ईजेनवेक्टर को हमेशा जटिल संयुग्म जोड़े बनाने के लिए चुना जा सकता है। वास्तविक और काल्पनिक भाग (वेक्टर और उसके संयुग्म का रैखिक संयोजन) लेते हुए, नए आधार के संबंध में मैट्रिक्स का यह रूप है। | ||
== फ़ील्ड में प्रविष्टियों के साथ मैट्रिक्स == | == फ़ील्ड में प्रविष्टियों के साथ मैट्रिक्स == | ||
जॉर्डन कमी को किसी भी वर्ग मैट्रिक्स एम तक बढ़ाया जा सकता है जिसकी प्रविष्टियां | जॉर्डन कमी को किसी भी वर्ग मैट्रिक्स एम तक बढ़ाया जा सकता है जिसकी प्रविष्टियां क्षेत्र (गणित) के में होती हैं। परिणाम बताता है कि किसी भी एम को डी + एन के योग के रूप में लिखा जा सकता है जहां डी [[अर्धसरल ऑपरेटर]] है, एन निलपोटेंट मैट्रिक्स है, और डीएन = रा। इसे जॉर्डन-शेवेल्ली अपघटन कहा जाता है। जब भी K में M के इगनवैल्यूज शामिल होते हैं, विशेष रूप से जब K को बीजगणितीय रूप से बंद किया जाता है, तो सामान्य रूप को जॉर्डन ब्लॉक के [[प्रत्यक्ष योग]] के रूप में स्पष्ट रूप से व्यक्त किया जा सकता है। | ||
उस स्थिति के समान जब K सम्मिश्र संख्या है, (M − λI) के गुठली के आयामों को जानना<sup>k</sup> 1 ≤ k ≤ m के लिए, जहां m | उस स्थिति के समान जब K सम्मिश्र संख्या है, (M − λI) के गुठली के आयामों को जानना<sup>k</sup> 1 ≤ k ≤ m के लिए, जहां m इगनवैल्यू λ की बीजगणितीय बहुलता है, किसी को M के जॉर्डन रूप को निर्धारित करने की अनुमति देता है। हम अंतर्निहित वेक्टर स्पेस V को K[x]-मॉड्यूल के रूप में देख सकते हैं ( गणित) एम के अनुप्रयोग के रूप में वी पर एक्स की कार्रवाई और के-रैखिकता द्वारा विस्तार के संबंध में। फिर बहुपद (x − λ)<sup>k</sup>M के प्राथमिक विभाजक हैं, और जॉर्डन सामान्य रूप प्राथमिक विभाजक से जुड़े ब्लॉकों के संदर्भ में M का प्रतिनिधित्व करने से संबंधित है। | ||
जॉर्डन सामान्य रूप का प्रमाण आमतौर पर [[एक प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय]] के रिंग (गणित) K[x] के अनुप्रयोग के रूप में किया जाता है, जिसका यह | जॉर्डन सामान्य रूप का प्रमाण आमतौर पर [[एक प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय|प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय]] के रिंग (गणित) K[x] के अनुप्रयोग के रूप में किया जाता है, जिसका यह परिणाम है। | ||
== परिणाम == | == परिणाम == | ||
कोई यह देख सकता है कि जॉर्डन सामान्य रूप अनिवार्य रूप से वर्ग मैट्रिक्स के लिए | कोई यह देख सकता है कि जॉर्डन सामान्य रूप अनिवार्य रूप से वर्ग मैट्रिक्स के लिए वर्गीकरण परिणाम है, और रैखिक बीजगणित से कई महत्वपूर्ण परिणामों को इसके परिणामों के रूप में देखा जा सकता है। | ||
=== स्पेक्ट्रल मैपिंग प्रमेय === | === स्पेक्ट्रल मैपिंग प्रमेय === | ||
जॉर्डन सामान्य रूप का उपयोग करते हुए, प्रत्यक्ष गणना कार्यात्मक कलन के लिए | जॉर्डन सामान्य रूप का उपयोग करते हुए, प्रत्यक्ष गणना कार्यात्मक कलन के लिए वर्णक्रमीय मानचित्रण प्रमेय देती है: मान लीजिए A n × n मैट्रिक्स है जिसमें इगनवैल्यूज λ है<sub>1</sub>, ..., एल<sub>''n''</sub>, तो किसी भी बहुपद p के लिए, p(A) के इगनवैल्यूज p(λ) हैं<sub>1</sub>), ..., पी(एल<sub>''n''</sub>). | ||
=== अभिलक्षणिक बहुपद === | === अभिलक्षणिक बहुपद === | ||
Line 219: | Line 220: | ||
=== केली-हैमिल्टन प्रमेय === | === केली-हैमिल्टन प्रमेय === | ||
केली-हैमिल्टन प्रमेय का दावा है कि प्रत्येक मैट्रिक्स ए अपने विशिष्ट समीकरण को संतुष्ट करता है: यदि {{math|''p''}} का अभिलक्षणिक बहुपद है {{math|''A''}}, तब <math>p_A(A)=0</math>. इसे जॉर्डन फॉर्म में प्रत्यक्ष गणना के माध्यम से दिखाया जा सकता है, यदि <math>\lambda_i</math> बहुलता का | केली-हैमिल्टन प्रमेय का दावा है कि प्रत्येक मैट्रिक्स ए अपने विशिष्ट समीकरण को संतुष्ट करता है: यदि {{math|''p''}} का अभिलक्षणिक बहुपद है {{math|''A''}}, तब <math>p_A(A)=0</math>. इसे जॉर्डन फॉर्म में प्रत्यक्ष गणना के माध्यम से दिखाया जा सकता है, यदि <math>\lambda_i</math> बहुलता का आदर्श मान है <math>m</math>, | ||
फिर यह जॉर्डन ब्लॉक है <math>J_i</math> स्पष्ट रूप से संतुष्ट करता है <math>(J_i-\lambda_i I)^{m_i}=0</math>. | फिर यह जॉर्डन ब्लॉक है <math>J_i</math> स्पष्ट रूप से संतुष्ट करता है <math>(J_i-\lambda_i I)^{m_i}=0</math>. | ||
चूँकि विकर्ण ब्लॉक एक-दूसरे को प्रभावित नहीं करते हैं, iवें विकर्ण ब्लॉक <math>(A-\lambda_i I)^{m_i}</math> है <math>(J_i-\lambda_i I)^{m_i}=0</math>; इस तरह <math display="inline">p_A(A)=\prod_i (A-\lambda_i I)^{m_i}=0</math>. | चूँकि विकर्ण ब्लॉक एक-दूसरे को प्रभावित नहीं करते हैं, iवें विकर्ण ब्लॉक <math>(A-\lambda_i I)^{m_i}</math> है <math>(J_i-\lambda_i I)^{m_i}=0</math>; इस तरह <math display="inline">p_A(A)=\prod_i (A-\lambda_i I)^{m_i}=0</math>. | ||
Line 227: | Line 228: | ||
=== न्यूनतम बहुपद === | === न्यूनतम बहुपद === | ||
वर्ग मैट्रिक्स ए का [[न्यूनतम बहुपद (रैखिक बीजगणित)]] पी न्यूनतम डिग्री, एम का अद्वितीय मोनोनिक बहुपद है, जैसे कि पी (ए) = 0. वैकल्पिक रूप से, बहुपदों का सेट जो किसी दिए गए ए को नष्ट कर देता है, सी में आदर्श I बनाता है [x], जटिल गुणांक वाले बहुपदों का [[प्रमुख आदर्श डोमेन]]। वह राक्षसी तत्व जो I उत्पन्न करता है वह सटीक रूप से P है। | |||
चलो λ<sub>1</sub>, ..., एल<sub>''q''</sub> A, और s के विशिष्ट | चलो λ<sub>1</sub>, ..., एल<sub>''q''</sub> A, और s के विशिष्ट इगनवैल्यूज हों<sub>''i''</sub> λ के अनुरूप सबसे बड़े जॉर्डन ब्लॉक का आकार हो<sub>''i''</sub>. जॉर्डन सामान्य रूप से यह स्पष्ट है कि ए के न्यूनतम बहुपद में डिग्री है {{math|Σ}}एस<sub>''i''</sub>. | ||
जबकि जॉर्डन सामान्य रूप न्यूनतम बहुपद निर्धारित करता है, इसका विपरीत सत्य नहीं है। इससे प्राथमिक विभाजक की धारणा उत्पन्न होती है। | जबकि जॉर्डन सामान्य रूप न्यूनतम बहुपद निर्धारित करता है, इसका विपरीत सत्य नहीं है। इससे प्राथमिक विभाजक की धारणा उत्पन्न होती है। वर्ग मैट्रिक्स ''ए'' के प्राथमिक विभाजक इसके जॉर्डन ब्लॉक के विशिष्ट बहुपद हैं। न्यूनतम बहुपद ''m'' के गुणनखंड अलग-अलग इगनवैल्यूज के अनुरूप सबसे बड़ी डिग्री के प्राथमिक विभाजक हैं। | ||
प्राथमिक भाजक की डिग्री संबंधित जॉर्डन ब्लॉक का आकार है, इसलिए संबंधित अपरिवर्तनीय उप-स्थान का आयाम है। यदि सभी प्रारंभिक भाजक रैखिक हैं, तो ''ए'' विकर्णीय है। | प्राथमिक भाजक की डिग्री संबंधित जॉर्डन ब्लॉक का आकार है, इसलिए संबंधित अपरिवर्तनीय उप-स्थान का आयाम है। यदि सभी प्रारंभिक भाजक रैखिक हैं, तो ''ए'' विकर्णीय है। | ||
Line 237: | Line 238: | ||
=== अपरिवर्तनीय उप-स्थान अपघटन === | === अपरिवर्तनीय उप-स्थान अपघटन === | ||
