चरघातांकी आनमन: Difference between revisions
(→उदाहरण) |
(→उदाहरण) |
||
Line 32: | Line 32: | ||
===उदाहरण=== | ===उदाहरण=== | ||
कई स्थितियों में चरचरघातांकी रूप से आनत माप का | कई स्थितियों में चरचरघातांकी रूप से आनत माप का प्राचलिक रूप <math>X</math> के समान होता है। एक-आयामी उदाहरणों में सामान्य वितरण, घातीय वितरण, द्विपद वितरण और पॉइसन वितरण सम्मिलित हैं। | ||
उदाहरण के लिए, सामान्य वितरण | उदाहरण के लिए, सामान्य वितरण की स्थिति में, <math>N( \mu, \sigma ^2)</math> आनत घनत्व <math>f_\theta(x)</math> है <math>N( \mu + \theta \sigma ^2, \sigma ^2)</math> घनत्व। नीचे दी गई तालिका झुके हुए घनत्व के अधिक उदाहरण प्रदान करती है। | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 62: | Line 62: | ||
|<math>\mathrm{Gamma}\left(\frac{\kappa}{2}, \frac{2}{1-2\theta}\right)</math> | |<math>\mathrm{Gamma}\left(\frac{\kappa}{2}, \frac{2}{1-2\theta}\right)</math> | ||
|} | |} | ||
हालाँकि, कुछ वितरणों के लिए, घातीय रूप से | हालाँकि, कुछ वितरणों के लिए, घातीय रूप से आनत वितरण उसी पैरामीट्रिक समूह से संबंधित नहीं है <math>f</math>. इसका एक उदाहरण [[पेरेटो वितरण]] है <math>f(x) = \alpha /(1 + x) ^\alpha, x > 0</math>, कहाँ <math>f_\theta(x)</math> के लिए अच्छी तरह से परिभाषित है <math> \theta < 0 </math> लेकिन यह मानक वितरण नहीं है। ऐसे उदाहरणों में, यादृच्छिक परिवर्तनीय पीढ़ी हमेशा सीधी नहीं हो सकती है।<ref>Asmussen, Soren & Glynn, Peter (2007). Stochastic Simulation. Springer. pp. 164–167. {{ISBN|978-0-387-30679-7}}</ref> | ||
===फायदे=== | ===फायदे=== | ||
कई स्थितियों में, | कई स्थितियों में, आनत वितरण मूल के समान पैरामीट्रिक समूह से संबंधित होता है। यह विशेष रूप से सच है जब मूल घनत्व वितरण के [[घातीय परिवार|घातीय समूह]] से संबंधित है। यह मोंटे-कार्लो सिमुलेशन के दौरान यादृच्छिक चर पीढ़ी को सरल बनाता है। यदि यह मामला नहीं है तो घातीय आनमन अभी भी उपयोगी हो सकता है, हालांकि सामान्यीकरण संभव होना चाहिए और अतिरिक्त नमूना एल्गोरिदम की आवश्यकता हो सकती है। | ||
इसके अलावा, मूल और झुके हुए सीएफजी के बीच एक सरल संबंध मौजूद है, | इसके अलावा, मूल और झुके हुए सीएफजी के बीच एक सरल संबंध मौजूद है, | ||
Line 90: | Line 90: | ||
== गुण == | == गुण == | ||
* अगर <math>\kappa(\eta)=\log \mathrm{E}[\exp(\eta X)]</math> का सीजीएफ है <math>X</math>, फिर का सी.जी.एफ <math>\theta</math>- | * अगर <math>\kappa(\eta)=\log \mathrm{E}[\exp(\eta X)]</math> का सीजीएफ है <math>X</math>, फिर का सी.जी.एफ <math>\theta</math>-आनत <math>X</math> है | ||
::<math>\kappa_\theta(\eta) = \kappa(\theta + \eta) - \kappa(\theta).</math> :इसका मतलब यह है कि <math>i</math> | ::<math>\kappa_\theta(\eta) = \kappa(\theta + \eta) - \kappa(\theta).</math> :इसका मतलब यह है कि <math>i</math>आनत का -वाँ संचयी <math>X</math> है <math>\kappa^{(i)}(\theta)</math>. खास तौर पर झुके हुए वितरण की अपेक्षा है | ||
