सम्मिश्र सामान्य वितरण: Difference between revisions

From Vigyanwiki
Line 159: Line 159:


===परिभाषा===
===परिभाषा===
एक सम्मिश्र यादृच्छिक सदिश <math> \mathbf{Z} </math> यदि प्रत्येक नियति के लिए इसे गोलाकार सममित कहा जाता है <math> \varphi \in [-\pi,\pi) </math> का वितरण <math> e^{\mathrm i \varphi}\mathbf{Z} </math> के वितरण के बराबर है <math> \mathbf{Z} </math>.<ref name=TseViswanath/>{{rp|pp. 500–501}}
एक जटिल यादृच्छिक वेक्टर <math> \mathbf{Z} </math> को गोलाकार रूप से सममित कहा जाता है यदि प्रत्येक नियतात्मक <math> \varphi \in [-\pi,\pi) </math> के लिए <math> e^{\mathrm i \varphi}\mathbf{Z} </math> का वितरण <math> \mathbf{Z} </math> के वितरण के बराबर होता है। <ref name=TseViswanath/>
{{main|Complex random vector#Circular symmetry}}


केंद्रीय सामान्य सम्मिश्र यादृच्छिक सदिश जो गोलाकार रूप से सममित होते हैं, विशेष रुचि रखते हैं क्योंकि वे सहप्रसरण आव्यूह द्वारा पूरी तरह से निर्दिष्ट होते हैं <math>\Gamma</math>.
{{main|सम्मिश्र यादृच्छिक सदिश और वृत्ताकार समरूपता}}


गोलाकार-सममित (केंद्रीय) सम्मिश्र सामान्य वितरण शून्य माध्य और शून्य संबंध आव्यूह के मामले से मेल खाता है, अर्थात। <math>\mu = 0</math> और <math>C=0</math>.<ref name=Lapidoth/>{{rp|p. 507}}<ref>[http://www.rle.mit.edu/rgallager/documents/CircSymGauss.pdf  ''bookchapter, Gallager.R'']</ref> इसे आमतौर पर दर्शाया जाता है
केंद्रीय सामान्य सम्मिश्र यादृच्छिक सदिश जो गोलाकार रूप से सममित होते हैं, विशेष रुचि रखते हैं क्योंकि वे सहप्रसरण आव्यूह <math>\Gamma</math> द्वारा पूरी तरह से निर्दिष्ट होते हैं।
 
गोलाकार-सममित (केंद्रीय) जटिल सामान्य वितरण शून्य माध्य और शून्य संबंध मैट्रिक्स के मामले से मेल खाता है, यानी <math>\mu = 0</math> और <math>C=0</math> <ref name=Lapidoth/>{{rp|p. 507}}<ref>[http://www.rle.mit.edu/rgallager/documents/CircSymGauss.pdf  ''bookchapter, Gallager.R'']</ref>आमतौर पर इसे दर्शाया जाता है
:<math>\mathbf{Z} \sim \mathcal{CN}(0,\,\Gamma)</math>
:<math>\mathbf{Z} \sim \mathcal{CN}(0,\,\Gamma)</math>
===वास्तविक और काल्पनिक भागों का वितरण===
===वास्तविक और काल्पनिक भागों का वितरण===
यदि <math>\mathbf{Z}=\mathbf{X}+i\mathbf{Y}</math> गोलाकार-सममित (केंद्रीय) सम्मिश्र सामान्य है, फिर सदिश <math>[\mathbf{X}, \mathbf{Y}]</math> सहप्रसरण संरचना के साथ बहुभिन्नरूपी सामान्य है
यदि <math>\mathbf{Z}=\mathbf{X}+i\mathbf{Y}</math> गोलाकार-सममित (केंद्रीय) सम्मिश्र सामान्य है, फिर सदिश <math>[\mathbf{X}, \mathbf{Y}]</math> सहप्रसरण संरचना के साथ बहुभिन्नरूपी सामान्य है।
: <math>
: <math>
     \begin{pmatrix}\mathbf{X} \\ \mathbf{Y}\end{pmatrix} \ \sim\   
     \begin{pmatrix}\mathbf{X} \\ \mathbf{Y}\end{pmatrix} \ \sim\   
Line 183: Line 182:
जहाँ <math>\mu = \operatorname{E}[\mathbf{Z}] = 0</math> और <math>\Gamma=\operatorname{E}[\mathbf{Z} \mathbf{Z}^{\mathrm H}]</math>.
जहाँ <math>\mu = \operatorname{E}[\mathbf{Z}] = 0</math> और <math>\Gamma=\operatorname{E}[\mathbf{Z} \mathbf{Z}^{\mathrm H}]</math>.


