सम्मिश्र सामान्य वितरण: Difference between revisions

From Vigyanwiki
Line 39: Line 39:


===सम्मिश्र सामान्य यादृच्छिक चर===
===सम्मिश्र सामान्य यादृच्छिक चर===
मान लीजिए कि <math>X</math> और <math>Y</math> वास्तविक यादृच्छिक चर हैं, जैसे कि <math>(X,Y)^{\mathrm T}</math> एक 2-आयामी [[सामान्य यादृच्छिक वेक्टर|सामान्य यादृच्छिक सदिश]] है। तब जटिल यादृच्छिक चर <math>Z=X+iY</math> को जटिल सामान्य यादृच्छिक चर या जटिल गाऊसी यादृच्छिक चर कहा जाता है।<ref name=Lapidoth/>
मान लीजिए कि <math>X</math> और <math>Y</math> वास्तविक यादृच्छिक चर हैं, जैसे कि <math>(X,Y)^{\mathrm T}</math> एक 2-आयामी [[सामान्य यादृच्छिक वेक्टर|सामान्य यादृच्छिक सदिश]] है। तब जटिल यादृच्छिक चर <math>Z=X+iY</math> को '''जटिल सामान्य यादृच्छिक चर''' या '''जटिल गाऊसी यादृच्छिक चर''' कहा जाता है।<ref name=Lapidoth/>


{{Equation box 1
{{Equation box 1
Line 51: Line 51:


===सम्मिश्र मानक सामान्य यादृच्छिक सदिश===
===सम्मिश्र मानक सामान्य यादृच्छिक सदिश===
एक एन-आयामी सम्मिश्र यादृच्छिक सदिश <math>\mathbf{Z}=(Z_1,\ldots,Z_n)^{\mathrm T}</math> एक सम्मिश्र मानक सामान्य यादृच्छिक सदिश या सम्मिश्र मानक गॉसियन यादृच्छिक सदिश है यदि इसके घटक स्वतंत्र हैं और वे सभी मानक सम्मिश्र सामान्य यादृच्छिक चर हैं जैसा कि ऊपर परिभाषित किया गया है।<ref name=Lapidoth/>{{rp|p. 502}}<ref name="TseViswanath">{{cite book |first=David |last=Tse |year=2005 |title=वायरलेस संचार के मूल सिद्धांत|publisher=Cambridge University Press|isbn=9781139444668 |url=https://books.google.com/books?id=GdsLAQAAQBAJ&q=%22random+variable%22}}</ref>{{rp|pp. 501}}
एक nआयामी सम्मिश्र यादृच्छिक सदिश <math>\mathbf{Z}=(Z_1,\ldots,Z_n)^{\mathrm T}</math> एक '''सम्मिश्र मानक सामान्य यादृच्छिक सदिश''' या '''सम्मिश्र मानक गॉसियन यादृच्छिक सदिश''' है यदि इसके घटक स्वतंत्र हैं और वे सभी मानक सम्मिश्र सामान्य यादृच्छिक चर हैं जैसा कि ऊपर परिभाषित किया गया है।<ref name=Lapidoth/><ref name="TseViswanath">{{cite book |first=David |last=Tse |year=2005 |title=वायरलेस संचार के मूल सिद्धांत|publisher=Cambridge University Press|isbn=9781139444668 |url=https://books.google.com/books?id=GdsLAQAAQBAJ&q=%22random+variable%22}}</ref> वह <math>\mathbf{Z}</math> एक मानक सम्मिश्र सामान्य यादृच्छिक सदिश <math>\mathbf{Z} \sim \mathcal{CN}(0,\boldsymbol{I}_n)</math> निरूपित किया जाता है।
वह <math>\mathbf{Z}</math> एक मानक सम्मिश्र सामान्य यादृच्छिक सदिश निरूपित किया जाता है <math>\mathbf{Z} \sim \mathcal{CN}(0,\boldsymbol{I}_n)</math>.