एन × एन मैट्रिक्स ए का जॉर्डन रूप ब्लॉक विकर्ण है, और इसलिए ए के अपरिवर्तनीय उप-स्थानों में एन आयामी यूक्लिडियन स्थान का अपघटन देता है। प्रत्येक जॉर्डन ब्लॉक जे<sub>''i''</sub> | एन × एन मैट्रिक्स ए का जॉर्डन रूप ब्लॉक विकर्ण है, और इसलिए ए के अपरिवर्तनीय उप-स्थानों में एन आयामी यूक्लिडियन स्थान का अपघटन देता है। प्रत्येक जॉर्डन ब्लॉक जे<sub>''i''</sub> अपरिवर्तनीय उप-स्थान X से मेल खाता है<sub>''i''</sub>. प्रतीकात्मक रूप से, हम डालते हैं | ||
:<math>\mathbb{C}^n = \bigoplus_{i = 1}^k X_i</math> | :<math>\mathbb{C}^n = \bigoplus_{i = 1}^k X_i</math> | ||
जहां प्रत्येक एक्स<sub>''i''</sub> संबंधित जॉर्डन श्रृंखला का विस्तार है, और k जॉर्डन श्रृंखलाओं की संख्या है। | जहां प्रत्येक एक्स<sub>''i''</sub> संबंधित जॉर्डन श्रृंखला का विस्तार है, और k जॉर्डन श्रृंखलाओं की संख्या है। | ||
जॉर्डन फॉर्म के माध्यम से थोड़ा अलग अपघटन भी प्राप्त किया जा सकता है। | जॉर्डन फॉर्म के माध्यम से थोड़ा अलग अपघटन भी प्राप्त किया जा सकता है। इगनवैल्यू λ दिया गया है<sub>''i''</sub>, इसके सबसे बड़े संगत जॉर्डन ब्लॉक का आकार<sub>''i''</sub> ''λ'' का सूचकांक कहा जाता है<sub>''i''</sub> और v(λ) द्वारा निरूपित किया जाता है<sub>''i''</sub>). (इसलिए, न्यूनतम बहुपद की डिग्री सभी सूचकांकों का योग है।) उपसमष्टि को परिभाषित करें Y<sub>''i''</sub> द्वारा | ||
:<math> Y_i = \ker(\lambda_i I - A)^{v(\lambda_i)}.</math> | :<math> Y_i = \ker(\lambda_i I - A)^{v(\lambda_i)}.</math> | ||
Line 248: | Line 249: | ||
:<math>\mathbb{C}^n = \bigoplus_{i = 1}^l Y_i</math> | :<math>\mathbb{C}^n = \bigoplus_{i = 1}^l Y_i</math> | ||
जहाँ l, A के विशिष्ट | जहाँ l, A के विशिष्ट इगनवैल्यूज की संख्या है। सहज रूप से, हम समान इगनवैल्यू के अनुरूप जॉर्डन ब्लॉक अपरिवर्तनीय उप-स्थानों को साथ जोड़ते हैं। चरम स्थिति में जहां A पहचान मैट्रिक्स का गुणज है, हमारे पास k = n और l = 1 है। | ||
Y पर प्रक्षेपण<sub>i</sub>और अन्य सभी Y के साथ<sub>j</sub>( j ≠ i ) को 'v पर A का वर्णक्रमीय प्रक्षेपण' कहा जाता है<sub>''i''</sub>और इसे आमतौर पर ''P''(''λ'' द्वारा दर्शाया जाता है<sub>''i''</sub> ; ए)'। वर्णक्रमीय प्रक्षेपण इस अर्थ में परस्पर ओर्थोगोनल हैं कि P(λ<sub>''i''</sub> ; ए) पी(वी<sub>''j''</sub> ; ए) = 0 यदि मैं ≠ जे. इसके अलावा वे A के साथ आवागमन करते हैं और उनका योग पहचान मैट्रिक्स है। हर वी को बदलना<sub>''i''</sub> जॉर्डन मैट्रिक्स J में | Y पर प्रक्षेपण<sub>i</sub>और अन्य सभी Y के साथ<sub>j</sub>( j ≠ i ) को 'v पर A का वर्णक्रमीय प्रक्षेपण' कहा जाता है<sub>''i''</sub>और इसे आमतौर पर ''P''(''λ'' द्वारा दर्शाया जाता है<sub>''i''</sub> ; ए)'। वर्णक्रमीय प्रक्षेपण इस अर्थ में परस्पर ओर्थोगोनल हैं कि P(λ<sub>''i''</sub> ; ए) पी(वी<sub>''j''</sub> ; ए) = 0 यदि मैं ≠ जे. इसके अलावा वे A के साथ आवागमन करते हैं और उनका योग पहचान मैट्रिक्स है। हर वी को बदलना<sub>''i''</sub> जॉर्डन मैट्रिक्स J में से और अन्य सभी प्रविष्टियों को शून्य करने से P(v) मिलता है<sub>''i''</sub> ; जे), इसके अलावा अगर यू जे यू<sup>−1</sup>समानता परिवर्तन इस प्रकार है कि A = UJ U<sup>−1</sup> फिर P(λ<sub>''i''</sub> ; ए) = यू पी(एल<sub>''i''</sub> ; जे) यू<sup>−1</sup>. वे सीमित आयामों तक सीमित नहीं हैं। कॉम्पैक्ट ऑपरेटरों के लिए उनके अनुप्रयोग और अधिक सामान्य चर्चा के लिए [[होलोमोर्फिक कार्यात्मक कैलकुलस]] में नीचे देखें। | ||
दो अपघटनों की तुलना करते हुए, ध्यान दें कि, सामान्य तौर पर, l ≤ k। जब A सामान्य होता है, तो उप-स्थान X<sub>''i''</sub>पहले अपघटन में एक-आयामी और पारस्परिक रूप से ऑर्थोगोनल हैं। यह सामान्य ऑपरेटरों के लिए [[वर्णक्रमीय प्रमेय]] है। दूसरा अपघटन बनच स्थानों पर सामान्य कॉम्पैक्ट ऑपरेटरों के लिए अधिक आसानी से सामान्यीकृत होता है। | दो अपघटनों की तुलना करते हुए, ध्यान दें कि, सामान्य तौर पर, l ≤ k। जब A सामान्य होता है, तो उप-स्थान X<sub>''i''</sub>पहले अपघटन में एक-आयामी और पारस्परिक रूप से ऑर्थोगोनल हैं। यह सामान्य ऑपरेटरों के लिए [[वर्णक्रमीय प्रमेय]] है। दूसरा अपघटन बनच स्थानों पर सामान्य कॉम्पैक्ट ऑपरेटरों के लिए अधिक आसानी से सामान्यीकृत होता है। | ||
यहां सूचकांक, ν(λ) के कुछ गुणों पर ध्यान देना दिलचस्प हो सकता है। अधिक सामान्यतः, | यहां सूचकांक, ν(λ) के कुछ गुणों पर ध्यान देना दिलचस्प हो सकता है। अधिक सामान्यतः, जटिल संख्या λ के लिए, इसके सूचकांक को सबसे कम गैर-नकारात्मक पूर्णांक ν(λ) के रूप में परिभाषित किया जा सकता है जैसे कि | ||
:<math>\ker(A-\lambda I)^{\nu(\lambda)} = \ker(A-\lambda I)^m, \; \forall m \geq \nu(\lambda) .</math> | :<math>\ker(A-\lambda I)^{\nu(\lambda)} = \ker(A-\lambda I)^m, \; \forall m \geq \nu(\lambda) .</math> | ||
तो ν(v) > 0 यदि और केवल यदि λ A का | तो ν(v) > 0 यदि और केवल यदि λ A का प्रतिध्वनि है। परिमित-आयामी मामले में, ν(v) ≤ v की बीजगणितीय बहुलता। | ||
===समतल (सपाट) सामान्य रूप=== | ===समतल (सपाट) सामान्य रूप=== | ||
Line 267: | Line 268: | ||
[[व्लादिमीर अर्नोल्ड]] ने पोज़ दिया<ref>{{Cite book |editor1-first=Vladimir I |editor1-last=Arnold |date=2004 | | [[व्लादिमीर अर्नोल्ड]] ने पोज़ दिया<ref>{{Cite book |editor1-first=Vladimir I |editor1-last=Arnold |date=2004 | | ||
title = Arnold's problems| doi = 10.1007/b138219 | isbn = 978-3-540-20748-1 |page=127 |publisher = Springer-Verlag Berlin Heidelberg}}</ref> | title = Arnold's problems| doi = 10.1007/b138219 | isbn = 978-3-540-20748-1 |page=127 |publisher = Springer-Verlag Berlin Heidelberg}}</ref> समस्या: | ||
क्षेत्र पर मैट्रिक्स का विहित रूप खोजें जिसके लिए मैट्रिक्स संयुग्मता वर्गों के प्रतिनिधियों का सेट एफ़िन रैखिक उप-स्थानों (फ्लैट) का संघ है। दूसरे शब्दों में, मैट्रिक्स संयुग्मता वर्गों के सेट को मैट्रिक्स के प्रारंभिक सेट में वापस मैप करें ताकि इस एम्बेडिंग की छवि - सभी सामान्य मैट्रिक्स का सेट, सबसे कम संभव डिग्री हो - यह स्थानांतरित रैखिक उप-स्थानों का संघ है। | |||
इसे पीटरिस डौगुलिस द्वारा बीजगणितीय रूप से बंद क्षेत्रों के लिए हल किया गया था।<ref name="originalpaper">{{cite journal | author = Peteris Daugulis |date=2012 | title = मैट्रिक्स संयुग्मन कक्षा का एक पैरामीट्रिजेशन एफ़िन विमानों के संघ के रूप में सेट होता है| | इसे पीटरिस डौगुलिस द्वारा बीजगणितीय रूप से बंद क्षेत्रों के लिए हल किया गया था।<ref name="originalpaper">{{cite journal | author = Peteris Daugulis |date=2012 | title = मैट्रिक्स संयुग्मन कक्षा का एक पैरामीट्रिजेशन एफ़िन विमानों के संघ के रूप में सेट होता है| | ||
Line 275: | Line 276: | ||
== मैट्रिक्स फ़ंक्शंस == | == मैट्रिक्स फ़ंक्शंस == | ||
{{Main| | {{Main|मैट्रिक्स फ़ंक्शन}} | ||
