आधुनिक पोर्टफोलियो सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 133: Line 133:
:अर्थात। :  <math> [\operatorname{E}(R_a) ] = R_f + [\operatorname{E}(R_m) - R_f] * [ \rho_{am} \sigma_a \sigma_m]  / [ \sigma_m \sigma_m  ] </math>
:अर्थात। :  <math> [\operatorname{E}(R_a) ] = R_f + [\operatorname{E}(R_m) - R_f] * [ \rho_{am} \sigma_a \sigma_m]  / [ \sigma_m \sigma_m  ] </math>
:अर्थात। :  <math> [\operatorname{E}(R_a) ] = R_f + [\operatorname{E}(R_m) - R_f] * [\sigma_{am}]  / [ \sigma_{mm}]  </math>
:अर्थात। :  <math> [\operatorname{E}(R_a) ] = R_f + [\operatorname{E}(R_m) - R_f] * [\sigma_{am}]  / [ \sigma_{mm}]  </math>
: <math> [\sigma_{am}]  / [ \sigma_{mm}] \quad </math> बीटा है, <math> \beta  </math> रिटर्न- परिसंपत्ति के रिटर्न और बाजार के रिटर्न के मध्य [[सहप्रसरण]] को बाजार रिटर्न के अंतर से विभाजित किया जाता है- यानी बाजार पोर्टफोलियो के मूल्य में उतार-चढ़ाव के प्रति परिसंपत्ति मूल्य की संवेदनशीलता (यह भी देखें) {{slink|Beta (finance)#Adding an asset to the market portfolio}}).
: <math> [\sigma_{am}]  / [ \sigma_{mm}] \quad </math> बीटा है, <math> \beta  </math> रिटर्न- परिसंपत्ति के रिटर्न और बाजार के रिटर्न के मध्य [[सहप्रसरण]] को बाजार रिटर्न के अंतर से विभाजित किया जाता है- यानी बाजार पोर्टफोलियो के मूल्य में उतार-चढ़ाव के प्रति परिसंपत्ति मूल्य की संवेदनशीलता (यह भी देखें) {{slink|बीटा (वित्त) बाज़ार पोर्टफोलियो में एक परिसंपत्ति जोड़ना}}).
</ब्लॉककोट>
 
यह समीकरण निम्नलिखित प्रतिगमन विश्लेषण समीकरण का उपयोग करके सांख्यिकीय रूप से [[अनुमान सिद्धांत]] हो सकता है:
यह समीकरण निम्नलिखित प्रतिगमन विश्लेषण समीकरण का उपयोग करके सांख्यिकीय रूप से [[अनुमान सिद्धांत]] हो सकता है:


Line 151: Line 149:


{{quote|
{{quote|
[[Option (finance)|Options]] theory and MPT have at least one important conceptual difference from the [[probabilistic risk assessment]] done by nuclear power [plants]. A PRA is what economists would call a ''structural model''. The components of a system and their relationships are modeled in [[Monte Carlo simulations]]. If valve X fails, it causes a loss of back pressure on pump Y, causing a drop in flow to vessel Z, and so on.
[[विकल्प (वित्त)|विकल्प]] सिद्धांत और एमपीटी में परमाणु ऊर्जा [संयंत्रों] द्वारा किए गए [[संभाव्य जोखिम मूल्यांकन]] से कम से कम एक महत्वपूर्ण वैचारिक अंतर है। पीआरए वह है जिसे अर्थशास्त्री ''संरचनात्मक मॉडल'' कहते हैं। एक प्रणाली के घटकों और उनके संबंधों को [[मोंटे कार्लो सिमुलेशन]] में मॉडल किया गया है। यदि वाल्व X विफल हो जाता है, तो इससे पंप Y पर पिछला दबाव कम हो जाता है, जिससे पोत Z में प्रवाह में गिरावट आती है, इत्यादि।


But in the [[Black–Scholes]] equation and MPT, there is no attempt to explain an underlying structure to price changes. Various outcomes are simply given probabilities. And, unlike the PRA, if there is no history of a particular system-level event like a [[liquidity crisis]], there is no way to compute the odds of it. If nuclear engineers ran risk management this way, they would never be able to compute the odds of a meltdown at a particular plant until several similar events occurred in the same reactor design.
लेकिन [[ब्लैक-स्कोल्स]] समीकरण और एमपीटी में, मूल्य परिवर्तन की अंतर्निहित संरचना को समझाने का कोई प्रयास नहीं किया गया है। विभिन्न परिणामों को केवल संभावनाएँ दी गई हैं। और, पीआरए के विपरीत, यदि [[तरलता संकट]] जैसी किसी विशेष सिस्टम-स्तरीय घटना का कोई इतिहास नहीं है, तो इसकी संभावनाओं की गणना करने का कोई तरीका नहीं है। यदि परमाणु इंजीनियर इस तरह से जोखिम प्रबंधन करते हैं, तो वे किसी विशेष संयंत्र में मंदी की संभावनाओं की गणना तब तक नहीं कर पाएंगे जब तक कि एक ही रिएक्टर डिजाइन में कई समान घटनाएं न घटें।
|[[Douglas W. Hubbard]], ''The Failure of Risk Management'', p. 67, John Wiley & Sons, 2009. {{ISBN|978-0-470-38795-5}}|source=}}
|[[डगलस डब्ल्यू हबर्ड]], ''जोखिम प्रबंधन की विफलता'',पी। 67, जॉन विले एंड संस, 2009। {{आईएसबीएन|978-0-470-38795-5}}|source=}}


गणितीय जोखिम माप भी केवल उस हद तक उपयोगी होते हैं, जहां वे निवेशकों की वास्तविक चिंताओं को प्रतिबिंबित करते हैं - ऐसे चर को कम करने का कोई मतलब नहीं है जिसकी व्यवहार में कोई परवाह नहीं करता है। विशेष रूप से, विचरण सममित माप है जो असामान्य रूप से उच्च रिटर्न को उतना ही जोखिम भरा मानता है जितना कि असामान्य रूप से कम रिटर्न। हानि से बचने की मनोवैज्ञानिक घटना यह विचार है कि निवेशक लाभ की तुलना में हानि के बारे में अधिक चिंतित हैं, जिसका अर्थ है कि जोखिम की हमारी सहज अवधारणा प्रकृति में मौलिक रूप से असममित है। कई अन्य जोखिम उपाय (जैसे सुसंगत जोखिम उपाय) निवेशकों की वास्तविक प्राथमिकताओं को उत्तम ढंग से दर्शा सकते हैं।
गणितीय जोखिम माप भी केवल उस हद तक उपयोगी होते हैं, जहां वे निवेशकों की वास्तविक चिंताओं को प्रतिबिंबित करते हैं - ऐसे चर को कम करने का कोई मतलब नहीं है जिसकी व्यवहार में कोई परवाह नहीं करता है। विशेष रूप से, विचरण सममित माप है जो असामान्य रूप से उच्च रिटर्न को उतना ही जोखिम भरा मानता है जितना कि असामान्य रूप से कम रिटर्न। हानि से बचने की मनोवैज्ञानिक घटना यह विचार है कि निवेशक लाभ की तुलना में हानि के बारे में अधिक चिंतित हैं, जिसका अर्थ है कि जोखिम की हमारी सहज अवधारणा प्रकृति में मौलिक रूप से असममित है। कई अन्य जोखिम उपाय (जैसे सुसंगत जोखिम उपाय) निवेशकों की वास्तविक प्राथमिकताओं को उत्तम ढंग से दर्शा सकते हैं।