::<math>\mathrm{E}_\theta[X]=\tfrac{d}{d\eta}\kappa_\theta(\eta)|_{\eta=0} = \kappa'(\theta)</math>. | ::<math>\mathrm{E}_\theta[X]=\tfrac{d}{d\eta}\kappa_\theta(\eta)|_{\eta=0} = \kappa'(\theta)</math>. | ||
Line 102: | Line 102: | ||
* बार-बार झुकना योगात्मक है। यानी सबसे पहले झुकना <math>\theta_1</math> और तब <math>\theta_2</math> एक बार झुकने के समान है <math>\theta_1+\theta_2</math>. | * बार-बार झुकना योगात्मक है। यानी सबसे पहले झुकना <math>\theta_1</math> और तब <math>\theta_2</math> एक बार झुकने के समान है <math>\theta_1+\theta_2</math>. | ||
* अगर <math>X</math> स्वतंत्र, लेकिन जरूरी नहीं कि समान यादृच्छिक चर का योग है <math>X_1, X_2, \dots</math>, फिर <math>\theta</math>- का | * अगर <math>X</math> स्वतंत्र, लेकिन जरूरी नहीं कि समान यादृच्छिक चर का योग है <math>X_1, X_2, \dots</math>, फिर <math>\theta</math>- का आनत वितरण <math>X</math> का योग है <math>X_1, X_2, \dots</math> प्रत्येक <math>\theta</math>-व्यक्तिगत रूप से आनत. | ||
* अगर <math>\mu=\mathrm{E}[X]</math>, तब <math>\kappa(\theta)-\theta \mu</math> कुल्बैक-लीब्लर विचलन है | * अगर <math>\mu=\mathrm{E}[X]</math>, तब <math>\kappa(\theta)-\theta \mu</math> कुल्बैक-लीब्लर विचलन है |
Revision as of 06:28, 18 July 2023
चरघातांकी आनमन (ET), चरघातांकी व्यावर्तन, या चरघातांकी माप का परिवर्तन (ECM) एक वितरण स्थानांतरण तकनीक है जिसका उपयोग गणित के कई हिस्सों में किया जाता है। एक यादृच्छिक चर के विभिन्न चरघातांकी आनमन को के प्राकृतिक घातीय समूह के रूप में जाना जाता है।
चरघातांकी आनमन का उपयोग मोंटे कार्लो अनुमान में दुर्लभ-घटना अनुकरण और विशेष रूप से अस्वीकृति और महत्व प्रतिदर्श के लिए किया जाता है। गणितीय वित्त में [1] चरघातांकी आनमन को एस्चेर आनमन (या एस्चर परिवर्तन) के रूप में भी जाना जाता है, और इसे प्रायः अप्रत्यक्ष एजवर्थ श्रृंखला के साथ जोड़ा जाता है और इसका उपयोग बीमा वायदा मूल्य निर्धारण जैसे संदर्भों में किया जाता है।[2]
चरघातांकी आनमन की प्रारंभिक औपचारिकता का श्रेय प्रायः एस्चेर को दिया जाता है[3] जबकि महत्व प्रतिदर्श में इसके उपयोग का श्रेय डेविड सिगमंड को दिया जाता है।[4]
अवलोकन
प्रायिकता वितरण , घनत्व , और आघुर्णजनक फलन (एमजीएफ) के साथ एक यादृच्छिक चर को देखते हुए, चरघातांकी रूप से आनत माप को इस प्रकार परिभाषित किया गया है,
जहां संचयी जनक फलन (सीजीएफ) है जिसे
- के रूप में परिभाषित किया गया है।
हम को -का आनत घनत्व कहते हैं। यह . को संतुष्ट करता है।
एक यादृच्छिक सदिश के घातीय आनमन की एक समान परिभाषा है,
जहां दिया गया है।
उदाहरण