जॉर्डन श्रृंखला का पुनरावृत्ति विभिन्न एक्सटेंशनों को अधिक अमूर्त सेटिंग्स के लिए प्रेरित करता है। परिमित मैट्रिक्स के लिए, किसी को मैट्रिक्स फ़ंक्शंस मिलते हैं; इसे कॉम्पैक्ट ऑपरेटरों और होलोमोर्फिक फ़ंक्शनल कैलकुलस तक बढ़ाया जा सकता है, जैसा कि नीचे बताया गया है। | जॉर्डन श्रृंखला का पुनरावृत्ति विभिन्न एक्सटेंशनों को अधिक अमूर्त सेटिंग्स के लिए प्रेरित करता है। परिमित मैट्रिक्स के लिए, किसी को मैट्रिक्स फ़ंक्शंस मिलते हैं; इसे कॉम्पैक्ट ऑपरेटरों और होलोमोर्फिक फ़ंक्शनल कैलकुलस तक बढ़ाया जा सकता है, जैसा कि नीचे बताया गया है। | ||
जॉर्डन सामान्य रूप मैट्रिक्स फ़ंक्शंस की गणना के लिए सबसे सुविधाजनक है (हालांकि यह कंप्यूटर गणना के लिए सबसे अच्छा विकल्प नहीं हो सकता है)। मान लीजिए f(z) | जॉर्डन सामान्य रूप मैट्रिक्स फ़ंक्शंस की गणना के लिए सबसे सुविधाजनक है (हालांकि यह कंप्यूटर गणना के लिए सबसे अच्छा विकल्प नहीं हो सकता है)। मान लीजिए f(z) जटिल तर्क का विश्लेषणात्मक कार्य है। फ़ंक्शन को n×n जॉर्डन ब्लॉक J पर इगनवैल्यू λ के साथ लागू करने से ऊपरी त्रिकोणीय मैट्रिक्स प्राप्त होता है: | ||
:<math> | :<math> | ||
Line 311: | Line 312: | ||
== [[कॉम्पैक्ट ऑपरेटर]] == | == [[कॉम्पैक्ट ऑपरेटर]] == | ||
जॉर्डन सामान्य फॉर्म के अनुरूप परिणाम [[बनच स्थान]] पर कॉम्पैक्ट ऑपरेटरों के लिए होता है। | जॉर्डन सामान्य फॉर्म के अनुरूप परिणाम [[बनच स्थान]] पर कॉम्पैक्ट ऑपरेटरों के लिए होता है। कॉम्पैक्ट ऑपरेटरों को प्रतिबंधित करता है क्योंकि कॉम्पैक्ट ऑपरेटर टी के स्पेक्ट्रम में प्रत्येक बिंदु x आइगेनवैल्यू है; एकमात्र अपवाद तब होता है जब x स्पेक्ट्रम का सीमा बिंदु होता है। यह सामान्यतः बाउंडेड ऑपरेटरों के लिए सत्य नहीं है। इस सामान्यीकरण का कुछ विचार देने के लिए, हम पहले जॉर्डन अपघटन को कार्यात्मक विश्लेषण की भाषा में पुन: तैयार करते हैं। | ||
=== होलोमोर्फिक कार्यात्मक कैलकुलस === | === होलोमोर्फिक कार्यात्मक कैलकुलस === | ||
{{ Details| | {{Details|होलोमोर्फिक कार्यात्मक कैलकुलस}} | ||
मान लीजिए कि X | |||
मान लीजिए कि X बैनाच स्पेस है, L(X) होलोमोर्फिक कार्यात्मक कैलकुलस को इस प्रकार परिभाषित किया गया है: | |||
बंधे हुए ऑपरेटर टी को ठीक करें। जटिल कार्यों के परिवार होल (टी) पर विचार करें जो कि σ (टी) वाले कुछ खुले सेट जी पर [[होलोमोर्फिक फ़ंक्शन]] है। मान लीजिए Γ = {γ<sub>i</sub>} [[जॉर्डन वक्र]]ों का सीमित संग्रह हो जैसे कि σ(T) Γ के अंदर स्थित हो, हम f(T) को परिभाषित करते हैं | |||
: <math>f(T) = \frac 1 {2 \pi i} \int_\Gamma f(z)(z - T)^{-1} \, dz.</math> | : <math>f(T) = \frac 1 {2 \pi i} \int_\Gamma f(z)(z - T)^{-1} \, dz.</math> | ||
Line 326: | Line 328: | ||
# Φ बहुपद कार्यात्मक कलन का विस्तार करता है। | # Φ बहुपद कार्यात्मक कलन का विस्तार करता है। | ||
# वर्णक्रमीय मानचित्रण प्रमेय मानता है: σ(f(T)) = f(σ(T)). | # वर्णक्रमीय मानचित्रण प्रमेय मानता है: σ(f(T)) = f(σ(T)). | ||
# Φ | # Φ बीजगणित समरूपता है। | ||
=== परिमित-आयामी मामला === | === परिमित-आयामी मामला === | ||
परिमित-आयामी मामले में, σ(T) = {λ<sub>''i''</sub>} जटिल तल में | परिमित-आयामी मामले में, σ(T) = {λ<sub>''i''</sub>} जटिल तल में परिमित असतत समुच्चय है। चलो ई<sub>''i''</sub> वह फ़ंक्शन बनें जो λ के कुछ खुले पड़ोस में 1 है<sub>''i''</sub> और अन्यत्र 0. कार्यात्मक कलन की संपत्ति 3 द्वारा, ऑपरेटर | ||
:<math>e_i(T)</math> | :<math>e_i(T)</math> | ||
प्रक्षेपण है. इसके अलावा, चलो ν<sub>i</sub>λ का सूचकांक हो<sub>''i''</sub> और | |||
:<math>f(z)= (z - \lambda_i)^{\nu_i}.</math> | :<math>f(z)= (z - \lambda_i)^{\nu_i}.</math> | ||
Line 350: | Line 352: | ||
:<math>\mathbb{C}^n = \bigoplus_i \; \operatorname{Ran} e_i (T) = \bigoplus_i \ker(T - \lambda_i)^{\nu_i}</math> | :<math>\mathbb{C}^n = \bigoplus_i \; \operatorname{Ran} e_i (T) = \bigoplus_i \ker(T - \lambda_i)^{\nu_i}</math> | ||
जहां सूचकांक I, T के विशिष्ट | जहां सूचकांक I, T के विशिष्ट इगनवैल्यूज के माध्यम से चलता है। यह अपरिवर्तनीय उप-स्थान अपघटन है | ||
:<math>\mathbb{C}^n = \bigoplus_i Y_i</math> | :<math>\mathbb{C}^n = \bigoplus_i Y_i</math> | ||
पिछले भाग में दिया गया है। प्रत्येक ई<sub>i</sub>(टी) λ के अनुरूप जॉर्डन श्रृंखलाओं द्वारा फैलाए गए उप-स्थान पर प्रक्षेपण है<sub>''i''</sub> और v के अनुरूप जॉर्डन श्रृंखलाओं द्वारा फैले उप-स्थानों के साथ<sub>''j''</sub> j ≠ i के लिए. दूसरे शब्दों में, ई<sub>i</sub>(टी) = पी(एल<sub>''i''</sub>;टी)। ऑपरेटरों की यह स्पष्ट पहचान ई<sub>i</sub>(टी) बदले में मैट्रिक्स के लिए होलोमोर्फिक कार्यात्मक कैलकुलस का | पिछले भाग में दिया गया है। प्रत्येक ई<sub>i</sub>(टी) λ के अनुरूप जॉर्डन श्रृंखलाओं द्वारा फैलाए गए उप-स्थान पर प्रक्षेपण है<sub>''i''</sub> और v के अनुरूप जॉर्डन श्रृंखलाओं द्वारा फैले उप-स्थानों के साथ<sub>''j''</sub> j ≠ i के लिए. दूसरे शब्दों में, ई<sub>i</sub>(टी) = पी(एल<sub>''i''</sub>;टी)। ऑपरेटरों की यह स्पष्ट पहचान ई<sub>i</sub>(टी) बदले में मैट्रिक्स के लिए होलोमोर्फिक कार्यात्मक कैलकुलस का स्पष्ट रूप देता है: | ||
:सभी f ∈ Hol(T) के लिए, | :सभी f ∈ Hol(T) के लिए, | ||
:<math>f(T) = \sum_{\lambda_i \in \sigma(T)} \sum_{k = 0}^{\nu_i -1} \frac{f^{(k)}}{k!} (T - \lambda_i)^k e_i (T).</math> | :<math>f(T) = \sum_{\lambda_i \in \sigma(T)} \sum_{k = 0}^{\nu_i -1} \frac{f^{(k)}}{k!} (T - \lambda_i)^k e_i (T).</math> | ||
ध्यान दें कि f(T) का व्यंजक | ध्यान दें कि f(T) का व्यंजक परिमित योग है, क्योंकि v के प्रत्येक पड़ोस पर<sub>''i''</sub>, हमने v पर केन्द्रित f का टेलर श्रृंखला विस्तार चुना है<sub>''i''</sub>. | ||
=== | === ऑपरेटर के ध्रुव === | ||
मान लीजिए T | मान लीजिए T परिबद्ध संकारक है λ σ(T) का पृथक बिंदु है। (जैसा कि ऊपर बताया गया है, जब टी सघन होता है, तो इसके स्पेक्ट्रम में प्रत्येक बिंदु पृथक बिंदु होता है, संभवतः सीमा बिंदु 0 को छोड़कर।) | ||
बिंदु λ को क्रम ν के साथ ऑपरेटर T का 'ध्रुव' कहा जाता है यदि रिसॉल्वेंट औपचारिकता फ़ंक्शन R<sub>''T''</sub> द्वारा परिभाषित | बिंदु λ को क्रम ν के साथ ऑपरेटर T का 'ध्रुव' कहा जाता है यदि रिसॉल्वेंट औपचारिकता फ़ंक्शन R<sub>''T''</sub> द्वारा परिभाषित | ||
:<math> R_T(\lambda) = (\lambda - T)^{-1}</math> | :<math> R_T(\lambda) = (\lambda - T)^{-1}</math> | ||
λ पर क्रम ν का | λ पर क्रम ν का [[ध्रुव (जटिल विश्लेषण)]] है। | ||
हम दिखाएंगे कि, परिमित-आयामी मामले में, | हम दिखाएंगे कि, परिमित-आयामी मामले में, इगनवैल्यू का क्रम उसके सूचकांक के साथ मेल खाता है। परिणाम कॉम्पैक्ट ऑपरेटरों के लिए भी लागू होता है। | ||
पर्याप्त रूप से छोटे त्रिज्या ε के साथ | पर्याप्त रूप से छोटे त्रिज्या ε के साथ इगनवैल्यू λ पर केंद्रित कुंडलाकार क्षेत्र A पर विचार करें, ताकि खुली डिस्क B का प्रतिच्छेदन हो सके<sub>ε</sub>(λ) और σ(T) {λ} है। रिसॉल्वेंट फ़ंक्शन आर<sub>''T''</sub> ए पर होलोमोर्फिक है। | ||