आधुनिक पोर्टफोलियो सिद्धांत की भी आलोचना की गई है क्योंकि यह मानता है कि रिटर्न [[सामान्य वितरण]] का पालन करता है। पहले से ही 1960 के दशक में, [[बेनोइट मैंडेलब्रॉट]] और [[ यूजीन प्रसिद्धि ]] ने इस धारणा की अपर्याप्तता दिखाई और इसके बजाय अधिक सामान्य [[स्थिर वितरण]] के उपयोग का प्रस्ताव रखा। [[स्टीफ़न मिटनिक]] और [[स्वेतलोज़ार राचेव]] ने ऐसी सेटिंग्स में इष्टतम पोर्टफोलियो प्राप्त करने के लिए रणनीतियाँ प्रस्तुत कीं।<ref>Rachev, Svetlozar T. and Stefan Mittnik (2000), Stable Paretian Models in Finance, Wiley, {{ISBN|978-0-471-95314-2}}.</ref><ref>Risk Manager Journal (2006), {{cite web |title=New Approaches for Portfolio Optimization: Parting with the Bell Curve — Interview with Prof. Svetlozar Rachev and Prof.Stefan Mittnik |url=https://statistik.econ.kit.edu/download/doc_secure1/RM-Interview-Rachev-Mittnik-EnglishTranslation.pdf}}</ref><ref>{{cite journal |last=Doganoglu |first=Toker |author2=Hartz, Christoph|author3=Mittnik, Stefan |year=2007 |title=पोर्टफोलियो अनुकूलन जब जोखिम कारक सशर्त रूप से भिन्न और भारी होते हैं|journal=Computational Economics |volume=29 |issue= 3–4|pages=333–354 |doi=10.1007/s10614-006-9071-1 |s2cid=8280640 |url=http://publikationen.ub.uni-frankfurt.de/files/2101/06_24.pdf}}</ref> अभी हाल ही में, [[नसीम निकोलस तालेब]] ने भी इस आधार पर आधुनिक पोर्टफोलियो सिद्धांत की आलोचना करते हुए लिखा है:{{quote|After the stock market crash (in 1987), they rewarded two theoreticians, Harry Markowitz and William Sharpe, who built beautifully Platonic models on a Gaussian base, contributing to what is called Modern Portfolio Theory. Simply, if you remove their Gaussian assumptions and treat prices as scalable, you are left with hot air. The Nobel Committee could have tested the Sharpe and Markowitz models—they work like quack remedies sold on the Internet—but nobody in Stockholm seems to have thought about it.
आधुनिक पोर्टफोलियो सिद्धांत की भी आलोचना की गई है क्योंकि यह मानता है कि रिटर्न [[सामान्य वितरण]] का पालन करता है। पहले से ही 1960 के दशक में, [[बेनोइट मैंडेलब्रॉट]] और [[ यूजीन प्रसिद्धि ]] ने इस धारणा की अपर्याप्तता दिखाई और इसके बजाय अधिक सामान्य [[स्थिर वितरण]] के उपयोग का प्रस्ताव रखा। [[स्टीफ़न मिटनिक]] और [[स्वेतलोज़ार राचेव]] ने ऐसी सेटिंग्स में इष्टतम पोर्टफोलियो प्राप्त करने के लिए रणनीतियाँ प्रस्तुत कीं।<ref>Rachev, Svetlozar T. and Stefan Mittnik (2000), Stable Paretian Models in Finance, Wiley, {{ISBN|978-0-471-95314-2}}.</ref><ref>Risk Manager Journal (2006), {{cite web |title=New Approaches for Portfolio Optimization: Parting with the Bell Curve — Interview with Prof. Svetlozar Rachev and Prof.Stefan Mittnik |url=https://statistik.econ.kit.edu/download/doc_secure1/RM-Interview-Rachev-Mittnik-EnglishTranslation.pdf}}</ref><ref>{{cite journal |last=Doganoglu |first=Toker |author2=Hartz, Christoph|author3=Mittnik, Stefan |year=2007 |title=पोर्टफोलियो अनुकूलन जब जोखिम कारक सशर्त रूप से भिन्न और भारी होते हैं|journal=Computational Economics |volume=29 |issue= 3–4|pages=333–354 |doi=10.1007/s10614-006-9071-1 |s2cid=8280640 |url=http://publikationen.ub.uni-frankfurt.de/files/2101/06_24.pdf}}</ref> अभी हाल ही में, [[नसीम निकोलस तालेब]] ने भी इस आधार पर आधुनिक पोर्टफोलियो सिद्धांत की आलोचना करते हुए लिखा है:{{quote|स्टॉक मार्केट क्रैश (1987 में) के बाद, उन्होंने दो सिद्धांतकारों, हैरी मार्कोविट्ज़ और विलियम शार्प को पुरस्कृत किया, जिन्होंने गॉसियन आधार पर खूबसूरती से प्लेटोनिक मॉडल बनाए, जिसे आधुनिक पोर्टफोलियो सिद्धांत कहा जाता है। बस, यदि आप उनकी गॉसियन धारणाओं को हटा देते हैं और कीमतों को स्केलेबल मानते हैं, तो आपके पास गर्म हवा रह जाती है। नोबेल समिति शार्प और मार्कोविट्ज़ मॉडल का परीक्षण कर सकती थी - वे इंटरनेट पर बेचे जाने वाले नीम-हकीम उपचारों की तरह काम करते हैं - लेकिन स्टॉकहोम में किसी ने भी इसके बारे में नहीं सोचा है।
|Nassim N. Taleb, ''The Black Swan: The Impact of the Highly Improbable'', p. 277, Random House, 2007. {{ISBN|978-1-4000-6351-2}}|source=}}
|नसीम एन. तालेब, ''द ब्लैक स्वान: द इम्पैक्ट ऑफ द हाइली इम्प्रोबेबल'', पी. 277, रैंडम हाउस, 2007। {{आईएसबीएन|978-1-4000-6351-2}}|source=}}


विपरीत निवेश और [[मूल्य निवेश]] सामान्यत: आधुनिक पोर्टफोलियो सिद्धांत की सदस्यता नहीं लेते हैं।<ref>[[Seth Klarman]] (1991). Margin of Safety: Risk-averse Value Investing Strategies for the Thoughtful Investor. HarperCollins, {{ISBN|978-0887305108}}, pp. 97-102</ref> आपत्ति यह है कि एमपीटी कुशल-बाजार परिकल्पना पर निर्भर करता है और जोखिम के विकल्प के रूप में शेयर की कीमत में उतार-चढ़ाव का उपयोग करता है। [[सर जॉन टेम्पलटन]] अवधारणा के रूप में विविधीकरण में विश्वास करते थे, किन्तु उन्होंने यह भी महसूस किया कि एमपीटी की सैद्धांतिक नींव संदिग्ध थी, और निष्कर्ष निकाला (जैसा कि जीवनी लेखक द्वारा वर्णित है): यह धारणा कि ऐतिहासिक अस्थिरता जैसे अविश्वसनीय और अप्रासंगिक सांख्यिकीय इनपुट के आधार पर पोर्टफोलियो का निर्माण किया जाता है। , असफलता के लिए अभिशप्त था।<ref>Alasdair Nairn (2005). “Templeton's Way With Money: Strategies and Philosophy of a Legendary Investor.” Wiley, ISBN 1118149610, p. 262</ref>
विपरीत निवेश और [[मूल्य निवेश]] सामान्यत: आधुनिक पोर्टफोलियो सिद्धांत की सदस्यता नहीं लेते हैं।<ref>[[Seth Klarman]] (1991). Margin of Safety: Risk-averse Value Investing Strategies for the Thoughtful Investor. HarperCollins, {{ISBN|978-0887305108}}, pp. 97-102</ref> आपत्ति यह है कि एमपीटी कुशल-बाजार परिकल्पना पर निर्भर करता है और जोखिम के विकल्प के रूप में शेयर की कीमत में उतार-चढ़ाव का उपयोग करता है। [[सर जॉन टेम्पलटन]] अवधारणा के रूप में विविधीकरण में विश्वास करते थे, किन्तु उन्होंने यह भी महसूस किया कि एमपीटी की सैद्धांतिक नींव संदिग्ध थी, और निष्कर्ष निकाला (जैसा कि जीवनी लेखक द्वारा वर्णित है): यह धारणा कि ऐतिहासिक अस्थिरता जैसे अविश्वसनीय और अप्रासंगिक सांख्यिकीय इनपुट के आधार पर पोर्टफोलियो का निर्माण किया जाता है। , असफलता के लिए अभिशप्त था।<ref>Alasdair Nairn (2005). “Templeton's Way With Money: Strategies and Philosophy of a Legendary Investor.” Wiley, ISBN 1118149610, p. 262</ref>

Revision as of 14:35, 6 July 2023

आधुनिक पोर्टफोलियो सिद्धांत (एमपीटी), या माध्य-विचरण विश्लेषण, परिसंपत्तियों के पोर्टफोलियो को एकत्री करने के लिए गणितीय संरचना है जिससे किसी दिए गए जोखिम स्तर के लिए अपेक्षित रिटर्न अधिकतम हो यह निवेश में विविधीकरण_(वित्त) का औपचारिकीकरण और विस्तार है, यह विचार कि विभिन्न प्रकार की वित्तीय संपत्तियों का मालिक होना केवल प्रकार की संपत्ति रखने की तुलना में कम जोखिम भरा है। इसकी मुख्य अंतर्दृष्टि यह है कि किसी परिसंपत्ति के जोखिम और रिटर्न का मूल्यांकन स्वयं नहीं किया जाना चाहिए, किन्तु यह पोर्टफोलियो के संपूर्ण जोखिम और रिटर्न में कैसे योगदान देता है। यह जोखिम के लिए परिसंपत्ति की कीमतों में भिन्नता का उपयोग प्रॉक्सी के रूप में करता है।[1]