{{Equation box 1
{{Equation box 1
Line 63: Line 62:
|background colour=#F5FFFA}}
|background colour=#F5FFFA}}


===''सम्मिश्र सामान्य यादृच्छिक सदिश''===
===सम्मिश्र सामान्य यादृच्छिक सदिश===
अगर <math>\mathbf{X}=(X_1,\ldots,X_n)^{\mathrm T}</math> और <math>\mathbf{Y}=(Y_1,\ldots,Y_n)^{\mathrm T}</math> में [[यादृच्छिक वेक्टर|यादृच्छिक सदिश]] हैं <math>\mathbb{R}^n</math> ऐसा है कि <math>[\mathbf{X},\mathbf{Y}]</math> के साथ एक सामान्य यादृच्छिक सदिश है <math>2n</math> अवयव। तब हम कहते हैं कि [[जटिल यादृच्छिक वेक्टर|सम्मिश्र यादृच्छिक सदिश]]
यदि <math>\mathbf{X}=(X_1,\ldots,X_n)^{\mathrm T}</math> और <math>\mathbf{Y}=(Y_1,\ldots,Y_n)^{\mathrm T}</math> में [[यादृच्छिक वेक्टर|यादृच्छिक सदिश]] हैं <math>\mathbb{R}^n</math> ऐसा है कि <math>[\mathbf{X},\mathbf{Y}]</math> के साथ एक सामान्य यादृच्छिक सदिश है <math>2n</math> अवयव। तब हम कहते हैं कि [[जटिल यादृच्छिक वेक्टर|सम्मिश्र यादृच्छिक सदिश]]
: <math>
: <math>
     \mathbf{Z} = \mathbf{X} + i \mathbf{Y} \,
     \mathbf{Z} = \mathbf{X} + i \mathbf{Y} \,
   </math>
   </math>
एक सम्मिश्र सामान्य यादृच्छिक सदिश या एक सम्मिश्र गाऊसी यादृच्छिक सदिश है।
एक सम्मिश्र '''सामान्य यादृच्छिक सदिश''' या एक '''सम्मिश्र गाऊसी यादृच्छिक सदिश''' है।


{{Equation box 1
{{Equation box 1
Line 88: Line 87:
जहाँ <math>\mathbf{Z}^{\mathrm T}</math> [[ मैट्रिक्स स्थानान्तरण ]] को दर्शाता है <math>\mathbf{Z}</math>, और <math>\mathbf{Z}^{\mathrm H}</math> संयुग्मी स्थानान्तरण को दर्शाता है।<ref name=Lapidoth/>{{rp|p. 504}}<ref name=TseViswanath/>{{rp|pp. 500}}
जहाँ <math>\mathbf{Z}^{\mathrm T}</math> [[ मैट्रिक्स स्थानान्तरण ]] को दर्शाता है <math>\mathbf{Z}</math>, और <math>\mathbf{Z}^{\mathrm H}</math> संयुग्मी स्थानान्तरण को दर्शाता है।<ref name=Lapidoth/>{{rp|p. 504}}<ref name=TseViswanath/>{{rp|pp. 500}}


यहां [[स्थान पैरामीटर]] है <math>\mu</math> एक एन-आयामी सम्मिश्र सदिश है; सहप्रसरण मैट्रिक्स <math>\Gamma</math> [[हर्मिटियन मैट्रिक्स]] और [[गैर-नकारात्मक निश्चित]] है; और, [[संबंध मैट्रिक्स]] या छद्म सहप्रसरण मैट्रिक्स <math>C</math> [[सममित मैट्रिक्स]] है. सम्मिश्र सामान्य यादृच्छिक सदिश <math>
यहां [[स्थान पैरामीटर]] है <math>\mu</math> एक nआयामी सम्मिश्र सदिश है; सहप्रसरण मैट्रिक्स <math>\Gamma</math> [[हर्मिटियन मैट्रिक्स]] और [[गैर-नकारात्मक निश्चित|ऋणेतर निश्चित]] है; और, [[संबंध मैट्रिक्स]] या छद्म सहप्रसरण मैट्रिक्स <math>C</math> [[सममित मैट्रिक्स]] है। सम्मिश्र सामान्य यादृच्छिक सदिश <math>
     \mathbf{Z}
     \mathbf{Z}
   </math> अब के रूप में दर्शाया जा सकता है<math display="block">
   </math> अब के रूप में दर्शाया जा सकता है।<math display="block">
     \mathbf{Z}\ \sim\ \mathcal{CN}(\mu,\ \Gamma,\ C).
     \mathbf{Z}\ \sim\ \mathcal{CN}(\mu,\ \Gamma,\ C).
   </math>इसके अलावा, मैट्रिक्स <math>\Gamma</math> और <math>C</math> ऐसे हैं कि मैट्रिक्स
   </math>इसके अतिरिक्त, मैट्रिक्स <math>\Gamma</math> और <math>C</math> ऐसे हैं जो मैट्रिक्स हैं
 