शास्त्रीय कार्य सिद्धांत से | शास्त्रीय कार्य सिद्धांत से परिणाम का विस्तार करते हुए, आर<sub>''T''</sub> ए पर [[लॉरेंट श्रृंखला]] का प्रतिनिधित्व है: | ||
:<math>R_T(z) = \sum_{-\infty}^\infty a_m (\lambda - z)^m</math> | :<math>R_T(z) = \sum_{-\infty}^\infty a_m (\lambda - z)^m</math> | ||
कहाँ | कहाँ | ||
:<math>a_{-m} = - \frac{1}{2 \pi i} \int_C (\lambda - z) ^{m-1} (z - T)^{-1} d z</math> और C λ पर केन्द्रित | :<math>a_{-m} = - \frac{1}{2 \pi i} \int_C (\lambda - z) ^{m-1} (z - T)^{-1} d z</math> और C λ पर केन्द्रित छोटा वृत्त है। | ||
कार्यात्मक कलन पर पिछली चर्चा के अनुसार, | कार्यात्मक कलन पर पिछली चर्चा के अनुसार, | ||
Line 386: | Line 388: | ||
:<math>a_{-m} \neq 0</math> और <math>a_{-l} = 0 \; \; \forall \; l \geq m</math> | :<math>a_{-m} \neq 0</math> और <math>a_{-l} = 0 \; \; \forall \; l \geq m</math> | ||
ठीक λ, ν(λ) का सूचकांक है। दूसरे शब्दों में, फ़ंक्शन R<sub>''T''</sub> λ पर क्रम ν(λ) का | ठीक λ, ν(λ) का सूचकांक है। दूसरे शब्दों में, फ़ंक्शन R<sub>''T''</sub> λ पर क्रम ν(λ) का ध्रुव है। | ||
== संख्यात्मक विश्लेषण == | == संख्यात्मक विश्लेषण == | ||
यदि मैट्रिक्स A में कई | यदि मैट्रिक्स A में कई इगनवैल्यूज हैं, या कई इगनवैल्यूज वाले मैट्रिक्स के करीब है, तो इसका जॉर्डन सामान्य रूप गड़बड़ी के प्रति बहुत संवेदनशील है। उदाहरण के लिए मैट्रिक्स पर विचार करें | ||
:<math> A = \begin{bmatrix} 1 & 1 \\ \varepsilon & 1 \end{bmatrix}. </math> | :<math> A = \begin{bmatrix} 1 & 1 \\ \varepsilon & 1 \end{bmatrix}. </math> | ||
यदि ε = 0, तो जॉर्डन सामान्य रूप सरल है | यदि ε = 0, तो जॉर्डन सामान्य रूप सरल है | ||
Line 396: | Line 398: | ||
हालाँकि, ε ≠ 0 के लिए, जॉर्डन सामान्य रूप है | हालाँकि, ε ≠ 0 के लिए, जॉर्डन सामान्य रूप है | ||
:<math> \begin{bmatrix} 1+\sqrt\varepsilon & 0 \\ 0 & 1-\sqrt\varepsilon \end{bmatrix}. </math> | :<math> \begin{bmatrix} 1+\sqrt\varepsilon & 0 \\ 0 & 1-\sqrt\varepsilon \end{bmatrix}. </math> | ||
यह [[शर्त संख्या]] जॉर्डन के सामान्य रूप के लिए | यह [[शर्त संख्या]] जॉर्डन के सामान्य रूप के लिए मजबूत संख्यात्मक एल्गोरिदम विकसित करना बहुत कठिन बना देती है, क्योंकि परिणाम गंभीर रूप से इस बात पर निर्भर करता है कि दो स्वदेशी मान समान माने जाते हैं या नहीं। इस कारण से, जॉर्डन सामान्य रूप को आमतौर पर [[संख्यात्मक विश्लेषण]] में टाला जाता है; स्थिर [[शूर अपघटन]]<ref>See Golub & Van Loan (2014), §7.6.5; or Golub & Wilkinson (1976) for details.</ref> या छद्म [[छद्मस्पेक्ट्रम]]<ref>See Golub & Van Loan (2014), §7.9</ref> बेहतर विकल्प हैं. | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 20:21, 10 July 2023
रैखिक बीजगणित में, जॉर्डन सामान्य रूप, जिसे जॉर्डन विहित रूप (जेसीएफ) के रूप में भी जाना जाता है,[1][2]
विशेष रूप का ऊपरी त्रिकोणीय मैट्रिक्स है जिसे जॉर्डन मैट्रिक्स कहा जाता है जो कुछ आधार (रैखिक बीजगणित) के संबंध में परिमित-आयामी सदिश स्थल पर रैखिक ऑपरेटर का प्रतिनिधित्व करता है। ऐसे मैट्रिक्स में प्रत्येक गैर-शून्य ऑफ-विकर्ण प्रविष्टि 1 के बराबर होती है, मुख्य विकर्ण के ठीक ऊपर ( अतिविकर्ण पर), और बाईं ओर और उनके नीचे समान विकर्ण प्रविष्टियां होती हैं।
मान लीजिए V क्षेत्र (गणित) K पर सदिश समष्टि है। फिर आधार जिसके संबंध में मैट्रिक्स का आवश्यक रूप मौजूद है, मौजूद है यदि और केवल यदि मैट्रिक्स के सभी इगनवैल्यूज K में हैं, या समकक्ष यदि ऑपरेटर की विशेषता बहुपद है K पर रैखिक गुणनखंडों में विभाजित हो जाता है। यदि K बीजगणितीय रूप से बंद है (उदाहरण के लिए, यदि यह जटिल संख्याओं का क्षेत्र है) तो यह स्थिति हमेशा संतुष्ट होती है। सामान्य रूप की विकर्ण प्रविष्टियाँ इगनवैल्यूज (ऑपरेटर के) हैं, और प्रत्येक इगनवैल्यू होने की संख्या को इगनवैल्यू की बीजगणितीय बहुलता कहा जाता है। Cite error: Invalid <ref>
tag; invalid names, e.g. too many[3]<संदर्भ नाम = नेरिंग 1970 118-127 >Nering (1970, pp. 118–127)</ref>
यदि ऑपरेटर मूल रूप से वर्ग मैट्रिक्स एम द्वारा दिया गया है, तो इसके जॉर्डन सामान्य रूप को एम का जॉर्डन सामान्य रूप भी कहा जाता है। किसी भी वर्ग मैट्रिक्स में जॉर्डन सामान्य रूप होता है यदि गुणांक के क्षेत्र को सभी इगनवैल्यूज से युक्त तक बढ़ाया जाता है आव्यूह। इसके नाम के बावजूद, किसी दिए गए एम के लिए सामान्य रूप पूरी तरह से अद्वितीय नहीं है, क्योंकि यह जॉर्डन ब्लॉक से बना ब्लॉक विकर्ण मैट्रिक्स है, जिसका क्रम निश्चित नहीं है; समान इगनवैल्यू के लिए ब्लॉकों को साथ समूहित करना पारंपरिक है, लेकिन इगनवैल्यूज के बीच कोई क्रम नहीं लगाया जाता है, न ही किसी दिए गए इगनवैल्यू के लिए ब्लॉकों के बीच, हालांकि बाद वाले को कमजोर रूप से घटते आकार के आधार पर ऑर्डर किया जा सकता है।Cite error: Invalid <ref>
tag; invalid names, e.g. too many[3]<रेफ नाम = नेरिंग 1970 118-127 />
जॉर्डन-चेवेल्ली अपघटन उस आधार के संबंध में विशेष रूप से सरल है जिसके लिए ऑपरेटर अपने जॉर्डन को सामान्य रूप लेता है। विकर्णीय मैट्रिक्स के लिए विकर्ण रूप, उदाहरण के लिए सामान्य मैट्रिक्स, जॉर्डन सामान्य रूप का विशेष मामला है।[4][5][6] जॉर्डन सामान्य रूप का नाम केमिली जॉर्डन के नाम पर रखा गया है, जिन्होंने पहली बार 1870 में जॉर्डन अपघटन प्रमेय को बताया था।[7]
सिंहावलोकन
संकेतन
कुछ पाठ्यपुस्तकें उपविकर्ण पर होती हैं; यानी, सुपरविकर्ण के बजाय मुख्य विकर्ण के ठीक नीचे। आइगेनवैल्यू अभी भी मुख्य विकर्ण पर हैं।[8][9]
प्रेरणा
n × n मैट्रिक्स A विकर्णीय मैट्रिक्स है यदि और केवल यदि ईजेनस्पेस के आयामों का योग n है। या, समकक्ष रूप से, यदि और केवल यदि A में n रैखिक रूप से स्वतंत्र इगनवेक्टर्स हैं। सभी आव्यूह विकर्णीय नहीं होते; वे आव्यूह जो विकर्णीय नहीं होते, दोषपूर्ण आव्यूह आव्यूह कहलाते हैं। निम्नलिखित मैट्रिक्स पर विचार करें:
बहुलता सहित, A के इगनवैल्यूज λ = 1, 2, 4, 4 हैं। इगनवैल्यू 4 के अनुरूप इगनस्पेस का Hamel आयाम 1 (और 2 नहीं) है, इसलिए A विकर्णीय नहीं है। हालाँकि, व्युत्क्रमणीय मैट्रिक्स P इस प्रकार है कि J = P−1एपी, कहां
गणित का सवाल लगभग विकर्ण है. यह ए का जॉर्डन सामान्य रूप है। नीचे दिया गया अनुभाग #उदाहरण गणना का विवरण भरता है।
संमिश्र आव्यूह
सामान्य तौर पर, वर्ग जटिल मैट्रिक्स ए ब्लॉक विकर्ण मैट्रिक्स के समान (रैखिक बीजगणित) होता है
जहां प्रत्येक ब्लॉक जेiप्रपत्र का वर्ग मैट्रिक्स है
तो व्युत्क्रमणीय मैट्रिक्स P मौजूद है जैसे कि P−1AP = J ऐसा है कि J की केवल गैर-शून्य प्रविष्टियाँ विकर्ण और अतिविकर्ण पर हैं। J को A का 'जॉर्डन सामान्य रूप' कहा जाता है। प्रत्येक Ji ए का जॉर्डन ब्लॉक कहा जाता है। किसी दिए गए जॉर्डन ब्लॉक में, सुपरडायगोनल पर प्रत्येक प्रविष्टि 1 है।