अर्थशास्त्री हैरी मार्कोविट्ज़ ने 1952 के निबंध में एमपीटी की प्रारंभ की थी। [2] जिसके लिए उन्हें बाद में आर्थिक विज्ञान में नोबेल मेमोरियल पुरस्कार से सम्मानित किया गया मार्कोविट्ज़ मॉडल देखें गये है।

गणितीय मॉडल

जोखिम और अपेक्षित रिटर्न

एमपीटी मानता है कि निवेशक जोखिम लेने से बचते हैं, जिसका अर्थ है कि समान अपेक्षित रिटर्न देने वाले दो पोर्टफोलियो दिए जाने पर, निवेशक कम जोखिम वाले पोर्टफोलियो को पसंद करेंगे। इस प्रकार, कोई निवेशक बढ़ा हुआ जोखिम तभी उठाएगा जब उसकी भरपाई उच्च प्रत्याशित रिटर्न से होगी। इसके विपरीत, जो निवेशक अधिक अपेक्षित रिटर्न चाहता है उसे अधिक जोखिम स्वीकार करना चाहिए। सटीक व्यापार-बंद सभी निवेशकों के लिए समान नहीं होगा। अलग-अलग निवेशक व्यक्तिगत जोखिम से बचने की विशेषताओं के आधार पर ट्रेड-ऑफ का अलग-अलग मूल्यांकन करेंगे। निहितार्थ यह है कि तर्क संगत निवेशक पोर्टफोलियो में निवेश नहीं करेगा यदि दूसरा पोर्टफोलियो अधिक अनुकूल जोखिम-वापसी स्पेक्ट्रम के साथ मौजूद है। जोखिम-अपेक्षित रिटर्न प्रोफ़ाइल - यानी, यदि जोखिम के उस स्तर के लिए वैकल्पिक पोर्टफोलियो मौजूद है जिसमें उतम अपेक्षित रिटर्न है .

मॉडल के अंतर्गत:

  • पोर्टफोलियो रिटर्न घटक परिसंपत्तियों के रिटर्न का रैखिक संयोजन आनुपातिक-भारित संयोजन है।
  • पोर्टफोलियो रिटर्न अस्थिरता सभी परिसंपत्ति जोड़े (i, j) के लिए घटक परिसंपत्तियों के सहसंबंध ρij का एक कार्य है। अस्थिरता निवेश से जुड़े जोखिम के बारे में जानकारी देती है। जितनी अधिक अस्थिरता, उतना अधिक जोखिम।

सामान्य रूप में:

  • अपेक्षित आय:
कहाँ पोर्टफोलियो पर रिटर्न है, संपत्ति पर रिटर्न है I और घटक परिसंपत्ति का भार है (अर्थात, पोर्टफोलियो में संपत्ति का अनुपात, जिससे ).
  • पोर्टफोलियो रिटर्न विचरण:
,
कहाँ किसी परिसंपत्ति i पर आवधिक रिटर्न का (नमूना) मानक विचलन है, और संपत्ति i और j पर रिटर्न के मध्य सहसंबंध गुणांक है। वैकल्पिक रूप से अभिव्यक्ति को इस प्रकार लिखा जा सकता है:
,
कहाँ के लिए , या
,
कहाँ दो संपत्तियों पर आवधिक रिटर्न का (नमूना) सहप्रसरण है, या वैकल्पिक रूप से इसे इस रूप में दर्शाया गया है , या .
  • पोर्टफोलियो रिटर्न अस्थिरता (मानक विचलन):

दो-परिसंपत्ति पोर्टफोलियो के लिए:

  • पोर्टफोलियो रिटर्न:
  • पोर्टफोलियो विचरण:

तीन-परिसंपत्ति पोर्टफोलियो के लिए:

  • पोर्टफोलियो रिटर्न:
  • पोर्टफोलियो विचरण:

</ब्लॉककोट>

विविधीकरण

एक निवेशक पोर्टफोलियो जोखिम को कम कर सकता है (विशेषकर) ) बस उन उपकरणों के संयोजन को पकड़कर जो पूरी तरह से सकारात्मक सहसंबंध नहीं हैं (पियर्सन उत्पाद-क्षण सहसंबंध गुणांक ). दूसरे शब्दों में, निवेशक परिसंपत्तियों के विविधीकरण (वित्त) पोर्टफोलियो को धारण करके व्यक्तिगत परिसंपत्ति जोखिम के प्रति अपने जोखिम को कम कर सकते हैं। विविधीकरण कम जोखिम के साथ समान पोर्टफोलियो अपेक्षित रिटर्न की अनुमति दे सकता है। इष्टतम निवेश पोर्टफोलियो के निर्माण के लिए माध्य-विचरण रूपरेखा सबसे पहले मार्कोविट्ज़ द्वारा प्रस्तुत की गई थी और तब से इसे अन्य अर्थशास्त्रियों और गणितज्ञों द्वारा सुदृढ़ और उत्तम बनाया गया है, जिन्होंने रूपरेखा की सीमाओं को ध्यान में रखा है।

यदि सभी परिसंपत्ति जोड़ियों में 0 का सहसंबंध है - वे पूरी तरह से असंबद्ध हैं - तो पोर्टफोलियो का रिटर्न विचरण परिसंपत्ति के रिटर्न विचरण के समय परिसंपत्ति में रखे गए अंश के वर्ग के सभी परिसंपत्तियों का योग है (और पोर्टफोलियो मानक विचलन वर्गमूल है) इस मात्रा का है

यदि सभी परिसंपत्ति जोड़ियों में 1 का सहसंबंध है - वे पूरी तरह से सकारात्मक रूप से सहसंबद्ध हैं - तो पोर्टफोलियो रिटर्न का मानक विचलन पोर्टफोलियो में रखे गए अंशों द्वारा भारित परिसंपत्ति रिटर्न के मानक विचलन का योग है। दिए गए पोर्टफोलियो भार और परिसंपत्ति रिटर्न के दिए गए मानक विचलन के लिए, सभी सहसंबंधों के 1 होने का स्थितयो पोर्टफोलियो रिटर्न का उच्चतम संभव मानक विचलन देता है।

बिना किसी जोखिम-मुक्त परिसंपत्ति के कुशल सीमा

कुशल सीमांत। हाइपरबोला को कभी-कभी 'मार्कोविट्ज़ बुलेट' के रूप में जाना जाता है, और यदि कोई जोखिम-मुक्त संपत्ति उपलब्ध नहीं है तो यह कुशल सीमा है। जोखिम-मुक्त संपत्ति के साथ, सीधी रेखा ही कुशल सीमा होती है।

एमपीटी माध्य-विचरण सिद्धांत है, और यह पोर्टफोलियो के अपेक्षित (माध्य) रिटर्न की तुलना उसी पोर्टफोलियो के मानक विचलन से करता है। इमेज ऊर्ध्वाधर अक्ष पर अपेक्षित रिटर्न और क्षैतिज अक्ष (अस्थिरता) पर मानक विचलन दिखाती है। अस्थिरता को मानक विचलन द्वारा वर्णित किया गया है और यह जोखिम के माप के रूप में कार्य करता है।[3] रिटर्न - मानक विचलन स्थान को कभी-कभी 'अपेक्षित रिटर्न बनाम जोखिम' का स्थान कहा जाता है। जोखिम पूर्ण परिसंपत्तियों के हर संभावित संयोजन को इस जोखिम-अपेक्षित रिटर्न स्थान में प्लॉट किया जा सकता है, और ऐसे सभी संभावित पोर्टफोलियो का संग्रह इस स्थान में क्षेत्र को परिभाषित करता है। इस क्षेत्र की बाईं सीमा अतिशयोक्तिपूर्ण है।[4] और हाइपरबोलिक सीमा का ऊपरी भाग जोखिम-मुक्त संपत्ति (कभी-कभी मार्कोविट्ज़ बुलेट कहा जाता है) की अनुपस्थिति में कुशल सीमा है। इस ऊपरी किनारे पर संयोजन पोर्टफोलियो (जोखिम-मुक्त संपत्ति की कोई होल्डिंग सहित) का प्रतिनिधित्व करते हैं, जिसके लिए अपेक्षित रिटर्न के दिए गए स्तर के लिए सबसे कम जोखिम है। समान रूप से, कुशल सीमा पर स्थित पोर्टफोलियो दिए गए जोखिम स्तर के लिए सर्वोत्तम संभव अपेक्षित रिटर्न प्रदान करने वाले संयोजन का प्रतिनिधित्व करता है। हाइपरबोलिक सीमा के ऊपरी भाग की स्पर्श रेखा जोखिम-मुक्त संपत्ति और पूंजी आवंटन रेखा पूंजी आवंटन रेखा (सीएएल) है।