: <math>
: <math>
     P = \overline{\Gamma} - {C}^{\mathrm H}\Gamma^{-1}C
     P = \overline{\Gamma} - {C}^{\mathrm H}\Gamma^{-1}C
   </math>
   </math>
यह भी गैर-नकारात्मक निश्चित है <math>\overline{\Gamma}</math> के सम्मिश्र संयुग्म को दर्शाता है <math>\Gamma</math>.<ref name="picinbono"/>
यह एक ऋणेतर  निश्चितता भी है जहां <math>\overline{\Gamma}</math>, <math>\Gamma</math> के जटिल संयुग्म को दर्शाता है।<ref name="picinbono" />
 
 
==सहप्रसरण आव्यूहों के बीच संबंध==
==सहप्रसरण आव्यूहों के बीच संबंध==
{{main|Complex random vector#Covariance matrix and pseudo-covariance matrix}}
{{main|Complex random vector#Covariance matrix and pseudo-covariance matrix}}
Line 135: Line 133:
     \varphi(w) = \exp\!\big\{i\operatorname{Re}(\overline{w}'\mu) - \tfrac{1}{4}\big(\overline{w}'\Gamma w + \operatorname{Re}(\overline{w}'C\overline{w})\big)\big\},
     \varphi(w) = \exp\!\big\{i\operatorname{Re}(\overline{w}'\mu) - \tfrac{1}{4}\big(\overline{w}'\Gamma w + \operatorname{Re}(\overline{w}'C\overline{w})\big)\big\},
   </math>
   </math>
जहां तर्क <math>w</math> एक एन-आयामी सम्मिश्र सदिश है।
जहां तर्क <math>w</math> एक nआयामी सम्मिश्र सदिश है।