इस परिणाम को मानते हुए, हम निम्नलिखित गुण निकाल सकते हैं:
- बहुलताओं की गणना करते हुए, J के इगनवैल्यूज , और इसलिए A के, विकर्ण प्रविष्टियाँ हैं।
- इगनवैल्यू λ दिया गया हैi, इसकी ज्यामितीय बहुलता ker(A − λ का आयाम हैi I), जहां I पहचान मैट्रिक्स है, और यह λ के अनुरूप जॉर्डन ब्लॉक की संख्या हैi.[10]
- इगनवैल्यू λ के अनुरूप सभी जॉर्डन ब्लॉकों के आकार का योगi इसकी बीजगणितीय बहुलता है.[10]* A विकर्णीय है यदि और केवल यदि, A के प्रत्येक इगनवैल्यू λ के लिए, इसकी ज्यामितीय और बीजगणितीय बहुलताएं मेल खाती हैं। विशेष रूप से, इस मामले में जॉर्डन ब्लॉक 1 × 1 मैट्रिक्स हैं; अर्थात् अदिश।
- λ के अनुरूप जॉर्डन ब्लॉक λI + N के रूप का है, जहां N निलपोटेंट मैट्रिक्स है जिसे N के रूप में परिभाषित किया गया हैij =डीi,j−1 (जहाँ δ क्रोनकर डेल्टा है)। एफ(ए) की गणना करते समय एन की शून्यक्षमता का उपयोग किया जा सकता है जहां एफ जटिल विश्लेषणात्मक कार्य है। उदाहरण के लिए, सिद्धांत रूप में जॉर्डन फॉर्म घातीय exp(A) के लिए बंद-फॉर्म अभिव्यक्ति दे सकता है।
- कम से कम j आकार के λ के अनुरूप जॉर्डन ब्लॉकों की संख्या मंद केर (A − λI) हैj − dim ker(A − λI)ज−1. इस प्रकार, j आकार के जॉर्डन ब्लॉकों की संख्या है
- इगनवैल्यू λ दिया गया हैi, न्यूनतम बहुपद में इसकी बहुलता इसके सबसे बड़े जॉर्डन ब्लॉक के आकार के बराबर है।
उदाहरण
मैट्रिक्स पर विचार करें पिछले अनुभाग के उदाहरण से. जॉर्डन सामान्य रूप कुछ मैट्रिक्स समानता द्वारा प्राप्त किया जाता है:
- वह है,
होने देना कॉलम वैक्टर हैं , , तब
हमने देखा कि
के लिए अपने पास , वह है, का इगनवेक्टर है इगनवैल्यू के अनुरूप . के लिए , दोनों पक्षों को गुणा करने पर देता है
लेकिन , इसलिए
इस प्रकार, वेक्टर जैसे A के सामान्यीकृत इगनवेक्टर्स कहलाते हैं।
उदाहरण: सामान्य रूप प्राप्त करना
यह उदाहरण दिखाता है कि किसी दिए गए मैट्रिक्स के जॉर्डन सामान्य रूप की गणना कैसे करें।
मैट्रिक्स पर विचार करें
जिसका उल्लेख लेख की शुरुआत में किया गया है।
A का अभिलक्षणिक बहुपद है
इससे पता चलता है कि बीजगणितीय बहुलता के अनुसार इगनवैल्यूज 1, 2, 4 और 4 हैं। इगनवैल्यू 1 के अनुरूप इगनस्पेस समीकरण Av = λv को हल करके पाया जा सकता है। यह कॉलम वेक्टर v = (−1, 1, 0, 0) द्वारा फैलाया गया हैटी. इसी प्रकार, इगनवैल्यू 2 के संगत इगनस्पेस को w = (1, −1, 0, 1) द्वारा फैलाया गया है।टी. अंत में, इगनवैल्यू 4 के अनुरूप इगनस्पेस भी एक-आयामी है (भले ही यह दोहरा इगनवैल्यू है) और x = (1, 0, −1, 1) द्वारा फैला हुआ हैटी. तो, तीनों इगनवैल्यूज में से प्रत्येक की ज्यामितीय बहुलता (यानी, दिए गए इगनवैल्यू के इगनस्पेस का आयाम) है। इसलिए, 4 के बराबर दो इगनवैल्यूज एकल जॉर्डन ब्लॉक के अनुरूप हैं, और मैट्रिक्स ए का जॉर्डन सामान्य रूप मैट्रिक्स जोड़ # प्रत्यक्ष योग है
तीन सामान्यीकृत ईजेनवेक्टर#जॉर्डन श्रृंखलाएं हैं। दो की लंबाई है: {v} और {w}, जो क्रमशः इगनवैल्यूज 1 और 2 के अनुरूप हैं। इगनवैल्यू 4 के अनुरूप लंबाई दो की श्रृंखला है। इस श्रृंखला को खोजने के लिए, गणना करें
जहां I 4 × 4 पहचान मैट्रिक्स है। उपरोक्त अवधि में वेक्टर चुनें जो A − 4I के कर्नेल में नहीं है; उदाहरण के लिए, y = (1,0,0,0)टी. अब, (A − 4I)y = x और (A − 4I)x = 0, इसलिए {y, x} इगनवैल्यू 4 के अनुरूप लंबाई दो की श्रृंखला है।
संक्रमण मैट्रिक्स P इस प्रकार है कि P−1AP = J इन सदिशों को दूसरे के बगल में रखकर इस प्रकार बनाया जाता है
गणना से पता चलता है कि समीकरण पी−1एपी = जे वास्तव में कायम है।
यदि हमने उस क्रम को बदल दिया है जिसमें चेन वैक्टर दिखाई देते हैं, अर्थात, v, w और {x, y} के क्रम को साथ बदलते हुए, जॉर्डन ब्लॉकों को आपस में बदल दिया जाएगा। हालाँकि, जॉर्डन रूप जॉर्डन रूपों के समकक्ष हैं।
सामान्यीकृत ईजेनवेक्टर
इगनवैल्यू λ दिया गया है, प्रत्येक संबंधित जॉर्डन ब्लॉक रैखिक रूप से स्वतंत्र वैक्टर पी की 'जॉर्डन श्रृंखला' को जन्म देता हैi, i = 1, ..., b, जहां b जॉर्डन ब्लॉक का आकार है। 'जनरेटर', या 'लीड वेक्टर', पीbश्रृंखला का सामान्यीकृत इगनवेक्टर है जैसे कि (A − λ'I')बीपb = 0. वेक्टर पी1 = (ए - λ'आई')b−1pb λ के अनुरूप साधारण इगनवेक्टर है। सामान्य तौर पर, पीi पी की पूर्व छवि हैi−1 A - λ'I' के अंतर्गत। तो लीड वेक्टर A - λ'I' से गुणा करके श्रृंखला उत्पन्न करता है।[11][2]इसलिए यह कथन कि प्रत्येक वर्ग मैट्रिक्स ए को जॉर्डन में सामान्य रूप में रखा जा सकता है, इस दावे के बराबर है कि अंतर्निहित वेक्टर स्थान का आधार जॉर्डन श्रृंखलाओं से बना है।
प्रमाण
हम प्रेरण द्वारा प्रमाण देते हैं कि किसी भी जटिल-मूल्य वर्ग मैट्रिक्स ए को जॉर्डन सामान्य रूप में रखा जा सकता है। चूँकि अंतर्निहित सदिश स्थान दिखाया जा सकता है[12] इगनवैल्यूज से जुड़े अपरिवर्तनीय उप-स्थानों का प्रत्यक्ष योग होने के लिए, A को केवल इगनवैल्यू λ माना जा सकता है। 1×1 मामला मामूली है. मान लीजिए A n × n मैट्रिक्स है। A - λ'I' के फलन की सीमा, जिसे Ran(A - λ'I द्वारा निरूपित किया जाता है, A का अपरिवर्तनीय उपस्थान है। इसके अलावा, चूँकि λ A का इगनवैल्यू है, Ran(A - λ) का आयाम 'I'), r, n से बिल्कुल कम है, इसलिए, आगमनात्मक परिकल्पना के अनुसार, Ran(A - λ'I') का आधार है (रैखिक बीजगणित) {p1, …, पीr}जॉर्डन श्रृंखलाओं से बना है।
इसके बाद कर्नेल (रैखिक बीजगणित) पर विचार करें, यानी, रैखिक उपस्थान केर (ए − λ'I')। अगर
वांछित परिणाम रैंक-शून्यता प्रमेय से तुरंत प्राप्त होता है। (यह मामला होगा, उदाहरण के लिए, यदि ए हर्मिटियन मैट्रिक्स था।)
अन्यथा, यदि
माना Q का आयाम s ≤ r है। Q में प्रत्येक वेक्टर इगनवेक्टर है, इसलिए Ran(A − λ'I') में s रैखिक रूप से स्वतंत्र इगनवेक्टर्स के अनुरूप s जॉर्डन श्रृंखला होनी चाहिए। इसलिए आधार {p1, ..., पीr} में s सदिश होना चाहिए, मान लीजिए {pr−s+1, ..., पीr}, जो इन जॉर्डन श्रृंखलाओं के प्रमुख वैक्टर हैं। हम इन लीड वैक्टरों की पूर्वछवियाँ लेकर श्रृंखलाओं का विस्तार कर सकते हैं। (यह मुख्य कदम है।) चलो qi ऐसा हो कि
सेट {qi}, रैखिक रूप से स्वतंत्र सेट {p. की पूर्वछवियाँ होने के नातेi}ए - λ 'आई' के तहत, भी रैखिक रूप से स्वतंत्र है। स्पष्टतः q का कोई गैर-तुच्छ रैखिक संयोजन नहीं हैi {p के लिए ker(A − λI) में स्थित हो सकता हैi}i=r−s+1, ..., r रैखिक रूप से स्वतंत्र है. इसके अलावा, q का कोई गैर-तुच्छ रैखिक संयोजन नहीं हैi Ran(A − λ 'I') से संबंधित हो सकता है क्योंकि तब यह मूल वैक्टर p का रैखिक संयोजन होगा1, ..., पीr, और इस रैखिक संयोजन में मूल वैक्टर का योगदान होगा जो कि केर (ए - λI) में नहीं है क्योंकि अन्यथा यह केर (ए - λI) से संबंधित होगा। दोनों रैखिक संयोजनों पर ए - λI की कार्रवाई तब लीड वैक्टर के गैर-तुच्छ रैखिक संयोजन और गैर-लीड वैक्टर के ऐसे रैखिक संयोजन की समानता उत्पन्न करेगी, जो (पी) की रैखिक स्वतंत्रता का खंडन करेगी।1, ..., पीr).