===संभावना घनत्व फलन===
===संभावना सघनता फलन===
गैर-एकवचन सहप्रसरण आव्यूह के लिए <math>\Gamma</math>, इसके वितरण को भी सरल बनाया जा सकता है<ref name=Lapidoth/>{{rp|p. 508}}
गैर विलक्षण सहप्रसरण आव्यूह के लिए <math>\Gamma</math>, इसके वितरण को भी सरल बनाया जा सकता है<ref name=Lapidoth/>{{rp|p. 508}}
: <math>
: <math>
     f_{\mathbf{Z}}(\mathbf{z}) = \tfrac{1}{\pi^n \det(\Gamma)}\, e^{ -(\mathbf{z}-\mathbf{\mu})^{\mathrm H} \Gamma^{-1} (\mathbf{z}-\mathbf{\mu})}
     f_{\mathbf{Z}}(\mathbf{z}) = \tfrac{1}{\pi^n \det(\Gamma)}\, e^{ -(\mathbf{z}-\mathbf{\mu})^{\mathrm H} \Gamma^{-1} (\mathbf{z}-\mathbf{\mu})}
   </math>.
   </math>.


इसलिए, यदि गैर-शून्य माध्य है <math>\mu</math> और सहप्रसरण आव्यूह <math>\Gamma</math> अज्ञात हैं, एकल अवलोकन सदिश के लिए एक उपयुक्त लॉग संभावना फलन <math>z</math> होगा
इसलिए, यदि गैर-शून्य माध्य है <math>\mu</math> और सहप्रसरण आव्यूह <math>\Gamma</math> अज्ञात हैं, एकल अवलोकन सदिश के लिए एक उपयुक्त लॉग संभावना फलन <math>z</math> होगा।
: <math>
: <math>
     \ln(L(\mu,\Gamma)) = -\ln (\det(\Gamma)) -\overline{(z - \mu)}' \Gamma^{-1} (z - \mu) -n \ln(\pi).
     \ln(L(\mu,\Gamma)) = -\ln (\det(\Gamma)) -\overline{(z - \mu)}' \Gamma^{-1} (z - \mu) -n \ln(\pi).
   </math>
   </math>
मानक सम्मिश्र सामान्य (में परिभाषित) {{EquationNote|Eq.1}})एक अदिश यादृच्छिक चर के वितरण के अनुरूप है <math>\mu = 0</math>, <math>C=0</math> और <math>\Gamma=1</math>. इस प्रकार, मानक सम्मिश्र सामान्य वितरण में घनत्व होता है
मानक सम्मिश्र सामान्य (में परिभाषित) {{EquationNote|Eq.1}})एक अदिश यादृच्छिक चर के वितरण के अनुरूप है <math>\mu = 0</math>, <math>C=0</math> और <math>\Gamma=1</math>. इस प्रकार, मानक सम्मिश्र सामान्य वितरण में घनत्व होता है।


: <math>
: <math>
     f_Z(z) = \tfrac{1}{\pi} e^{-\overline{z}z} = \tfrac{1}{\pi} e^{-|z|^2}.
     f_Z(z) = \tfrac{1}{\pi} e^{-\overline{z}z} = \tfrac{1}{\pi} e^{-|z|^2}.
   </math>
   </math>
===गुण===
===गुण===
उपरोक्त अभिव्यक्ति दर्शाती है कि मामला क्यों है <math>C=0</math>, <math>\mu = 0</math> "वृत्ताकार-सममित" कहा जाता है। घनत्व फलन केवल के परिमाण पर निर्भर करता है <math>z</math> लेकिन इसके Arg (गणित) पर नहीं. इस प्रकार, परिमाण <math>|z|</math> एक मानक सम्मिश्र सामान्य यादृच्छिक चर में [[रेले वितरण]] और वर्ग परिमाण होगा <math>|z|^2</math> घातांकीय वितरण होगा, जबकि तर्क को [[समान वितरण (निरंतर)]] पर वितरित किया जाएगा <math>[-\pi,\pi]</math>.
उपरोक्त अभिव्यक्ति दर्शाती है कि मामला क्यों है <math>C=0</math>, <math>\mu = 0</math> "वृत्ताकार-सममित" कहा जाता है। घनत्व फलन केवल के परिमाण पर निर्भर करता है <math>z</math> लेकिन इसके Arg (गणित) पर नहीं. इस प्रकार, परिमाण <math>|z|</math> एक मानक सम्मिश्र सामान्य यादृच्छिक चर में [[रेले वितरण]] और वर्ग परिमाण होगा <math>|z|^2</math> घातांकीय वितरण होगा, जबकि तर्क को [[समान वितरण (निरंतर)]] पर वितरित किया जाएगा <math>[-\pi,\pi]</math>.