कुशल सीमांत की गणना के लिए मैट्रिक्स (गणित) को प्राथमिकता दी जाती है।

मैट्रिक्स रूप में, किसी दिए गए जोखिम सहनशीलता के लिए , निम्नलिखित अभिव्यक्ति को न्यूनतम करके कुशल सीमा पाई जाती है:

कहाँ

  • पोर्टफोलियो भार का वेक्टर है और (वजन नकारात्मक हो सकता है);
  • पोर्टफोलियो में परिसंपत्तियों पर रिटर्न के लिए सहप्रसरण मैट्रिक्स है;
  • जोखिम सहनशीलता कारक है, जहां न्यूनतम जोखिम वाले पोर्टफोलियो में 0 परिणाम होता है परिणाम स्वरूप पोर्टफोलियो अपेक्षित रिटर्न और असीमित जोखिम दोनों के साथ सीमा से बहुत आगे निकल जाता है; और
  • अपेक्षित रिटर्न का वेक्टर है।
  • पोर्टफोलियो रिटर्न का विचरण है।
  • पोर्टफोलियो पर अपेक्षित रिटर्न है।

उपरोक्त अनुकूलन सीमा पर उस बिंदु को ढूंढता है जिस पर सीमा के ढलान का व्युत्क्रम q होगा यदि मानक विचलन के बजाय पोर्टफोलियो रिटर्न विचरण क्षैतिज रूप से प्लॉट किया गया हो। अपनी संपूर्णता में सीमा q पर पैरामीट्रिक है।

हैरी मार्कोविट्ज़ ने उपरोक्त समस्या को हल करने के लिए विशिष्ट प्रक्रिया विकसित की, जिसे क्रिटिकल लाइन विधि कहा जाता है,[5] जो अतिरिक्त रैखिक बाधाओं, परिसंपत्तियों पर ऊपरी और निचली सीमाओं को संभाल सकता है, और जो अर्ध-सकारात्मक निश्चित सहप्रसरण मैट्रिक्स के साथ काम करने के लिए सिद्ध होता है। अनुप्रयोगों के लिए विज़ुअल बेसिक में क्रिटिकल लाइन एल्गोरिदम के कार्यान्वयन के उदाहरण मौजूद हैं,[6] जावास्क्रिप्ट में[7] और कुछ अन्य भाषाओं में।

इसके साथ में, MATLAB, माइक्रोसॉफ्ट एक्सेल, मेथेमेटिका और R (प्रोग्रामिंग भाषा) सहित कई सॉफ्टवेयर पैकेज, सामान्य द्विघात प्रोग्रामिंग रूटीन प्रदान करते हैं जिससे उपरोक्त समस्या को हल करने के लिए इनका उपयोग संभावित चेतावनियों (खराब संख्यात्मक सटीकता, सकारात्मक निश्चितता की आवश्यकता) के साथ संभव हो सके। सहप्रसरण मैट्रिक्स...)

कुशल सीमा को निर्दिष्ट करने का वैकल्पिक तरीका अपेक्षित पोर्टफोलियो रिटर्न पर पैरामीट्रिक रूप से ऐसा करना है समस्या के इस संस्करण के लिए आवश्यक है कि हम इसे कम करें

का विषय है

पैरामीटर के लिए . इस समस्या को लैग्रेंज गुणक का उपयोग करके आसानी से हल किया जा सकता है जो समीकरणों की निम्नलिखित रैखिक प्रणाली की ओर ले जाता है:

</ब्लॉककोट>

दो म्यूचुअल फंड प्रमेय

उपरोक्त विश्लेषण का प्रमुख परिणाम दो म्यूचुअल फंड पृथक्करण प्रमेय या कोई जोखिम-मुक्त संपत्ति नहीं है।[8][9] यह प्रमेय बताता है कि कुशल सीमा पर कोई भी पोर्टफोलियो सीमा पर दिए गए किन्हीं दो पोर्टफोलियो के संयोजन को धारण करके उत्पन्न किया जा सकता है बाद के दो दिए गए पोर्टफोलियो प्रमेय के नाम पर दो म्यूचुअल फंड हैं। इसलिए जोखिम-मुक्त संपत्ति के अभाव में, निवेशक कोई भी वांछित कुशल पोर्टफोलियो प्राप्त कर सकता है, भले ही वह सब कुछ कुशल म्यूचुअल फंड की जोड़ी ही क्यों न हो यदि सीमा पर वांछित पोर्टफोलियो का स्थान दो म्यूचुअल फंड के स्थानों के मध्य है, तो दोनों म्यूचुअल फंड सकारात्मक मात्रा में रखे जाएंगे यदि वांछित पोर्टफोलियो दो म्यूचुअल फंड द्वारा फैलाई गई सीमा से बाहर है, तो म्यूचुअल फंड में से को कम बेचा जाना चाहिए (नकारात्मक मात्रा में रखा जाना चाहिए) जबकि दूसरे म्यूचुअल फंड में निवेश का आकार उपलब्ध मात्रा से अधिक होना चाहिए निवेश (अतिरिक्त को दूसरे फंड से उधार लेकर वित्त पोषित किया जा रहा है)

जोखिम-मुक्त संपत्ति और पूंजी आवंटन रेखा

जोखिम-मुक्त संपत्ति वह (काल्पनिक) संपत्ति है जो जोखिम-मुक्त दर का भुगतान करती है। व्यवहार में, अल्पकालिक सरकारी प्रतिभूतियों (जैसे अमेरिकी ट्रेजरी बिल) का उपयोग जोखिम-मुक्त संपत्ति के रूप में किया जाता है क्योंकि वे ब्याज की निश्चित दर का भुगतान करते हैं और उनमें असाधारण रूप से कम डिफ़ॉल्ट (वित्त) जोखिम होता है। जोखिम-मुक्त परिसंपत्ति में रिटर्न में शून्य भिन्नता होती है (इसलिए जोखिम-मुक्त होती है) यह किसी अन्य परिसंपत्ति से भी असंबद्ध है (परिभाषा के अनुसार, क्योंकि इसका विचरण शून्य है)। परिणामस्वरूप, जब इसे किसी अन्य परिसंपत्ति या परिसंपत्तियों के पोर्टफोलियो के साथ जोड़ा जाता है, तो रिटर्न में परिवर्तन रैखिक रूप से जोखिम में परिवर्तन से संबंधित होता है क्योंकि संयोजन में अनुपात भिन्न होता है।

जब कोई जोखिम-मुक्त संपत्ति प्रस्तुत की जाती है, तो चित्र में दिखाई गई आधी रेखा नई कुशल सीमा होती है। यह उच्चतम शार्प अनुपात के साथ शुद्ध जोखिम भरे पोर्टफोलियो में हाइपरबोला के स्पर्श रेखा है। इसका वर्टिकल इंटरसेप्ट जोखिम-मुक्त परिसंपत्ति में 100% हिस्सेदारी वाले पोर्टफोलियो का प्रतिनिधित्व करता है; हाइपरबोला के साथ स्पर्श रेखा ऐसे पोर्टफोलियो का प्रतिनिधित्व करती है जिसमें कोई जोखिम-मुक्त होल्डिंग नहीं है और पोर्टफोलियो में 100% संपत्ति स्पर्श रेखा बिंदु पर होती है; उन बिंदुओं के मध्य के बिंदु ऐसे पोर्टफोलियो हैं जिनमें जोखिम पूर्ण स्पर्श रेखा पोर्टफोलियो और जोखिम-मुक्त संपत्ति दोनों की सकारात्मक मात्रा होती है; और स्पर्श रेखा बिंदु से परे आधी रेखा पर बिंदु ऐसे पोर्टफोलियो हैं जिनमें जोखिम-मुक्त परिसंपत्ति की नकारात्मक होल्डिंग्स और निवेशक की प्रारंभिक पूंजी के 100% से अधिक के समान स्पर्श रेखा पोर्टफोलियो में निवेश की गई मात्रा सम्मिलित है। इस कुशल अर्ध-रेखा को पूंजी आवंटन रेखा (सीएएल) कहा जाता है, और इसका सूत्र दिखाया जा सकता है