अंततः, हम कोई भी रैखिकतः स्वतंत्र समुच्चय {z चुन सकते हैं1, ..., साथt} जिसका प्रक्षेपण फैला हुआ है
प्रत्येक zi 1 लंबाई की जॉर्डन श्रृंखला बनाता है। निर्माण से, तीन सेटों का मिलन {पी1, ..., पीr}, {क्यूr−s +1, ..., क्यूr}, और {z1, ..., साथt} रैखिक रूप से स्वतंत्र है, और इसके सदस्य मिलकर जॉर्डन श्रृंखला बनाते हैं। अंत में, रैंक-शून्यता प्रमेय द्वारा, संघ की कार्डिनैलिटी n है। दूसरे शब्दों में, हमें जॉर्डन श्रृंखलाओं से बना आधार मिला है, और इससे पता चलता है कि ए को जॉर्डन के सामान्य रूप में रखा जा सकता है।
विशिष्टता
यह दिखाया जा सकता है कि किसी दिए गए मैट्रिक्स ए का जॉर्डन सामान्य रूप जॉर्डन ब्लॉक के क्रम तक अद्वितीय है।
आइजेनवैल्यू की बीजगणितीय और ज्यामितीय बहुलताओं को जानना ए के जॉर्डन सामान्य रूप को निर्धारित करने के लिए पर्याप्त नहीं है। यह मानते हुए कि आइजेनवैल्यू λ की बीजगणितीय बहुलता एम(λ) ज्ञात है, जॉर्डन फॉर्म की संरचना को रैंकों का विश्लेषण करके पता लगाया जा सकता है। शक्तियां (ए - λI)एम(λ). इसे देखने के लिए, मान लीजिए कि n × n मैट्रिक्स A का केवल इगनवैल्यू λ है। तो m(λ) = n. सबसे छोटा पूर्णांक k1 ऐसा है कि
ए के जॉर्डन रूप में सबसे बड़े जॉर्डन ब्लॉक का आकार है (यह संख्या k1 इसे λ का सूचकांक भी कहा जाता है। निम्नलिखित अनुभाग में चर्चा देखें।) की रैंक
k आकार के जॉर्डन ब्लॉकों की संख्या है1. इसी प्रकार, का पद
k आकार के जॉर्डन ब्लॉकों की संख्या दोगुनी है1 साथ ही k आकार के जॉर्डन ब्लॉकों की संख्या1- 1. सामान्य मामला समान है।
इसका उपयोग जॉर्डन रूप की विशिष्टता दिखाने के लिए किया जा सकता है। चलो जे1 और जे2 ए के दो जॉर्डन सामान्य रूप बनें। फिर जे1 और जे2 समान हैं और इनका स्पेक्ट्रम भी समान है, जिसमें आइगेनवैल्यू की बीजगणितीय बहुलताएं भी शामिल हैं। पिछले पैराग्राफ में उल्लिखित प्रक्रिया का उपयोग इन मैट्रिक्स की संरचना निर्धारित करने के लिए किया जा सकता है। चूँकि मैट्रिक्स की रैंक समानता परिवर्तन द्वारा संरक्षित होती है, जे के जॉर्डन ब्लॉकों के बीच आपत्ति होती है1 और जे2. यह कथन की विशिष्टता वाले भाग को सिद्ध करता है।
वास्तविक आव्यूह
यदि A वास्तविक मैट्रिक्स है, तो इसका जॉर्डन रूप अभी भी गैर-वास्तविक हो सकता है। जैसा कि ऊपर चर्चा की गई है, इसे जटिल इगनवैल्यूज और सुपरडायगोनल पर प्रस्तुत करने के बजाय, वास्तविक उलटा मैट्रिक्स P मौजूद है जैसे कि P−1एपी = जे वास्तविक ब्लॉक विकर्ण मैट्रिक्स है जिसमें प्रत्येक ब्लॉक वास्तविक जॉर्डन ब्लॉक है।[13] वास्तविक जॉर्डन ब्लॉक या तो जटिल जॉर्डन ब्लॉक के समान होता है (यदि संबंधित इगनवैल्यू वास्तविक है), या स्वयं ब्लॉक मैट्रिक्स है, जिसमें 2×2 ब्लॉक शामिल हैं (गैर-वास्तविक आइजेनवैल्यू के लिए)। फॉर्म की दी गई बीजगणितीय बहुलता के साथ)।
और गुणन का वर्णन करें जटिल तल में. सुपरडायगोनल ब्लॉक 2×2 पहचान मैट्रिक्स हैं और इसलिए इस प्रतिनिधित्व में मैट्रिक्स आयाम जटिल जॉर्डन फॉर्म से बड़े हैं। पूर्ण वास्तविक जॉर्डन ब्लॉक द्वारा दिया गया है
यह वास्तविक जॉर्डन स्वरूप जटिल जॉर्डन स्वरूप का परिणाम है। वास्तविक मैट्रिक्स के लिए गैर-वास्तविक ईजेनवेक्टर और सामान्यीकृत ईजेनवेक्टर को हमेशा जटिल संयुग्म जोड़े बनाने के लिए चुना जा सकता है। वास्तविक और काल्पनिक भाग (वेक्टर और उसके संयुग्म का रैखिक संयोजन) लेते हुए, नए आधार के संबंध में मैट्रिक्स का यह रूप है।
फ़ील्ड में प्रविष्टियों के साथ मैट्रिक्स
जॉर्डन कमी को किसी भी वर्ग मैट्रिक्स एम तक बढ़ाया जा सकता है जिसकी प्रविष्टियां क्षेत्र (गणित) के में होती हैं। परिणाम बताता है कि किसी भी एम को डी + एन के योग के रूप में लिखा जा सकता है जहां डी अर्धसरल ऑपरेटर है, एन निलपोटेंट मैट्रिक्स है, और डीएन = रा। इसे जॉर्डन-शेवेल्ली अपघटन कहा जाता है। जब भी K में M के इगनवैल्यूज शामिल होते हैं, विशेष रूप से जब K को बीजगणितीय रूप से बंद किया जाता है, तो सामान्य रूप को जॉर्डन ब्लॉक के प्रत्यक्ष योग के रूप में स्पष्ट रूप से व्यक्त किया जा सकता है।
उस स्थिति के समान जब K सम्मिश्र संख्या है, (M − λI) के गुठली के आयामों को जाननाk 1 ≤ k ≤ m के लिए, जहां m इगनवैल्यू λ की बीजगणितीय बहुलता है, किसी को M के जॉर्डन रूप को निर्धारित करने की अनुमति देता है। हम अंतर्निहित वेक्टर स्पेस V को K[x]-मॉड्यूल के रूप में देख सकते हैं ( गणित) एम के अनुप्रयोग के रूप में वी पर एक्स की कार्रवाई और के-रैखिकता द्वारा विस्तार के संबंध में। फिर बहुपद (x − λ)kM के प्राथमिक विभाजक हैं, और जॉर्डन सामान्य रूप प्राथमिक विभाजक से जुड़े ब्लॉकों के संदर्भ में M का प्रतिनिधित्व करने से संबंधित है।
जॉर्डन सामान्य रूप का प्रमाण आमतौर पर प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय के रिंग (गणित) K[x] के अनुप्रयोग के रूप में किया जाता है, जिसका यह परिणाम है।
परिणाम
कोई यह देख सकता है कि जॉर्डन सामान्य रूप अनिवार्य रूप से वर्ग मैट्रिक्स के लिए वर्गीकरण परिणाम है, और रैखिक बीजगणित से कई महत्वपूर्ण परिणामों को इसके परिणामों के रूप में देखा जा सकता है।
स्पेक्ट्रल मैपिंग प्रमेय
जॉर्डन सामान्य रूप का उपयोग करते हुए, प्रत्यक्ष गणना कार्यात्मक कलन के लिए वर्णक्रमीय मानचित्रण प्रमेय देती है: मान लीजिए A n × n मैट्रिक्स है जिसमें इगनवैल्यूज λ है1, ..., एलn, तो किसी भी बहुपद p के लिए, p(A) के इगनवैल्यूज p(λ) हैं1), ..., पी(एलn).
अभिलक्षणिक बहुपद
की विशेषता बहुपद A है . मैट्रिक्स समानता में समान विशेषता बहुपद होते हैं। इसलिए, , कहाँ का ith मूल है और इसकी बहुलता है, क्योंकि यह स्पष्ट रूप से ए के जॉर्डन रूप का विशिष्ट बहुपद है।
केली-हैमिल्टन प्रमेय
केली-हैमिल्टन प्रमेय का दावा है कि प्रत्येक मैट्रिक्स ए अपने विशिष्ट समीकरण को संतुष्ट करता है: यदि p का अभिलक्षणिक बहुपद है A, तब . इसे जॉर्डन फॉर्म में प्रत्यक्ष गणना के माध्यम से दिखाया जा सकता है, यदि बहुलता का आदर्श मान है , फिर यह जॉर्डन ब्लॉक है स्पष्ट रूप से संतुष्ट करता है . चूँकि विकर्ण ब्लॉक एक-दूसरे को प्रभावित नहीं करते हैं, iवें विकर्ण ब्लॉक है ; इस तरह .
जॉर्डन फॉर्म को मैट्रिक्स के आधार क्षेत्र का विस्तार करने वाले क्षेत्र पर मौजूद माना जा सकता है, उदाहरण के लिए विभाजन क्षेत्र पर p; यह फ़ील्ड एक्सटेंशन मैट्रिक्स को नहीं बदलता है p(A) किसी भी तरह से।
न्यूनतम बहुपद
वर्ग मैट्रिक्स ए का न्यूनतम बहुपद (रैखिक बीजगणित) पी न्यूनतम डिग्री, एम का अद्वितीय मोनोनिक बहुपद है, जैसे कि पी (ए) = 0. वैकल्पिक रूप से, बहुपदों का सेट जो किसी दिए गए ए को नष्ट कर देता है, सी में आदर्श I बनाता है [x], जटिल गुणांक वाले बहुपदों का प्रमुख आदर्श डोमेन। वह राक्षसी तत्व जो I उत्पन्न करता है वह सटीक रूप से P है।
चलो λ1, ..., एलq A, और s के विशिष्ट इगनवैल्यूज होंi λ के अनुरूप सबसे बड़े जॉर्डन ब्लॉक का आकार होi. जॉर्डन सामान्य रूप से यह स्पष्ट है कि ए के न्यूनतम बहुपद में डिग्री है Σएसi.