Revision as of 21:45, 17 July 2023

Complex normal
Parameters

location
covariance matrix (positive semi-definite matrix)

relation matrix (complex symmetric matrix)
Support
PDF complicated, see text
Mean
Mode
Variance
CF

संभाव्यता सिद्धांत में, सम्मिश्र सामान्य वितरण का वर्ग , जिसे या कहा जाता है, सम्मिश्र यादृच्छिक चर की विशेषता बताता है जिनके वास्तविक और काल्पनिक हिस्से संयुक्त रूप से सामान्य होते हैं।[1] सम्मिश्र सामान्य वर्ग में तीन पैरामीटर होते हैं: स्थान पैरामीटर μ, सहप्रसरण आव्यूह , और संबंध आव्यूह . मानक सम्मिश्र सामान्य , और के साथ एकतरफा वितरण है।

सम्मिश्र सामान्य वर्ग के एक महत्वपूर्ण उपवर्ग को वृत्ताकार-सममित (केंद्रीय) सम्मिश्र सामान्य कहा जाता है और यह शून्य संबंध आव्यूह और शून्य माध्य के मामले से मेल खाता है: और [2] [ इस मामले का उपयोग सिग्नल प्रोसेसिंग में बड़े पैमाने पर किया जाता है, जहां कभी-कभी इसे साहित्य में केवल सम्मिश्र सामान्य के रूप में संदर्भित किया जाता है।

परिभाषाएँ

सम्मिश्र मानक सामान्य यादृच्छिक चर

मानक सम्मिश्र सामान्य यादृच्छिक चर या मानक सम्मिश्र गाऊसी यादृच्छिक चर एक सम्मिश्र यादृच्छिक चर है जिसके वास्तविक और काल्पनिक भाग माध्य शून्य और विचरण के साथ स्वतंत्र सामान्य रूप से वितरित यादृच्छिक चर हैं।[3]औपचारिक रूप से,

 

 

 

 

(Eq.1)

जहाँ यह दर्शाता है एक मानक सम्मिश्र सामान्य यादृच्छिक चर है।

सम्मिश्र सामान्य यादृच्छिक चर

मान लीजिए कि और वास्तविक यादृच्छिक चर हैं, जैसे कि एक 2-आयामी सामान्य यादृच्छिक सदिश है। तब सम्मिश्र यादृच्छिक चर को सम्मिश्र सामान्य यादृच्छिक चर या सम्मिश्र गाऊसी यादृच्छिक चर कहा जाता है।[3]

 

 

 

 

(Eq.2)

सम्मिश्र मानक सामान्य यादृच्छिक सदिश

एक nआयामी सम्मिश्र यादृच्छिक सदिश एक सम्मिश्र मानक सामान्य यादृच्छिक सदिश या सम्मिश्र मानक गॉसियन यादृच्छिक सदिश है यदि इसके घटक स्वतंत्र हैं और वे सभी मानक सम्मिश्र सामान्य यादृच्छिक चर हैं जैसा कि ऊपर परिभाषित किया गया है।[3][4] वह एक मानक सम्मिश्र सामान्य यादृच्छिक सदिश निरूपित किया जाता है।

 

 

 

 

(Eq.3)

सम्मिश्र सामान्य यादृच्छिक सदिश

यदि और में यादृच्छिक सदिश हैं ऐसा है कि के साथ एक सामान्य यादृच्छिक सदिश है अवयव। तब हम कहते हैं कि सम्मिश्र यादृच्छिक सदिश

एक सम्मिश्र सामान्य यादृच्छिक सदिश या एक सम्मिश्र गाऊसी यादृच्छिक सदिश है।

 

 

 

 

(Eq.4)

माध्य, सहप्रसरण, और संबंध

सम्मिश्र गाऊसी वितरण को 3 मापदंडों के साथ वर्णित किया जा सकता है:[5]

जहाँ आव्यूह स्थानान्तरण को दर्शाता है , और संयुग्मी स्थानान्तरण को दर्शाता है।[3]: p. 504 [4]: pp. 500 

यहां स्थान पैरामीटर है एक nआयामी सम्मिश्र सदिश है; सहप्रसरण आव्यूह हर्मिटियन आव्यूह और ऋणेतर निश्चित है; और, संबंध आव्यूह या छद्म सहप्रसरण आव्यूह सममित आव्यूह है। सम्मिश्र सामान्य यादृच्छिक सदिश अब के रूप में दर्शाया जा सकता है।

इसके अतिरिक्त, आव्यूह और ऐसे हैं जो आव्यूह हैं

यह एक ऋणेतर निश्चितता भी है जहां , के सम्मिश्र संयुग्म को दर्शाता है।[5]

सहप्रसरण आव्यूहों के बीच संबंध

जहां तक किसी सम्मिश्र यादृच्छिक सदिश का सवाल है, आव्यूह और को अभिव्यक्ति के माध्यम से और के सहप्रसरण आव्यूहों से संबंधित किया जा सकता है

और इसके विपरीत

घनत्व फलन

सम्मिश्र सामान्य वितरण के लिए संभाव्यता घनत्व फलन की गणना इस प्रकार की जा सकती है

जहाँ और .