==गुण==
==गुण==
* अगर <math>\mathbf{Z}</math> एक सम्मिश्र सामान्य एन-सदिश है, <math>\boldsymbol{A}</math> एक m×n मैट्रिक्स, और <math>b</math> एक स्थिर एम-सदिश, फिर रैखिक परिवर्तन <math>\boldsymbol{A}\mathbf{Z}+b</math> सम्मिश्र-सामान्य रूप से भी वितरित किया जाएगा:
* यदि <math>\mathbf{Z}</math> एक सम्मिश्र सामान्य nसदिश है, <math>\boldsymbol{A}</math> एक m×n मैट्रिक्स, और <math>b</math> एक स्थिर एम-सदिश, फिर रैखिक परिवर्तन <math>\boldsymbol{A}\mathbf{Z}+b</math> सम्मिश्र-सामान्य रूप से भी वितरित किया जाएगा:
: <math>
: <math>
     Z\ \sim\ \mathcal{CN}(\mu,\, \Gamma,\, C) \quad \Rightarrow \quad AZ+b\ \sim\ \mathcal{CN}(A\mu+b,\, A \Gamma A^{\mathrm H},\, A C A^{\mathrm T})
     Z\ \sim\ \mathcal{CN}(\mu,\, \Gamma,\, C) \quad \Rightarrow \quad AZ+b\ \sim\ \mathcal{CN}(A\mu+b,\, A \Gamma A^{\mathrm H},\, A C A^{\mathrm T})
   </math>
   </math>
* अगर <math>\mathbf{Z}</math> तो, एक सम्मिश्र सामान्य एन-सदिश है
* यदि <math>\mathbf{Z}</math> तो, एक सम्मिश्र सामान्य nसदिश है
: <math>
: <math>
     2\Big[ (\mathbf{Z}-\mu)^{\mathrm H} \overline{P^{-1}}(\mathbf{Z}-\mu) -
     2\Big[ (\mathbf{Z}-\mu)^{\mathrm H} \overline{P^{-1}}(\mathbf{Z}-\mu) -
Line 148: Line 146:
     \Big]\ \sim\ \chi^2(2n)
     \Big]\ \sim\ \chi^2(2n)
   </math>
   </math>
* केंद्रीय सीमा प्रमेय। अगर <math>Z_1,\ldots,Z_T</math> तो, स्वतंत्र और समान रूप से वितरित सम्मिश्र यादृच्छिक चर हैं
* केंद्रीय सीमा प्रमेय। यदि <math>Z_1,\ldots,Z_T</math> तो, स्वतंत्र और समान रूप से वितरित सम्मिश्र यादृच्छिक चर हैं
: <math>
: <math>
     \sqrt{T}\Big( \tfrac{1}{T}\textstyle\sum_{t=1}^T Z_t - \operatorname{E}[Z_t]\Big) \ \xrightarrow{d}\  
     \sqrt{T}\Big( \tfrac{1}{T}\textstyle\sum_{t=1}^T Z_t - \operatorname{E}[Z_t]\Big) \ \xrightarrow{d}\  
Line 171: Line 169:


===वास्तविक और काल्पनिक भागों का वितरण===
===वास्तविक और काल्पनिक भागों का वितरण===
अगर <math>\mathbf{Z}=\mathbf{X}+i\mathbf{Y}</math> गोलाकार-सममित (केंद्रीय) सम्मिश्र सामान्य है, फिर सदिश <math>[\mathbf{X}, \mathbf{Y}]</math> सहप्रसरण संरचना के साथ बहुभिन्नरूपी सामान्य है
यदि <math>\mathbf{Z}=\mathbf{X}+i\mathbf{Y}</math> गोलाकार-सममित (केंद्रीय) सम्मिश्र सामान्य है, फिर सदिश <math>[\mathbf{X}, \mathbf{Y}]</math> सहप्रसरण संरचना के साथ बहुभिन्नरूपी सामान्य है
: <math>
: <math>
     \begin{pmatrix}\mathbf{X} \\ \mathbf{Y}\end{pmatrix} \ \sim\   
     \begin{pmatrix}\mathbf{X} \\ \mathbf{Y}\end{pmatrix} \ \sim\   
Line 205: Line 203:
उपरोक्त अभिव्यक्ति दर्शाती है कि मामला क्यों है <math>C=0</math>, <math>\mu = 0</math> "वृत्ताकार-सममित" कहा जाता है। घनत्व फलन केवल के परिमाण पर निर्भर करता है <math>z</math> लेकिन इसके Arg (गणित) पर नहीं. इस प्रकार, परिमाण <math>|z|</math> एक मानक सम्मिश्र सामान्य यादृच्छिक चर में [[रेले वितरण]] और वर्ग परिमाण होगा <math>|z|^2</math> घातांकीय वितरण होगा, जबकि तर्क को [[समान वितरण (निरंतर)]] पर वितरित किया जाएगा <math>[-\pi,\pi]</math>.
उपरोक्त अभिव्यक्ति दर्शाती है कि मामला क्यों है <math>C=0</math>, <math>\mu = 0</math> "वृत्ताकार-सममित" कहा जाता है। घनत्व फलन केवल के परिमाण पर निर्भर करता है <math>z</math> लेकिन इसके Arg (गणित) पर नहीं. इस प्रकार, परिमाण <math>|z|</math> एक मानक सम्मिश्र सामान्य यादृच्छिक चर में [[रेले वितरण]] और वर्ग परिमाण होगा <math>|z|^2</math> घातांकीय वितरण होगा, जबकि तर्क को [[समान वितरण (निरंतर)]] पर वितरित किया जाएगा <math>[-\pi,\pi]</math>.