जबकि जॉर्डन सामान्य रूप न्यूनतम बहुपद निर्धारित करता है, इसका विपरीत सत्य नहीं है। इससे प्राथमिक विभाजक की धारणा उत्पन्न होती है। वर्ग मैट्रिक्स ए के प्राथमिक विभाजक इसके जॉर्डन ब्लॉक के विशिष्ट बहुपद हैं। न्यूनतम बहुपद m के गुणनखंड अलग-अलग इगनवैल्यूज के अनुरूप सबसे बड़ी डिग्री के प्राथमिक विभाजक हैं।
प्राथमिक भाजक की डिग्री संबंधित जॉर्डन ब्लॉक का आकार है, इसलिए संबंधित अपरिवर्तनीय उप-स्थान का आयाम है। यदि सभी प्रारंभिक भाजक रैखिक हैं, तो ए विकर्णीय है।
अपरिवर्तनीय उप-स्थान अपघटन
एन × एन मैट्रिक्स ए का जॉर्डन रूप ब्लॉक विकर्ण है, और इसलिए ए के अपरिवर्तनीय उप-स्थानों में एन आयामी यूक्लिडियन स्थान का अपघटन देता है। प्रत्येक जॉर्डन ब्लॉक जेi अपरिवर्तनीय उप-स्थान X से मेल खाता हैi. प्रतीकात्मक रूप से, हम डालते हैं
जहां प्रत्येक एक्सi संबंधित जॉर्डन श्रृंखला का विस्तार है, और k जॉर्डन श्रृंखलाओं की संख्या है।
जॉर्डन फॉर्म के माध्यम से थोड़ा अलग अपघटन भी प्राप्त किया जा सकता है। इगनवैल्यू λ दिया गया हैi, इसके सबसे बड़े संगत जॉर्डन ब्लॉक का आकारi λ का सूचकांक कहा जाता हैi और v(λ) द्वारा निरूपित किया जाता हैi). (इसलिए, न्यूनतम बहुपद की डिग्री सभी सूचकांकों का योग है।) उपसमष्टि को परिभाषित करें Yi द्वारा
इससे विघटन होता है
जहाँ l, A के विशिष्ट इगनवैल्यूज की संख्या है। सहज रूप से, हम समान इगनवैल्यू के अनुरूप जॉर्डन ब्लॉक अपरिवर्तनीय उप-स्थानों को साथ जोड़ते हैं। चरम स्थिति में जहां A पहचान मैट्रिक्स का गुणज है, हमारे पास k = n और l = 1 है।
Y पर प्रक्षेपणiऔर अन्य सभी Y के साथj( j ≠ i ) को 'v पर A का वर्णक्रमीय प्रक्षेपण' कहा जाता हैiऔर इसे आमतौर पर P(λ द्वारा दर्शाया जाता हैi ; ए)'। वर्णक्रमीय प्रक्षेपण इस अर्थ में परस्पर ओर्थोगोनल हैं कि P(λi ; ए) पी(वीj ; ए) = 0 यदि मैं ≠ जे. इसके अलावा वे A के साथ आवागमन करते हैं और उनका योग पहचान मैट्रिक्स है। हर वी को बदलनाi जॉर्डन मैट्रिक्स J में से और अन्य सभी प्रविष्टियों को शून्य करने से P(v) मिलता हैi ; जे), इसके अलावा अगर यू जे यू−1समानता परिवर्तन इस प्रकार है कि A = UJ U−1 फिर P(λi ; ए) = यू पी(एलi ; जे) यू−1. वे सीमित आयामों तक सीमित नहीं हैं। कॉम्पैक्ट ऑपरेटरों के लिए उनके अनुप्रयोग और अधिक सामान्य चर्चा के लिए होलोमोर्फिक कार्यात्मक कैलकुलस में नीचे देखें।
दो अपघटनों की तुलना करते हुए, ध्यान दें कि, सामान्य तौर पर, l ≤ k। जब A सामान्य होता है, तो उप-स्थान Xiपहले अपघटन में एक-आयामी और पारस्परिक रूप से ऑर्थोगोनल हैं। यह सामान्य ऑपरेटरों के लिए वर्णक्रमीय प्रमेय है। दूसरा अपघटन बनच स्थानों पर सामान्य कॉम्पैक्ट ऑपरेटरों के लिए अधिक आसानी से सामान्यीकृत होता है।
यहां सूचकांक, ν(λ) के कुछ गुणों पर ध्यान देना दिलचस्प हो सकता है। अधिक सामान्यतः, जटिल संख्या λ के लिए, इसके सूचकांक को सबसे कम गैर-नकारात्मक पूर्णांक ν(λ) के रूप में परिभाषित किया जा सकता है जैसे कि
तो ν(v) > 0 यदि और केवल यदि λ A का प्रतिध्वनि है। परिमित-आयामी मामले में, ν(v) ≤ v की बीजगणितीय बहुलता।
समतल (सपाट) सामान्य रूप
जॉर्डन फॉर्म का उपयोग संयुग्मन तक मैट्रिक्स के सामान्य रूप को खोजने के लिए किया जाता है, जैसे कि सामान्य मैट्रिक्स परिवेश मैट्रिक्स स्थान में कम निश्चित डिग्री की बीजगणितीय विविधता बनाते हैं।
जॉर्डन सामान्य रूप या सामान्य रूप से तर्कसंगत विहित रूपों के लिए मैट्रिक्स संयुग्मता वर्गों के प्रतिनिधियों के सेट रैखिक या का गठन नहीं करते हैं परिवेश मैट्रिक्स स्थानों में उप-स्थानों को एफ़िन करें।
व्लादिमीर अर्नोल्ड ने पोज़ दिया[14] समस्या: क्षेत्र पर मैट्रिक्स का विहित रूप खोजें जिसके लिए मैट्रिक्स संयुग्मता वर्गों के प्रतिनिधियों का सेट एफ़िन रैखिक उप-स्थानों (फ्लैट) का संघ है। दूसरे शब्दों में, मैट्रिक्स संयुग्मता वर्गों के सेट को मैट्रिक्स के प्रारंभिक सेट में वापस मैप करें ताकि इस एम्बेडिंग की छवि - सभी सामान्य मैट्रिक्स का सेट, सबसे कम संभव डिग्री हो - यह स्थानांतरित रैखिक उप-स्थानों का संघ है।
इसे पीटरिस डौगुलिस द्वारा बीजगणितीय रूप से बंद क्षेत्रों के लिए हल किया गया था।[15] मैट्रिक्स के विशिष्ट रूप से परिभाषित समतल सामान्य रूप का निर्माण इसके जॉर्डन सामान्य रूप पर विचार करके शुरू होता है।
मैट्रिक्स फ़ंक्शंस
जॉर्डन श्रृंखला का पुनरावृत्ति विभिन्न एक्सटेंशनों को अधिक अमूर्त सेटिंग्स के लिए प्रेरित करता है। परिमित मैट्रिक्स के लिए, किसी को मैट्रिक्स फ़ंक्शंस मिलते हैं; इसे कॉम्पैक्ट ऑपरेटरों और होलोमोर्फिक फ़ंक्शनल कैलकुलस तक बढ़ाया जा सकता है, जैसा कि नीचे बताया गया है।
जॉर्डन सामान्य रूप मैट्रिक्स फ़ंक्शंस की गणना के लिए सबसे सुविधाजनक है (हालांकि यह कंप्यूटर गणना के लिए सबसे अच्छा विकल्प नहीं हो सकता है)। मान लीजिए f(z) जटिल तर्क का विश्लेषणात्मक कार्य है। फ़ंक्शन को n×n जॉर्डन ब्लॉक J पर इगनवैल्यू λ के साथ लागू करने से ऊपरी त्रिकोणीय मैट्रिक्स प्राप्त होता है:
ताकि परिणामी मैट्रिक्स के k-वें सुपरडायगोनल के तत्व हों . सामान्य जॉर्डन सामान्य रूप के मैट्रिक्स के लिए उपरोक्त अभिव्यक्ति प्रत्येक जॉर्डन ब्लॉक पर लागू की जाएगी।
निम्नलिखित उदाहरण पावर फ़ंक्शन f(z)=z के अनुप्रयोग को दिखाता हैn:
जहां द्विपद गुणांक को इस प्रकार परिभाषित किया गया है . पूर्णांक धनात्मक n के लिए यह मानक परिभाषा तक कम हो जाता है गुणांकों का. नकारात्मक एन पहचान के लिए काम आ सकता है.
कॉम्पैक्ट ऑपरेटर
जॉर्डन सामान्य फॉर्म के अनुरूप परिणाम बनच स्थान पर कॉम्पैक्ट ऑपरेटरों के लिए होता है। कॉम्पैक्ट ऑपरेटरों को प्रतिबंधित करता है क्योंकि कॉम्पैक्ट ऑपरेटर टी के स्पेक्ट्रम में प्रत्येक बिंदु x आइगेनवैल्यू है; एकमात्र अपवाद तब होता है जब x स्पेक्ट्रम का सीमा बिंदु होता है। यह सामान्यतः बाउंडेड ऑपरेटरों के लिए सत्य नहीं है। इस सामान्यीकरण का कुछ विचार देने के लिए, हम पहले जॉर्डन अपघटन को कार्यात्मक विश्लेषण की भाषा में पुन: तैयार करते हैं।
होलोमोर्फिक कार्यात्मक कैलकुलस
मान लीजिए कि X बैनाच स्पेस है, L(X) होलोमोर्फिक कार्यात्मक कैलकुलस को इस प्रकार परिभाषित किया गया है:
बंधे हुए ऑपरेटर टी को ठीक करें। जटिल कार्यों के परिवार होल (टी) पर विचार करें जो कि σ (टी) वाले कुछ खुले सेट जी पर होलोमोर्फिक फ़ंक्शन है। मान लीजिए Γ = {γi} जॉर्डन वक्रों का सीमित संग्रह हो जैसे कि σ(T) Γ के अंदर स्थित हो, हम f(T) को परिभाषित करते हैं
खुला सेट G, f के साथ भिन्न हो सकता है और इसे कनेक्ट करने की आवश्यकता नहीं है। इंटीग्रल को रीमैन योग की सीमा के रूप में परिभाषित किया गया है, जैसा कि अदिश मामले में होता है। यद्यपि इंटीग्रल निरंतर एफ के लिए समझ में आता है, हम शास्त्रीय फ़ंक्शन सिद्धांत (उदाहरण के लिए, कॉची इंटीग्रल फॉर्मूला) से मशीनरी को लागू करने के लिए होलोमोर्फिक फ़ंक्शंस तक सीमित रखते हैं। यह धारणा कि σ(T) Γ के अंदर स्थित है, यह सुनिश्चित करता है कि f(T) अच्छी तरह से परिभाषित है; यह Γ की पसंद पर निर्भर नहीं है। कार्यात्मक कैलकुलस, Hol(T) से L(X) तक की मैपिंग Φ है
हमें इस कार्यात्मक कैलकुलस के निम्नलिखित गुणों की आवश्यकता होगी:
- Φ बहुपद कार्यात्मक कलन का विस्तार करता है।
- वर्णक्रमीय मानचित्रण प्रमेय मानता है: σ(f(T)) = f(σ(T)).