इस सूत्र में पी, मार्कोविट्ज़ बुलेट के स्पर्शरेखा पर जोखिम भरी संपत्तियों का उप-पोर्टफोलियो है, एफ जोखिम-मुक्त संपत्ति है, और सी पोर्टफोलियो पी और एफ का संयोजन है।

आरेख के अनुसार, पोर्टफोलियो के संभावित घटक के रूप में जोखिम मुक्त परिसंपत्ति की प्रारंभ ने उपलब्ध जोखिम-अपेक्षित रिटर्न संयोजनों की सीमा में सुधार किया है, क्योंकि स्पर्शरेखा पोर्टफोलियो को छोड़कर हर जगह आधी रेखा हाइपरबोला की तुलना में अधिक अपेक्षित रिटर्न देती है। हर संभव जोखिम स्तर पर करता है। तथ्य यह है कि रैखिक कुशल लोकस पर सभी बिंदुओं को जोखिम-मुक्त संपत्ति और स्पर्शरेखा पोर्टफोलियो की होल्डिंग्स के संयोजन से प्राप्त किया जा सकता है, जिसे म्यूचुअल फंड पृथक्करण प्रमेय या जोखिम-मुक्त संपत्ति के रूप में जाना जाता है।[8] जहां दो म्यूचुअल फंड को संदर्भित किया जाता है वह टैनजेंसी पोर्टफोलियो है।

संपत्ति मूल्य निर्धारण

उपरोक्त विश्लेषण व्यक्तिगत निवेशक के इष्टतम व्यवहार का वर्णन करता है। परिसंपत्ति मूल्य निर्धारण इस विश्लेषण पर निम्नलिखित विधि से आधारित होता है। चूँकि हर कोई जोखिम भरी परिसंपत्तियों को एक-दूसरे के समान अनुपात में रखता है - अर्थात् स्पर्श रेखा पोर्टफोलियो द्वारा दिए गए अनुपात में - बाजार संतुलन में जोखिम भरी परिसंपत्तियों की कीमतें, और इसलिए उनके अपेक्षित रिटर्न, समायोजित हो जाएंगे जिससे स्पर्शरेखा पोर्टफोलियो में अनुपात हों उसी अनुपात के समान जिसमें जोखिम भरी परिसंपत्तियों की बाजार में आपूर्ति की जाती है। इस प्रकार सापेक्ष आपूर्ति सापेक्ष मांग के समान होगी। एमपीटी इस संदर्भ में सही कीमत वाली संपत्ति के लिए आवश्यक अपेक्षित रिटर्न प्राप्त करता है।

व्यवस्थित जोखिम और विशिष्ट जोखिम

विशिष्ट जोखिम व्यक्तिगत परिसंपत्तियों से जुड़ा जोखिम है - पोर्टफोलियो के अन्दर विविधीकरण के माध्यम से इन जोखिमों को कम किया जा सकता है (विशिष्ट जोखिम रद्द हो जाते हैं)। विशिष्ट जोखिम को विविधीकरणीय, अद्वितीय, अव्यवस्थित या विशिष्ट जोखिम भी कहा जाता है। व्यवस्थित जोखिम (ए.के.ए. पोर्टफोलियो जोखिम या बाजार जोखिम) सभी प्रतिभूतियों के लिए सामान्य जोखिम को संदर्भित करता है - जैसा कि नीचे बताया गया है, लघु (वित्त) को छोड़कर, व्यवस्थित जोखिम को दूर (एक बाजार के अन्दर) विविध नहीं किया जा सकता है। बाजार पोर्टफोलियो के अन्दर, परिसंपत्ति विशिष्ट जोखिम को यथा संभव सीमा तक विविधीकृत किया जाएगा। इसलिए व्यवस्थित जोखिम को बाज़ार पोर्टफोलियो के जोखिम (मानक विचलन) के समान माना जाता है।

चूँकि कोई सुरक्षा केवल तभी खरीदी जाएगी जब वह बाजार पोर्टफोलियो की जोखिम-अपेक्षित रिटर्न विशेषताओं में सुधार करती है, किसी सुरक्षा के जोखिम का प्रासंगिक माप वह जोखिम है जो वह बाजार पोर्टफोलियो में जोड़ता है, न कि उसका अलग-अलग जोखिम इस संदर्भ में, परिसंपत्ति की अस्थिरता और बाजार पोर्टफोलियो के साथ इसका सहसंबंध ऐतिहासिक रूप से देखा जाता है और इसलिए दिया जाता है। (परिसंपत्ति मूल्य निर्धारण के लिए कई दृष्टिकोण हैं जो परिसंपत्तियों के रिटर्न के क्षणों के स्टोकेस्टिक गुणों को मॉडलिंग करके परिसंपत्तियों की कीमत तय करने का प्रयास करते हैं - इन्हें सामान्य रूप से सशर्त परिसंपत्ति मूल्य निर्धारण मॉडल के रूप में जाना जाता है।)

एक बाजार के अन्दर व्यवस्थित जोखिमों को बाजार तटस्थ पोर्टफोलियो बनाकर, पोर्टफोलियो के अन्दर लंबी और छोटी दोनों स्थितियों का उपयोग करने की रणनीति के माध्यम से प्रबंधित किया जा सकता है। इसलिए, बाज़ार तटस्थ पोर्टफोलियो व्यापक बाज़ार सूचकांकों से असंबद्ध होंगे।

पूंजीगत परिसंपत्ति मूल्य निर्धारण मॉडल

संपत्ति का रिटर्न आज संपत्ति के लिए भुगतान की गई मात्रा पर निर्भर करता है। भुगतान की गई कीमत से यह सुनिश्चित होना चाहिए कि जब परिसंपत्ति को इसमें जोड़ा जाता है तो बाजार पोर्टफोलियो की जोखिम/रिटर्न विशेषताओं में सुधार होता है। पूंजीगत परिसंपत्ति मूल्य निर्धारण मॉडल ऐसा मॉडल है जो निवेशकों के लिए उपलब्ध जोखिम-मुक्त दर और संपूर्ण रूप से बाजार के जोखिम को देखते हुए, बाजार में किसी परिसंपत्ति के लिए सैद्धांतिक रूप से आवश्यक अपेक्षित रिटर्न (यानी, छूट दर) प्राप्त करता है। सीएपीएम सामान्यतः व्यक्त किया जाता है:

  • β, बीटा संपूर्ण बाजार में किसी गतिविधि के प्रति परिसंपत्ति संवेदनशीलता का माप है; बीटा सामान्यतः ऐतिहासिक डेटा पर प्रतिगमन विश्लेषण के माध्यम से पाया जाता है। बीटा का से अधिक होना संपूर्ण पोर्टफोलियो जोखिम में परिसंपत्ति के योगदान के अर्थ में औसत से अधिक जोखिम का संकेत देता है; से नीचे बीटा औसत से कम जोखिम योगदान का संकेत देता है।
  • बाजार प्रीमियम है, जोखिम-मुक्त दर पर बाजार पोर्टफोलियो के अपेक्षित रिटर्न की अपेक्षित अतिरिक्त वापसी।

व्युत्पत्ति इस प्रकार है: <ब्लॉककोट शैली= पृष्ठभूमि: 1; बॉर्डर: 1px ठोस काला; पैडिंग: 1em; > (1) जब अतिरिक्त जोखिम भरी संपत्ति, ए, को बाजार पोर्टफोलियो में जोड़ा जाता है, तो जोखिम और अपेक्षित रिटर्न पर वृद्धिशील प्रभाव, दो-परिसंपत्ति पोर्टफोलियो के सूत्रों के अनुसार होता है। इन परिणामों का उपयोग परिसंपत्ति-उपयुक्त छूट दर प्राप्त करने के लिए किया जाता है।

  • अद्यतन बाजार पोर्टफोलियो का जोखिम =
इसलिए, पोर्टफोलियो में जोखिम जोड़ा गया =
किन्तु चूँकि परिसंपत्ति का भार अपेक्षाकृत कम होगा,
अर्थात। अतिरिक्त जोखिम =
  • बाज़ार पोर्टफ़ोलियो का अपेक्षित रिटर्न =
इसलिए अतिरिक्त अपेक्षित रिटर्न =

(2) यदि किसी परिसंपत्ति की सही कीमत तय की गई है, तो उसे बाजार पोर्टफोलियो में जोड़कर उसके जोखिम-से-अपेक्षित रिटर्न अनुपात में सुधार कम से कम उस पैसे को बढ़ी हुई हिस्सेदारी पर खर्च करने के लाभ से मेल खाएगा। बाज़ार पोर्टफोलियो. धारणा यह है कि निवेशक जोखिम-मुक्त दर पर उधार ली गई धनमात्रा से संपत्ति खरीदेगा,; यह तर्कसंगत है यदि .