अगर <math>\left\{ \mathbf{Z}_1,\ldots,\mathbf{Z}_k \right\}</math> स्वतंत्र और समान रूप से वितरित एन-आयामी परिपत्र सम्मिश्र सामान्य यादृच्छिक वैक्टर हैं <math>\mu = 0</math>, फिर यादृच्छिक वर्ग मानदंड
यदि <math>\left\{ \mathbf{Z}_1,\ldots,\mathbf{Z}_k \right\}</math> स्वतंत्र और समान रूप से वितरित nआयामी परिपत्र सम्मिश्र सामान्य यादृच्छिक वैक्टर हैं <math>\mu = 0</math>, फिर यादृच्छिक वर्ग मानदंड
: <math>
: <math>
     Q = \sum_{j=1}^k \mathbf{Z}_j^{\mathrm H} \mathbf{Z}_j = \sum_{j=1}^k \| \mathbf{Z}_j \|^2
     Q = \sum_{j=1}^k \mathbf{Z}_j^{\mathrm H} \mathbf{Z}_j = \sum_{j=1}^k \| \mathbf{Z}_j \|^2
Line 218: Line 216:
           e^{-\operatorname{tr}(\Gamma^{-1}w)}
           e^{-\operatorname{tr}(\Gamma^{-1}w)}
   </math>
   </math>
जहाँ <math>k \ge n</math>, और <math>w</math> एक है <math>n \times n</math> गैर-नकारात्मक-निश्चित मैट्रिक्स।
जहाँ <math>k \ge n</math>, और <math>w</math> एक है <math>n \times n</math> ऋणेतर-निश्चित मैट्रिक्स।


==यह भी देखें==
==यह भी देखें==

Revision as of 21:28, 17 July 2023

Complex normal
Parameters

location
covariance matrix (positive semi-definite matrix)

relation matrix (complex symmetric matrix)
Support
PDF complicated, see text
Mean
Mode
Variance
CF

संभाव्यता सिद्धांत में, सम्मिश्र सामान्य वितरण का वर्ग , जिसे या कहा जाता है, सम्मिश्र यादृच्छिक चर की विशेषता बताता है जिनके वास्तविक और काल्पनिक हिस्से संयुक्त रूप से सामान्य होते हैं।[1] सम्मिश्र सामान्य वर्ग में तीन पैरामीटर होते हैं: स्थान पैरामीटर μ, सहप्रसरण मैट्रिक्स , और संबंध मैट्रिक्स . मानक सम्मिश्र सामान्य , और के साथ एकतरफा वितरण है।

सम्मिश्र सामान्य वर्ग के एक महत्वपूर्ण उपवर्ग को वृत्ताकार-सममित (केंद्रीय) सम्मिश्र सामान्य कहा जाता है और यह शून्य संबंध मैट्रिक्स और शून्य माध्य के मामले से मेल खाता है: और [2] [ इस मामले का उपयोग सिग्नल प्रोसेसिंग में बड़े पैमाने पर किया जाता है, जहां कभी-कभी इसे साहित्य में केवल सम्मिश्र सामान्य के रूप में संदर्भित किया जाता है।

परिभाषाएँ

सम्मिश्र मानक सामान्य यादृच्छिक चर

मानक जटिल सामान्य यादृच्छिक चर या मानक जटिल गाऊसी यादृच्छिक चर एक जटिल यादृच्छिक चर है जिसके वास्तविक और काल्पनिक भाग माध्य शून्य और विचरण के साथ स्वतंत्र सामान्य रूप से वितरित यादृच्छिक चर हैं।[3]औपचारिक रूप से,

 

 

 

 