कई स्थितियों में चरचरघातांकी रूप से आनत माप का प्राचलिक रूप के समान होता है। एक-आयामी उदाहरणों में सामान्य वितरण, घातीय वितरण, द्विपद वितरण और पॉइसन वितरण सम्मिलित हैं।
उदाहरण के लिए, सामान्य वितरण की स्थिति में, आनत घनत्व है घनत्व। नीचे दी गई तालिका झुके हुए घनत्व के अधिक उदाहरण प्रदान करती है।
Original distribution[5][6] | θ-Tilted distribution |
---|---|
हालाँकि, कुछ वितरणों के लिए, घातीय रूप से आनत वितरण उसी पैरामीट्रिक समूह से संबंधित नहीं है . इसका एक उदाहरण पेरेटो वितरण है , कहाँ के लिए अच्छी तरह से परिभाषित है लेकिन यह मानक वितरण नहीं है। ऐसे उदाहरणों में, यादृच्छिक परिवर्तनीय पीढ़ी हमेशा सीधी नहीं हो सकती है।[7]
फायदे
कई स्थितियों में, आनत वितरण मूल के समान पैरामीट्रिक समूह से संबंधित होता है। यह विशेष रूप से सच है जब मूल घनत्व वितरण के घातीय समूह से संबंधित है। यह मोंटे-कार्लो सिमुलेशन के दौरान यादृच्छिक चर पीढ़ी को सरल बनाता है। यदि यह मामला नहीं है तो घातीय आनमन अभी भी उपयोगी हो सकता है, हालांकि सामान्यीकरण संभव होना चाहिए और अतिरिक्त नमूना एल्गोरिदम की आवश्यकता हो सकती है।
इसके अलावा, मूल और झुके हुए सीएफजी के बीच एक सरल संबंध मौजूद है,
- इसका अवलोकन हम कर सकते हैं
- इस प्रकार,
- .
स्पष्ट रूप से, यह संबंध झुके हुए वितरण के सीजीएफ और इस प्रकार वितरण क्षणों की आसान गणना की अनुमति देता है। इसके अलावा, इसका परिणाम संभावना अनुपात का एक सरल रूप है। विशेष रूप से,
- .
गुण
- अगर का सीजीएफ है , फिर का सी.जी.एफ -आनत है
- :इसका मतलब यह है कि आनत का -वाँ संचयी है . खास तौर पर झुके हुए वितरण की अपेक्षा है
- .
- झुके हुए वितरण का विचरण है
- .
- बार-बार झुकना योगात्मक है। यानी सबसे पहले झुकना और तब एक बार झुकने के समान है .
- अगर स्वतंत्र, लेकिन जरूरी नहीं कि समान यादृच्छिक चर का योग है , फिर - का आनत वितरण का योग है प्रत्येक -व्यक्तिगत रूप से आनत.
- अगर , तब कुल्बैक-लीब्लर विचलन है
- :झुके हुए वितरण के बीच और मूल वितरण का .
- इसी प्रकार, चूँकि , हमारे पास कुल्बैक-लीब्लर विचलन है
- .
अनुप्रयोग
दुर्लभ-घटना अनुकरण
का घातीय आनमन यह मानते हुए कि यह अस्तित्व में है, वितरण के एक समूह की आपूर्ति करता है जिसका उपयोग अस्वीकृति नमूने के लिए प्रस्ताव वितरण के रूप में किया जा सकता है। स्वीकृति-अस्वीकृति नमूनाकरण या महत्व नमूने के लिए महत्व वितरण। एक सामान्य अनुप्रयोग डोमेन के उप-क्षेत्र पर सशर्त वितरण से नमूना लेना है, अर्थात। . के उचित विकल्प के साथ , से नमूनाकरण नमूने की आवश्यक मात्रा या अनुमानक के विचरण को सार्थक रूप से कम कर सकता है।
सैडलपॉइंट सन्निकटन
सैडलपॉइंट सन्निकटन विधि एक घनत्व सन्निकटन पद्धति है जिसका उपयोग प्रायः स्वतंत्र, समान रूप से वितरित यादृच्छिक चर के योग और औसत के वितरण के लिए किया जाता है जो एडगेवर्थ श्रृंखला को नियोजित करता है, लेकिन जो आम तौर पर चरम मूल्यों पर बेहतर प्रदर्शन करता है। प्राकृतिक घातीय समूह की परिभाषा से, यह इस प्रकार है
- .