इस प्रकार:
अर्थात। :
अर्थात। :
बीटा है, रिटर्न- परिसंपत्ति के रिटर्न और बाजार के रिटर्न के मध्य सहप्रसरण को बाजार रिटर्न के अंतर से विभाजित किया जाता है- यानी बाजार पोर्टफोलियो के मूल्य में उतार-चढ़ाव के प्रति परिसंपत्ति मूल्य की संवेदनशीलता (यह भी देखें) बीटा (वित्त) बाज़ार पोर्टफोलियो में एक परिसंपत्ति जोड़ना § Notes).

यह समीकरण निम्नलिखित प्रतिगमन विश्लेषण समीकरण का उपयोग करके सांख्यिकीय रूप से अनुमान सिद्धांत हो सकता है:

जहां αi संपत्ति का अल्फा (वित्त), β कहा जाता हैi परिसंपत्ति का बीटा गुणांक है और एससीएल सुरक्षा विशेषता रेखा है।

एक बार किसी परिसंपत्ति का अपेक्षित रिटर्न, , सीएपीएम का उपयोग करके गणना की जाती है, परिसंपत्ति के भविष्य के नकदी प्रवाह को परिसंपत्ति के लिए सही मूल्य स्थापित करने के लिए इस दर का उपयोग करके उनके वर्तमान मूल्य पर छूट दी जा सकती है। जोखिम भरे स्टॉक में उच्च बीटा होगा और उच्च दर पर छूट दी जाएगी; कम संवेदनशील शेयरों में कम बीटा होगा और कम दर पर छूट दी जाएगी। सिद्धांत रूप में, किसी परिसंपत्ति की सही कीमत तब लगाई जाती है जब उसकी देखी गई कीमत सीएपीएम व्युत्पन्न छूट दर का उपयोग करके गणना की गई कीमत के समान होती है। यदि देखी गई कीमत मूल्यांकन से अधिक है, तो परिसंपत्ति का अधिक मूल्यांकन किया गया है बहुत कम कीमत के कारण इसका मूल्यांकन कम किया गया है।

आलोचना

इसके सैद्धांतिक महत्व के के अतरिक्त, एमपीटी के आलोचक सवाल करते हैं कि क्या यह आदर्श निवेश उपकरण है, क्योंकि वित्तीय बाजारों का इसका मॉडल कई मायनों में वास्तविक दुनिया से मेल नहीं खाता है।[10][1]

एमपीटी द्वारा उपयोग किए जाने वाले जोखिम, रिटर्न और सहसंबंध उपाय अपेक्षित मूल्य पर आधारित हैं, जिसका अर्थ है कि वे भविष्य के बारे में सांख्यिकीय कथन हैं (रिटर्न का अपेक्षित मूल्य उपरोक्त समीकरणों में स्पष्ट है, और विचरण और सहप्रसरण की परिभाषाओं में निहित है) . ऐसे उपाय अक्सर जोखिम और रिटर्न की वास्तविक सांख्यिकीय विशेषताओं को पकड़ नहीं पाते हैं जो अक्सर अत्यधिक विषम वितरण (उदाहरण के लिए लॉग-सामान्य वितरण) का पालन करते हैं और कम अस्थिरता (वित्त) के अलावा, रिटर्न की बढ़ी हुई वृद्धि को भी जन्म दे सकते हैं।[11] व्यवहार में, निवेशकों को समीकरणों में इन मूल्यों के लिए परिसंपत्ति रिटर्न और अस्थिरता के ऐतिहासिक माप के आधार पर भविष्य वाणियों को प्रतिस्थापित करना चाहिए। बहुत बार ऐसे अपेक्षित मूल्य उन नई परिस्थितियों को ध्यान में रखने में असफल होते हैं जो ऐतिहासिक डेटा उत्पन्न होने के समय वर्तमान नहीं थीं।[12]

अधिक मौलिक रूप से, निवेशक पिछले बाजार डेटा से प्रमुख मापदंडों का अनुमान लगाने में फंस गए हैं क्योंकि एमपीटी हानि की संभावना के संदर्भ में जोखिम को मॉडल करने का प्रयास करता है, किन्तु यह हानि क्यों हो सकता है, इसके बारे में कुछ नहीं कहता है। उपयोग किए गए जोखिम माप प्रकृति में संभाव्यता हैं, संरचनात्मक नहीं। जोखिम प्रबंधन के कई इंजीनियरिंग दृष्टिकोणों की तुलना में यह बड़ा अंतर है।

विकल्प सिद्धांत और एमपीटी में परमाणु ऊर्जा [संयंत्रों] द्वारा किए गए संभाव्य जोखिम मूल्यांकन से कम से कम एक महत्वपूर्ण वैचारिक अंतर है। पीआरए वह है जिसे अर्थशास्त्री संरचनात्मक मॉडल कहते हैं। एक प्रणाली के घटकों और उनके संबंधों को मोंटे कार्लो सिमुलेशन में मॉडल किया गया है। यदि वाल्व X विफल हो जाता है, तो इससे पंप Y पर पिछला दबाव कम हो जाता है, जिससे पोत Z में प्रवाह में गिरावट आती है, इत्यादि।

लेकिन ब्लैक-स्कोल्स समीकरण और एमपीटी में, मूल्य परिवर्तन की अंतर्निहित संरचना को समझाने का कोई प्रयास नहीं किया गया है। विभिन्न परिणामों को केवल संभावनाएँ दी गई हैं। और, पीआरए के विपरीत, यदि तरलता संकट जैसी किसी विशेष सिस्टम-स्तरीय घटना का कोई इतिहास नहीं है, तो इसकी संभावनाओं की गणना करने का कोई तरीका नहीं है। यदि परमाणु इंजीनियर इस तरह से जोखिम प्रबंधन करते हैं, तो वे किसी विशेष संयंत्र में मंदी की संभावनाओं की गणना तब तक नहीं कर पाएंगे जब तक कि एक ही रिएक्टर डिजाइन में कई समान घटनाएं न घटें।

— डगलस डब्ल्यू हबर्ड, जोखिम प्रबंधन की विफलता,पी। 67, जॉन विले एंड संस, 2009। Template:आईएसबीएन

गणितीय जोखिम माप भी केवल उस हद तक उपयोगी होते हैं, जहां वे निवेशकों की वास्तविक चिंताओं को प्रतिबिंबित करते हैं - ऐसे चर को कम करने का कोई मतलब नहीं है जिसकी व्यवहार में कोई परवाह नहीं करता है। विशेष रूप से, विचरण सममित माप है जो असामान्य रूप से उच्च रिटर्न को उतना ही जोखिम भरा मानता है जितना कि असामान्य रूप से कम रिटर्न। हानि से बचने की मनोवैज्ञानिक घटना यह विचार है कि निवेशक लाभ की तुलना में हानि के बारे में अधिक चिंतित हैं, जिसका अर्थ है कि जोखिम की हमारी सहज अवधारणा प्रकृति में मौलिक रूप से असममित है। कई अन्य जोखिम उपाय (जैसे सुसंगत जोखिम उपाय) निवेशकों की वास्तविक प्राथमिकताओं को उत्तम ढंग से दर्शा सकते हैं।

आधुनिक पोर्टफोलियो सिद्धांत की भी आलोचना की गई है क्योंकि यह मानता है कि रिटर्न सामान्य वितरण का पालन करता है। पहले से ही 1960 के दशक में, बेनोइट मैंडेलब्रॉट और यूजीन प्रसिद्धि ने इस धारणा की अपर्याप्तता दिखाई और इसके बजाय अधिक सामान्य स्थिर वितरण के उपयोग का प्रस्ताव रखा। स्टीफ़न मिटनिक और स्वेतलोज़ार राचेव ने ऐसी सेटिंग्स में इष्टतम पोर्टफोलियो प्राप्त करने के लिए रणनीतियाँ प्रस्तुत कीं।[13][14][15] अभी हाल ही में, नसीम निकोलस तालेब ने भी इस आधार पर आधुनिक पोर्टफोलियो सिद्धांत की आलोचना करते हुए लिखा है:

स्टॉक मार्केट क्रैश (1987 में) के बाद, उन्होंने दो सिद्धांतकारों, हैरी मार्कोविट्ज़ और विलियम शार्प को पुरस्कृत किया, जिन्होंने गॉसियन आधार पर खूबसूरती से प्लेटोनिक मॉडल बनाए, जिसे आधुनिक पोर्टफोलियो सिद्धांत कहा जाता है। बस, यदि आप उनकी गॉसियन धारणाओं को हटा देते हैं और कीमतों को स्केलेबल मानते हैं, तो आपके पास गर्म हवा रह जाती है। नोबेल समिति शार्प और मार्कोविट्ज़ मॉडल का परीक्षण कर सकती थी - वे इंटरनेट पर बेचे जाने वाले नीम-हकीम उपचारों की तरह काम करते हैं - लेकिन स्टॉकहोम में किसी ने भी इसके बारे में नहीं सोचा है।

— नसीम एन. तालेब, द ब्लैक स्वान: द इम्पैक्ट ऑफ द हाइली इम्प्रोबेबल, पी. 277, रैंडम हाउस, 2007। Template:आईएसबीएन

विपरीत निवेश और मूल्य निवेश सामान्यत: आधुनिक पोर्टफोलियो सिद्धांत की सदस्यता नहीं लेते हैं।[16] आपत्ति यह है कि एमपीटी कुशल-बाजार परिकल्पना पर निर्भर करता है और जोखिम के विकल्प के रूप में शेयर की कीमत में उतार-चढ़ाव का उपयोग करता है। सर जॉन टेम्पलटन अवधारणा के रूप में विविधीकरण में विश्वास करते थे, किन्तु उन्होंने यह भी महसूस किया कि एमपीटी की सैद्धांतिक नींव संदिग्ध थी, और निष्कर्ष निकाला (जैसा कि जीवनी लेखक द्वारा वर्णित है): यह धारणा कि ऐतिहासिक अस्थिरता जैसे अविश्वसनीय और अप्रासंगिक सांख्यिकीय इनपुट के आधार पर पोर्टफोलियो का निर्माण किया जाता है। , असफलता के लिए अभिशप्त था।[17]

कुछ अध्ययनों ने तर्क दिया है कि सरल विविधीकरण, उपलब्ध निवेश विकल्पों के मध्य पूंजी को समान रूप से विभाजित करने से कुछ स्थितियों में एमपीटी पर लाभ हो सकता है।[18]

एक्सटेंशन

1952 में एमपीटी की प्रारंभ के बाद से, मॉडल को उत्तम बनाने के लिए कई प्रयास किए गए हैं, खासकर अधिक यथार्थवादी मान्यताओं का उपयोग करके।

उत्तर-आधुनिक पोर्टफोलियो सिद्धांत जोखिम के गैर-सामान्य रूप से वितरित, असममित और मोटे-पूंछ वाले उपायों को अपनाकर एमपीटी का विस्तार करता है।[19] इससे इनमें से कुछ समस्याओं में मदद मिलती है, किन्तु अन्य में नहीं है।

ब्लैक-लिटरमैन मॉडल ऑप्टिमाइज़ेशन अप्रतिबंधित मार्कोविट्ज़ ऑप्टिमाइज़ेशन का विस्तार है जो जोखिम और रिटर्न के इनपुट पर सापेक्ष और पूर्ण 'विचार' सम्मिलित करता है।

तर्कसंगत विकल्प सिद्धांत के साथ संबंध

आधुनिक पोर्टफोलियो सिद्धांत तर्कसंगत विकल्प सिद्धांत के मुख्य सिद्धांतों के साथ असंगत है, विशेष रूप से एकरसता सिद्धांत के साथ, जिसमें कहा गया है कि, यदि पोर्टफोलियो एक्स में निवेश, संभावना के साथ, पोर्टफोलियो वाई में निवेश करने की तुलना में अधिक पैसा लौटाएगा, तो तर्कसंगत निवेशक को एक्स को प्राथमिकता देनी चाहिए Y. इसके विपरीत, आधुनिक पोर्टफोलियो सिद्धांत अलग सिद्धांत पर आधारित है, जिसे विचरण विचलन कहा जाता है,[20]

और इस आधार पर वाई में निवेश करने की सिफारिश कर सकता है कि इसमें कम भिन्नता है। मैकचेरोनी एट अल.[21] एकरसता सिद्धांत को संतुष्ट करते हुए, विकल्प सिद्धांत का वर्णन किया गया है जो आधुनिक पोर्टफोलियो सिद्धांत के सबसे करीब संभव है। वैकल्पिक रूप से, माध्य-विचलन विश्लेषण[22] एक तर्कसंगत विकल्प सिद्धांत है जो उचित विचलन जोखिम माप द्वारा विचरण को प्रतिस्थापित करने से उत्पन्न होता है।

अन्य अनुप्रयोग

1970 के दशक में, एमपीटी की अवधारणाओं ने क्षेत्रीय विज्ञान के क्षेत्र में अपना रास्ता खोज लिया। मौलिक कार्यों की श्रृंखला में, माइकल कॉनरॉय श्रम बल में वृद्धि और परिवर्तन शीलता की जांच करने के लिए पोर्टफोलियो-सैद्धांतिक विधियों का उपयोग करके अर्थव्यवस्था में श्रम बल का मॉडल तैयार किया गया है । इसके बाद आर्थिक विकास और अस्थिरता के मध्य संबंधों पर लंबा साहित्य आया।[23]

वर्तमान में, सामाजिक मनोविज्ञान में आत्म-अवधारणा को मॉडल करने के लिए आधुनिक पोर्टफोलियो सिद्धांत का उपयोग किया गया है। जब आत्म-अवधारणा से युक्त आत्म-गुण अच्छी तरह से विविध पोर्टफोलियो का निर्माण करते हैं, तो व्यक्ति के स्तर पर मनोदशा और आत्म-सम्मान जैसे मनोवैज्ञानिक परिणाम अधिक स्थिर होने चाहिए, जब आत्म-अवधारणा विविध होती है। मानव विषयों से जुड़े अध्ययनों में इस भविष्यवाणी की पुष्टि की गई है।[24]

वर्तमान में, आधुनिक पोर्टफोलियो सिद्धांत को सूचना पुनर्प्राप्ति में दस्तावेजों के मध्य अनिश्चितता और सहसंबंध को मॉडलिंग करने के लिए प्रयुक्त किया गया है। प्रश्न को देखते हुए, इसका उद्देश्य दस्तावेजों की रैंक की गई सूची की संपूर्ण प्रासंगिकता को अधिकतम करना है और साथ ही रैंक की गई सूची की संपूर्ण अनिश्चितता को कम करना है।[25]


परियोजना पोर्टफोलियो और अन्य गैर-वित्तीय संपत्ति

कुछ विशेषज्ञ वित्तीय साधनों के अलावा परियोजनाओं और अन्य परिसंपत्तियों के पोर्टफोलियो पर एमपीटी प्रयुक्त करते हैं।[26][27] जब एमपीटी को पारंपरिक वित्तीय पोर्टफोलियो के बाहर प्रयुक्त किया जाता है, तो विभिन्न प्रकार के पोर्टफोलियो के मध्य कुछ अंतरों पर विचार किया जाना चाहिए।

  1. वित्तीय पोर्टफोलियो में परिसंपत्तियां, व्यावहारिक उद्देश्यों के लिए, लगातार विभाज्य होती हैं जबकि परियोजनाओं के पोर्टफोलियो ढेलेदार होते हैं। उदाहरण के लिए, जबकि हम गणना कर सकते हैं कि 3 शेयरों के लिए इष्टतम पोर्टफोलियो स्थिति 44%, 35%, 21% है, परियोजना पोर्टफोलियो के लिए इष्टतम स्थिति हमें किसी परियोजना पर खर्च की गई मात्रा को आसानी से बदलने की अनुमति नहीं दे सकती है। परियोजनाएँ पूरी तरह से या कुछ भी नहीं हो सकती हैं या, कम से कम, तार्किक इकाइयाँ हो सकती हैं जिन्हें अलग नहीं किया जा सकता है। पोर्टफोलियो अनुकूलन पद्धति में परियोजनाओं की अलग-अलग प्रकृति को ध्यान में रखना होगा।
  2. वित्तीय पोर्टफोलियो की परिसंपत्तियां तरल हैं उनका किसी भी समय मूल्यांकन या पुनर्मूल्यांकन किया जा सकता है। किन्तु नई परियोजनाओं को लॉन्च करने के अवसर सीमित हो सकते हैं और सीमित समय में हो सकते हैं। जो परियोजनाएं पहले ही प्रारंभ की जा चुकी हैं, उन्हें डूबी हुई निवेश के हानि के बिना नहीं छोड़ा जा सकता है (यानी, आधे-अधूरे प्रोजेक्ट की वसूली/बचाव मूल्य बहुत कम या कोई नहीं है)।