(Eq.1)

जहाँ यह दर्शाता है एक मानक सम्मिश्र सामान्य यादृच्छिक चर है।

सम्मिश्र सामान्य यादृच्छिक चर

मान लीजिए कि और वास्तविक यादृच्छिक चर हैं, जैसे कि एक 2-आयामी सामान्य यादृच्छिक सदिश है। तब जटिल यादृच्छिक चर को जटिल सामान्य यादृच्छिक चर या जटिल गाऊसी यादृच्छिक चर कहा जाता है।[3]

 

 

 

 

(Eq.2)

सम्मिश्र मानक सामान्य यादृच्छिक सदिश

एक nआयामी सम्मिश्र यादृच्छिक सदिश एक सम्मिश्र मानक सामान्य यादृच्छिक सदिश या सम्मिश्र मानक गॉसियन यादृच्छिक सदिश है यदि इसके घटक स्वतंत्र हैं और वे सभी मानक सम्मिश्र सामान्य यादृच्छिक चर हैं जैसा कि ऊपर परिभाषित किया गया है।[3][4] वह एक मानक सम्मिश्र सामान्य यादृच्छिक सदिश निरूपित किया जाता है।

 

 

 

 

(Eq.3)

सम्मिश्र सामान्य यादृच्छिक सदिश

यदि और में यादृच्छिक सदिश हैं ऐसा है कि के साथ एक सामान्य यादृच्छिक सदिश है अवयव। तब हम कहते हैं कि सम्मिश्र यादृच्छिक सदिश

एक सम्मिश्र सामान्य यादृच्छिक सदिश या एक सम्मिश्र गाऊसी यादृच्छिक सदिश है।

 

 

 

 

(Eq.4)

माध्य, सहप्रसरण, और संबंध

सम्मिश्र गाऊसी वितरण को 3 मापदंडों के साथ वर्णित किया जा सकता है:[5]

जहाँ मैट्रिक्स स्थानान्तरण को दर्शाता है , और संयुग्मी स्थानान्तरण को दर्शाता है।[3]: p. 504 [4]: pp. 500 

यहां स्थान पैरामीटर है एक nआयामी सम्मिश्र सदिश है; सहप्रसरण मैट्रिक्स हर्मिटियन मैट्रिक्स और ऋणेतर निश्चित है; और, संबंध मैट्रिक्स या छद्म सहप्रसरण मैट्रिक्स सममित मैट्रिक्स है। सम्मिश्र सामान्य यादृच्छिक सदिश अब के रूप में दर्शाया जा सकता है।

इसके अतिरिक्त, मैट्रिक्स और ऐसे हैं जो मैट्रिक्स हैं

यह एक ऋणेतर निश्चितता भी है जहां , के जटिल संयुग्म को दर्शाता है।[5]

सहप्रसरण आव्यूहों के बीच संबंध

किसी भी सम्मिश्र यादृच्छिक सदिश के लिए, मैट्रिक्स और के सहप्रसरण मैट्रिक्स से संबंधित हो सकता है और अभिव्यक्ति के माध्यम से

और इसके विपरीत


घनत्व फलन

सम्मिश्र सामान्य वितरण के लिए संभाव्यता घनत्व फ़ंक्शन की गणना इस प्रकार की जा सकती है

जहाँ और .

विशेषता कार्य

सम्मिश्र सामान्य वितरण का विशिष्ट कार्य (संभावना सिद्धांत) किसके द्वारा दिया गया है?[5]: जहां तर्क एक nआयामी सम्मिश्र सदिश है।

गुण

  • यदि एक सम्मिश्र सामान्य nसदिश है, एक m×n मैट्रिक्स, और एक स्थिर एम-सदिश, फिर रैखिक परिवर्तन सम्मिश्र-सामान्य रूप से भी वितरित किया जाएगा:
  • यदि तो, एक सम्मिश्र सामान्य nसदिश है
  • केंद्रीय सीमा प्रमेय। यदि तो, स्वतंत्र और समान रूप से वितरित सम्मिश्र यादृच्छिक चर हैं
जहाँ और .
  • एक सम्मिश्र सामान्य यादृच्छिक चर का मापांक एक होयट वितरण का अनुसरण करता है।[6]