- Φ बीजगणित समरूपता है।
परिमित-आयामी मामला
परिमित-आयामी मामले में, σ(T) = {λi} जटिल तल में परिमित असतत समुच्चय है। चलो ईi वह फ़ंक्शन बनें जो λ के कुछ खुले पड़ोस में 1 हैi और अन्यत्र 0. कार्यात्मक कलन की संपत्ति 3 द्वारा, ऑपरेटर
प्रक्षेपण है. इसके अलावा, चलो νiλ का सूचकांक होi और
वर्णक्रमीय मानचित्रण प्रमेय हमें बताता है
स्पेक्ट्रम {0} है. संपत्ति 1 द्वारा, f(T) की गणना सीधे जॉर्डन फॉर्म में की जा सकती है, और निरीक्षण से, हम देखते हैं कि ऑपरेटर f(T)ei(टी) शून्य मैट्रिक्स है.
गुण 3 द्वारा, f(T) ei(टी) = ईi(टी) एफ(टी)। तो ईi(टी) बिल्कुल उप-स्थान पर प्रक्षेपण है
रिश्ता
तात्पर्य
जहां सूचकांक I, T के विशिष्ट इगनवैल्यूज के माध्यम से चलता है। यह अपरिवर्तनीय उप-स्थान अपघटन है
पिछले भाग में दिया गया है। प्रत्येक ईi(टी) λ के अनुरूप जॉर्डन श्रृंखलाओं द्वारा फैलाए गए उप-स्थान पर प्रक्षेपण हैi और v के अनुरूप जॉर्डन श्रृंखलाओं द्वारा फैले उप-स्थानों के साथj j ≠ i के लिए. दूसरे शब्दों में, ईi(टी) = पी(एलi;टी)। ऑपरेटरों की यह स्पष्ट पहचान ईi(टी) बदले में मैट्रिक्स के लिए होलोमोर्फिक कार्यात्मक कैलकुलस का स्पष्ट रूप देता है:
- सभी f ∈ Hol(T) के लिए,
ध्यान दें कि f(T) का व्यंजक परिमित योग है, क्योंकि v के प्रत्येक पड़ोस परi, हमने v पर केन्द्रित f का टेलर श्रृंखला विस्तार चुना हैi.
ऑपरेटर के ध्रुव
मान लीजिए T परिबद्ध संकारक है λ σ(T) का पृथक बिंदु है। (जैसा कि ऊपर बताया गया है, जब टी सघन होता है, तो इसके स्पेक्ट्रम में प्रत्येक बिंदु पृथक बिंदु होता है, संभवतः सीमा बिंदु 0 को छोड़कर।)
बिंदु λ को क्रम ν के साथ ऑपरेटर T का 'ध्रुव' कहा जाता है यदि रिसॉल्वेंट औपचारिकता फ़ंक्शन RT द्वारा परिभाषित
λ पर क्रम ν का ध्रुव (जटिल विश्लेषण) है।
हम दिखाएंगे कि, परिमित-आयामी मामले में, इगनवैल्यू का क्रम उसके सूचकांक के साथ मेल खाता है। परिणाम कॉम्पैक्ट ऑपरेटरों के लिए भी लागू होता है।
पर्याप्त रूप से छोटे त्रिज्या ε के साथ इगनवैल्यू λ पर केंद्रित कुंडलाकार क्षेत्र A पर विचार करें, ताकि खुली डिस्क B का प्रतिच्छेदन हो सकेε(λ) और σ(T) {λ} है। रिसॉल्वेंट फ़ंक्शन आरT ए पर होलोमोर्फिक है। शास्त्रीय कार्य सिद्धांत से परिणाम का विस्तार करते हुए, आरT ए पर लॉरेंट श्रृंखला का प्रतिनिधित्व है:
कहाँ
- और C λ पर केन्द्रित छोटा वृत्त है।
कार्यात्मक कलन पर पिछली चर्चा के अनुसार,
- कहाँ 1 पर है और अन्यत्र 0.
लेकिन हमने दिखाया है कि सबसे छोटा धनात्मक पूर्णांक m ऐसा है
- और
ठीक λ, ν(λ) का सूचकांक है। दूसरे शब्दों में, फ़ंक्शन RT λ पर क्रम ν(λ) का ध्रुव है।
संख्यात्मक विश्लेषण
यदि मैट्रिक्स A में कई इगनवैल्यूज हैं, या कई इगनवैल्यूज वाले मैट्रिक्स के करीब है, तो इसका जॉर्डन सामान्य रूप गड़बड़ी के प्रति बहुत संवेदनशील है। उदाहरण के लिए मैट्रिक्स पर विचार करें
यदि ε = 0, तो जॉर्डन सामान्य रूप सरल है
हालाँकि, ε ≠ 0 के लिए, जॉर्डन सामान्य रूप है
यह शर्त संख्या जॉर्डन के सामान्य रूप के लिए मजबूत संख्यात्मक एल्गोरिदम विकसित करना बहुत कठिन बना देती है, क्योंकि परिणाम गंभीर रूप से इस बात पर निर्भर करता है कि दो स्वदेशी मान समान माने जाते हैं या नहीं। इस कारण से, जॉर्डन सामान्य रूप को आमतौर पर संख्यात्मक विश्लेषण में टाला जाता है; स्थिर शूर अपघटन[16] या छद्म छद्मस्पेक्ट्रम[17] बेहतर विकल्प हैं.
यह भी देखें
- विहित आधार
- कानूनी फॉर्म
- फ्रोबेनियस सामान्य रूप
- जॉर्डन मैट्रिक्स
- जॉर्डन-शेवेल्ली अपघटन
- मैट्रिक्स अपघटन
- मोडल मैट्रिक्स
- अजीब विहित रूप
टिप्पणियाँ
- ↑ Shilov defines the term Jordan canonical form and in a footnote says that Jordan normal form is synonymous. These terms are sometimes shortened to Jordan form. (Shilov) The term Classical canonical form is also sometimes used in the sense of this article. (James & James, 1976)
- ↑ 2.0 2.1 Holt & Rumynin (2009, p. 9)
- ↑ 3.0 3.1 Golub & Van Loan (1996, p. 355)
- ↑ Beauregard & Fraleigh (1973, pp. 270–274)
- ↑ Golub & Van Loan (1996, p. 353)
- ↑ Nering (1970, pp. 113–118)
- ↑ Brechenmacher, "Histoire du théorème de Jordan de la décomposition matricielle (1870-1930). Formes de représentation et méthodes de décomposition", Thesis, 2007
- ↑ Cullen (1966, p. 114)
- ↑ Franklin (1968, p. 122)
- ↑ 10.0 10.1 Horn & Johnson (1985, §3.2.1)
- ↑ Bronson (1970, pp. 189, 194)
- ↑ Roe Goodman and Nolan R. Wallach, Representations and Invariants of Classical Groups, Cambridge UP 1998, Appendix B.1.
- ↑ Horn & Johnson (1985, Theorem 3.4.5)
- ↑ Arnold, Vladimir I, ed. (2004). Arnold's problems. Springer-Verlag Berlin Heidelberg. p. 127. doi:10.1007/b138219. ISBN 978-3-540-20748-1.
- ↑ Peteris Daugulis (2012). "मैट्रिक्स संयुग्मन कक्षा का एक पैरामीट्रिजेशन एफ़िन विमानों के संघ के रूप में सेट होता है". Linear Algebra and Its Applications. 436 (3): 709–721. arXiv:1110.0907. doi:10.1016/j.laa.2011.07.032. S2CID 119649768.
- ↑ See Golub & Van Loan (2014), §7.6.5; or Golub & Wilkinson (1976) for details.
- ↑ See Golub & Van Loan (2014), §7.9
संदर्भ
- Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X
- Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490
- Cullen, Charles G. (1966), Matrices and Linear Transformations, Reading: Addison-Wesley, LCCN 66021267
- Dunford, N.; Schwartz, J. T. (1958), Linear Operators, Part I: General Theory, Interscience
- Finkbeiner II, Daniel T. (1978), Introduction to Matrices and Linear Transformations (3rd ed.), W. H. Freeman and Company
- Franklin, Joel N. (1968), Matrix Theory, Englewood Cliffs: Prentice-Hall, LCCN 68016345
- Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3rd ed.), Baltimore: Johns Hopkins University Press, ISBN 0-8018-5414-8
- Golub, Gene H.; Wilkinson, J. H. (1976). "Ill-conditioned eigensystems and the computation of the Jordan normal form". SIAM Review. 18 (4): 578–619. doi:10.1137/1018113.
- Holt, Derek; Rumynin, Dmitriy (2009), Algebra I – Advanced Linear Algebra (MA251) Lecture Notes (PDF)
- Horn, Roger A.; Johnson, Charles R. (1985), Matrix Analysis, Cambridge University Press, ISBN 978-0-521-38632-6
- James, Glenn; James, Robert C. (1976), Mathematics Dictionary (2nd ed.), Van Nostrand Reinhold
- MacLane, Saunders; Birkhoff, Garrett (1967), Algebra, Macmillan Publishers
- Michel, Anthony N.; Herget, Charles J. (1993), Applied Algebra and Functional Analysis, Dover Publications
- Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646
- Shafarevich, I. R.; Remizov, A. O. (2012), Linear Algebra and Geometry, Springer, ISBN 978-3-642-30993-9
- Shilov, Georgi E. (1977), Linear Algebra, Dover Publications
- Jordan Canonical Form article at mathworld.wolfram.com