इनमें से कोई भी एमपीटी और ऐसे पोर्टफोलियो के उपयोग की संभावना को अनिवार्य रूप से समाप्त नहीं करता है। वे बस गणितीय रूप से व्यक्त बाधाओं के अतिरिक्त समुच्य के साथ अनुकूलन को चलाने की आवश्यकता को इंगित करते हैं जो सामान्यत: वित्तीय पोर्टफोलियो पर प्रयुक्त नहीं होंगे।

इसके अतरिक्त आधुनिक पोर्टफोलियो सिद्धांत के कुछ सबसे सरल तत्व वस्तुतः किसी भी प्रकार के पोर्टफोलियो पर प्रयुक्त होते हैं। किसी दिए गए रिटर्न के लिए कितना जोखिम स्वीकार्य है, इसका दस्तावेजीकरण करके किसी निवेशक की जोखिम सहनशीलता को पकड़ने की अवधारणा को विभिन्न निर्णय विश्लेषण समस्याओं पर प्रयुक्त किया जा सकता है। एमपीटी जोखिम के माप के रूप में ऐतिहासिक भिन्नता का उपयोग करता है, किन्तु प्रमुख परियोजनाओं जैसी परिसंपत्तियों के पोर्टफोलियो में अच्छी तरह से परिभाषित ऐतिहासिक भिन्नता नहीं होती है। इस स्थितियों में, एमपीटी निवेश सीमा को अधिक सामान्य शब्दों में व्यक्त किया जा सकता है जैसे पूंजी की निवेश से कम आरओआई की संभावना या निवेश के आधे से अधिक खोने की संभावना। जब पूर्वानुमानों और संभावित हानि के बारे में अनिश्चितता के संदर्भ में जोखिम डाला जाता है तो अवधारणा विभिन्न प्रकार के निवेश में स्थानांतरित हो जाती है।[26]

यह भी देखें

संदर्भ

  1. 1.0 1.1 Wigglesworth, Robin (11 April 2018). "कैसे एक अस्थिरता वायरस ने वॉल स्ट्रीट को संक्रमित कर दिया". The Financial Times.
  2. Markowitz, H.M. (March 1952). "पोर्टफोलियो चयन". The Journal of Finance. 7 (1): 77–91. doi:10.2307/2975974. JSTOR 2975974.
  3. Portfolio Selection, Harry Markowitz - The Journal of Finance, Vol. 7, No. 1. (Mar., 1952), pp. 77-91
  4. see bottom of slide 6 here
  5. Markowitz, H.M. (March 1956). "रैखिक बाधाओं के अधीन द्विघात फलन का अनुकूलन". Naval Research Logistics Quarterly. 3 (1–2): 111–133. doi:10.1002/nav.3800030110.
  6. Markowitz, Harry (February 2000). पोर्टफोलियो विकल्प और पूंजी बाजार में माध्य-विचरण विश्लेषण. Wiley. ISBN 978-1-883-24975-5.
  7. "पोर्टफोलियो आवंटन जावास्क्रिप्ट लाइब्रेरी". github.com/lequant40. Retrieved 2018-06-13.
  8. 8.0 8.1 Merton, Robert. "An analytic derivation of the efficient portfolio frontier," Journal of Financial and Quantitative Analysis 7, September 1972, 1851-1872.
  9. Karatzas, Ioannis; Lehoczky, John P.; Sethi, Suresh P.; Shreve, Steven E. (1986). "Explicit Solution of a General Consumption/Investment Problem". Mathematics of Operations Research. 11 (2): 261–294. doi:10.1287/moor.11.2.261. JSTOR 3689808. S2CID 22489650. SSRN 1086184.
  10. Mahdavi Damghani B. (2013). "The Non-Misleading Value of Inferred Correlation: An Introduction to the Cointelation Model". Wilmott Magazine. 2013 (67): 50–61. doi:10.1002/wilm.10252.{{cite journal}}: CS1 maint: uses authors parameter (link)
  11. Hui, C.; Fox, G.A.; Gurevitch, J. (2017). "स्केल-निर्भर पोर्टफोलियो प्रभाव परिदृश्य जनसांख्यिकी में विकास मुद्रास्फीति और अस्थिरता में कमी की व्याख्या करते हैं". Proceedings of the National Academy of Sciences of the USA. 114 (47): 12507–12511. Bibcode:2017PNAS..11412507H. doi:10.1073/pnas.1704213114. PMC 5703273. PMID 29109261.
  12. Low, R.K.Y.; Faff, R.; Aas, K. (2016). "Enhancing mean–variance portfolio selection by modeling distributional asymmetries" (PDF). Journal of Economics and Business. 85: 49–72. doi:10.1016/j.jeconbus.2016.01.003.
  13. Rachev, Svetlozar T. and Stefan Mittnik (2000), Stable Paretian Models in Finance, Wiley, ISBN 978-0-471-95314-2.
  14. Risk Manager Journal (2006), "New Approaches for Portfolio Optimization: Parting with the Bell Curve — Interview with Prof. Svetlozar Rachev and Prof.Stefan Mittnik" (PDF).
  15. Doganoglu, Toker; Hartz, Christoph; Mittnik, Stefan (2007). "पोर्टफोलियो अनुकूलन जब जोखिम कारक सशर्त रूप से भिन्न और भारी होते हैं" (PDF). Computational Economics. 29 (3–4): 333–354. doi:10.1007/s10614-006-9071-1. S2CID 8280640.
  16. Seth Klarman (1991). Margin of Safety: Risk-averse Value Investing Strategies for the Thoughtful Investor. HarperCollins, ISBN 978-0887305108, pp. 97-102
  17. Alasdair Nairn (2005). “Templeton's Way With Money: Strategies and Philosophy of a Legendary Investor.” Wiley, ISBN 1118149610, p. 262
  18. Duchin, Ran; Levy, Haim (2009). "मार्कोविट्ज़ बनाम टैल्मूडिक पोर्टफोलियो विविधीकरण रणनीतियाँ". The Journal of Portfolio Management. 35 (2): 71–74. doi:10.3905/JPM.2009.35.2.071. S2CID 154865200.
  19. Stoyanov, Stoyan; Rachev, Svetlozar; Racheva-Yotova, Boryana; Fabozzi, Frank (2011). "जोखिम आकलन के लिए फैट-टेल्ड मॉडल" (PDF). The Journal of Portfolio Management. 37 (2): 107–117. doi:10.3905/jpm.2011.37.2.107. S2CID 154172853.
  20. Loffler, A. (1996). Variance Aversion Implies μ-σ2-Criterion. Journal of economic theory, 69(2), 532-539.
  21. MacCheroni, Fabio; Marinacci, Massimo; Rustichini, Aldo; Taboga, Marco (2009). "मोनोटोन माध्य-विचरण प्राथमिकताओं के साथ पोर्टफोलियो चयन" (PDF). Mathematical Finance. 19 (3): 487–521. doi:10.1111/j.1467-9965.2009.00376.x. S2CID 154536043.
  22. Grechuk, Bogdan; Molyboha, Anton; Zabarankin, Michael (2012). "पसंद के सिद्धांत में माध्य-विचलन विश्लेषण". Risk Analysis. 32 (8): 1277–1292. doi:10.1111/j.1539-6924.2011.01611.x. PMID 21477097. S2CID 12133839.
  23. Chandra, Siddharth (2003). "Regional Economy Size and the Growth-Instability Frontier: Evidence from Europe". Journal of Regional Science. 43 (1): 95–122. doi:10.1111/1467-9787.00291. S2CID 154477444.
  24. Chandra, Siddharth; Shadel, William G. (2007). "Crossing disciplinary boundaries: Applying financial portfolio theory to model the organization of the self-concept". Journal of Research in Personality. 41 (2): 346–373. doi:10.1016/j.jrp.2006.04.007.
  25. Portfolio Theory of Information Retrieval July 11th, 2009 (2009-07-11). "Portfolio Theory of Information Retrieval | Dr. Jun Wang's Home Page". Web4.cs.ucl.ac.uk. Retrieved 2012-09-05.
  26. 26.0 26.1 Hubbard, Douglas (2007). How to Measure Anything: Finding the Value of Intangibles in Business. Hoboken, NJ: John Wiley & Sons. ISBN 978-0-470-11012-6.
  27. Sabbadini, Tony (2010). "विनिर्माण पोर्टफोलियो सिद्धांत" (PDF). International Institute for Advanced Studies in Systems Research and Cybernetics.


अग्रिम पठन


बाहरी संबंध