वृत्ताकार-सममित केंद्रीय मामला

परिभाषा

एक सम्मिश्र यादृच्छिक सदिश यदि प्रत्येक नियति के लिए इसे गोलाकार सममित कहा जाता है का वितरण के वितरण के बराबर है .[4]: pp. 500–501 

केंद्रीय सामान्य सम्मिश्र यादृच्छिक सदिश जो गोलाकार रूप से सममित होते हैं, विशेष रुचि रखते हैं क्योंकि वे सहप्रसरण मैट्रिक्स द्वारा पूरी तरह से निर्दिष्ट होते हैं .

गोलाकार-सममित (केंद्रीय) सम्मिश्र सामान्य वितरण शून्य माध्य और शून्य संबंध मैट्रिक्स के मामले से मेल खाता है, अर्थात। और .[3]: p. 507 [7] इसे आमतौर पर दर्शाया जाता है


वास्तविक और काल्पनिक भागों का वितरण

यदि गोलाकार-सममित (केंद्रीय) सम्मिश्र सामान्य है, फिर सदिश सहप्रसरण संरचना के साथ बहुभिन्नरूपी सामान्य है

जहाँ और .

संभावना घनत्व फ़ंक्शन

गैर-एकवचन सहप्रसरण मैट्रिक्स के लिए , इसके वितरण को भी सरल बनाया जा सकता है[3]: p. 508 

.

इसलिए, यदि गैर-शून्य माध्य है और सहप्रसरण मैट्रिक्स अज्ञात हैं, एकल अवलोकन सदिश के लिए एक उपयुक्त लॉग संभावना फ़ंक्शन होगा

मानक सम्मिश्र सामान्य (में परिभाषित) Eq.1)एक अदिश यादृच्छिक चर के वितरण के अनुरूप है , और . इस प्रकार, मानक सम्मिश्र सामान्य वितरण में घनत्व होता है


गुण

उपरोक्त अभिव्यक्ति दर्शाती है कि मामला क्यों है , "वृत्ताकार-सममित" कहा जाता है। घनत्व फलन केवल के परिमाण पर निर्भर करता है लेकिन इसके Arg (गणित) पर नहीं. इस प्रकार, परिमाण एक मानक सम्मिश्र सामान्य यादृच्छिक चर में रेले वितरण और वर्ग परिमाण होगा घातांकीय वितरण होगा, जबकि तर्क को समान वितरण (निरंतर) पर वितरित किया जाएगा .

यदि स्वतंत्र और समान रूप से वितरित nआयामी परिपत्र सम्मिश्र सामान्य यादृच्छिक वैक्टर हैं , फिर यादृच्छिक वर्ग मानदंड

इसमें सामान्यीकृत ची-वर्ग वितरण और यादृच्छिक मैट्रिक्स है

के साथ सम्मिश्र विशरट वितरण है स्वतंत्रता की कोटियां। इस वितरण को घनत्व फ़ंक्शन द्वारा वर्णित किया जा सकता है

जहाँ , और एक है ऋणेतर-निश्चित मैट्रिक्स।

यह भी देखें

संदर्भ

  1. Goodman (1963)
  2. bookchapter, Gallager.R, pg9.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Lapidoth, A. (2009). डिजिटल संचार में एक फाउंडेशन. Cambridge University Press. ISBN 9780521193955.
  4. 4.0 4.1 4.2 Tse, David (2005). वायरलेस संचार के मूल सिद्धांत. Cambridge University Press. ISBN 9781139444668.
  5. 5.0 5.1 5.2 Picinbono (1996)
  6. Daniel Wollschlaeger. "The Hoyt Distribution (Documentation for R package 'shotGroups' version 0.6.2)".[permanent dead link]
  7. bookchapter, Gallager.R


अग्रिम पठन