अभिलक्षणिक फलन

जटिल सामान्य वितरण का विशिष्ट कार्य निम्नलिखित द्वारा दिया गया है[5]

जहां तर्क एक n आयामी सम्मिश्र सदिश है।

गुण

  • यदि एक जटिल सामान्य n-सदिश है, एक m×n मैट्रिक्स है, और एक स्थिर m-सदिश है, तो रैखिक रूपांतरण को भी जटिल-सामान्य रूप से वितरित किया जाएगा:
  • यदि तो, एक सम्मिश्र सामान्य n सदिश है।
  • केंद्रीय सीमा प्रमेय। यदि तो, स्वतंत्र और समान रूप से वितरित सम्मिश्र यादृच्छिक चर हैं।
जहाँ और .
  • एक सम्मिश्र सामान्य यादृच्छिक चर का मापांक एक होयट वितरण का अनुसरण करता है।[6]

वृत्ताकार-सममित केंद्रीय मामला

परिभाषा

एक जटिल यादृच्छिक वेक्टर को गोलाकार रूप से सममित कहा जाता है यदि प्रत्येक नियतात्मक के लिए का वितरण के वितरण के बराबर होता है। [4]

केंद्रीय सामान्य सम्मिश्र यादृच्छिक सदिश जो गोलाकार रूप से सममित होते हैं, विशेष रुचि रखते हैं क्योंकि वे सहप्रसरण आव्यूह द्वारा पूरी तरह से निर्दिष्ट होते हैं।

गोलाकार-सममित (केंद्रीय) जटिल सामान्य वितरण शून्य माध्य और शून्य संबंध मैट्रिक्स के मामले से मेल खाता है, यानी और [3]: p. 507 [7]आमतौर पर इसे दर्शाया जाता है

वास्तविक और काल्पनिक भागों का वितरण

यदि गोलाकार-सममित (केंद्रीय) सम्मिश्र सामान्य है, फिर सदिश सहप्रसरण संरचना के साथ बहुभिन्नरूपी सामान्य है।

जहाँ और .

संभावना सघनता फलन

गैर विलक्षण सहप्रसरण आव्यूह के लिए , इसके वितरण को भी सरल बनाया जा सकता है[3]: p. 508 

.

इसलिए, यदि गैर-शून्य माध्य है और सहप्रसरण आव्यूह अज्ञात हैं, एकल अवलोकन सदिश के लिए एक उपयुक्त लॉग संभावना फलन होगा।

मानक सम्मिश्र सामान्य (में परिभाषित) Eq.1)एक अदिश यादृच्छिक चर के वितरण के अनुरूप है , और . इस प्रकार, मानक सम्मिश्र सामान्य वितरण में घनत्व होता है।

गुण

उपरोक्त अभिव्यक्ति दर्शाती है कि मामला क्यों है , "वृत्ताकार-सममित" कहा जाता है। घनत्व फलन केवल के परिमाण पर निर्भर करता है लेकिन इसके Arg (गणित) पर नहीं. इस प्रकार, परिमाण एक मानक सम्मिश्र सामान्य यादृच्छिक चर में रेले वितरण और वर्ग परिमाण होगा घातांकीय वितरण होगा, जबकि तर्क को समान वितरण (निरंतर) पर वितरित किया जाएगा .

यदि स्वतंत्र और समान रूप से वितरित nआयामी परिपत्र सम्मिश्र सामान्य यादृच्छिक वैक्टर हैं , फिर यादृच्छिक वर्ग मानदंड

इसमें सामान्यीकृत ची-वर्ग वितरण और यादृच्छिक आव्यूह है

के साथ सम्मिश्र विशरट वितरण है स्वतंत्रता की कोटियां। इस वितरण को घनत्व फलन द्वारा वर्णित किया जा सकता है

जहाँ , और एक है ऋणेतर-निश्चित आव्यूह।

यह भी देखें

संदर्भ

  1. Goodman (1963)
  2. bookchapter, Gallager.R, pg9.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Lapidoth, A. (2009). डिजिटल संचार में एक फाउंडेशन. Cambridge University Press. ISBN 9780521193955.
  4. 4.0 4.1 4.2 Tse, David (2005). वायरलेस संचार के मूल सिद्धांत. Cambridge University Press. ISBN 9781139444668.
  5. 5.0 5.1 5.2 Picinbono (1996)
  6. Daniel Wollschlaeger. "The Hoyt Distribution (Documentation for R package 'shotGroups' version 0.6.2)".[permanent dead link]
  7. bookchapter, Gallager.R


अग्रिम पठन