के लिए एजवर्थ श्रृंखला को लागू करना , अपने पास
कहाँ का मानक सामान्य घनत्व है
- ,
- ,
और हर्मिट बहुपद हैं.
के मूल्यों पर विचार करते समय वितरण के केंद्र से उत्तरोत्तर दूर, और यह शर्तें असीमित हो जाती हैं। हालाँकि, प्रत्येक मान के लिए , हम चुन सकते हैं ऐसा है कि
का यह मान इसे सैडल-पॉइंट के रूप में जाना जाता है, और उपरोक्त विस्तार का मूल्यांकन हमेशा झुके हुए वितरण की अपेक्षा पर किया जाता है। इस विकल्प का द्वारा दिए गए सन्निकटन के अंतिम प्रतिनिधित्व की ओर ले जाता है
अस्वीकृति नमूनाकरण
झुके हुए वितरण का उपयोग करना प्रस्ताव के रूप में, अस्वीकृति नमूनाकरण एल्गोरिदम से नमूनाकरण निर्धारित करता है और संभाव्यता के साथ स्वीकार करना
- कहाँ
अर्थात् एक समान रूप से वितरित यादृच्छिक चर उत्पन्न होता है, और से नमूना स्वीकार किया जाता है यदि
महत्वपूर्ण नमूनाकरण
घातीय रूप से झुके हुए वितरण को महत्व वितरण के रूप में लागू करने से समीकरण प्राप्त होता है
- ,
कहाँ
संभाव्यता फलन है. तो, से एक नमूना महत्व वितरण के अंतर्गत संभाव्यता का अनुमान लगाना और फिर इसे संभावना अनुपात से गुणा कर देता है। इसके अलावा, हमारे पास इसके द्वारा दिया गया विचरण है
- .
उदाहरण
स्वतंत्र और समान रूप से वितरित मान लें ऐसा है कि . अनुमान लगाने के लिए , हम महत्व का नमूना लेकर उसे नियोजित कर सकते हैं
- .
अटल के रूप में पुनः लिखा जा सकता है किसी अन्य स्थिरांक के लिए . तब,
- ,
कहाँ को दर्शाता है सैडल-पॉइंट समीकरण द्वारा परिभाषित
- .
स्टोकेस्टिक प्रक्रियाएं
एक सामान्य आर.वी. के आनमन को देखते हुए, यह सहज है कि घातीय आनमन , बहाव के साथ एक एक प्रकार कि गति और विचरण , बहाव के साथ एक ब्राउनियन गति है और विचरण . इस प्रकार, बहाव के साथ कोई भी ब्राउनियन गति बिना किसी बहाव के ब्राउनियन गति के रूप में सोचा जा सकता है . इसे देखने के लिए प्रक्रिया पर विचार करें . . संभाव्यता अनुपात पद, , एक मार्टिंगेल (संभावना सिद्धांत) है और आमतौर पर निरूपित किया जाता है . इस प्रकार, बहाव प्रक्रिया के साथ एक ब्राउनियन गति (साथ ही ब्राउनियन निस्पंदन के लिए अनुकूलित कई अन्य निरंतर प्रक्रियाएं) एक है -मार्टिंगेल.[10][11]
स्टोकेस्टिक विभेदक समीकरण
उपरोक्त स्टोकेस्टिक विभेदक समीकरण के वैकल्पिक प्रतिनिधित्व की ओर ले जाता है : , कहाँ = . गिरसानोव का फॉर्मूला संभावना अनुपात बताता है . इसलिए, गिरसानोव के फॉर्मूला का उपयोग कुछ एसडीई के लिए महत्व के नमूने को लागू करने के लिए किया जा सकता है।
किसी प्रक्रिया का अनुकरण करने के लिए आनमन भी उपयोगी हो सकता है एसडीई के अस्वीकृति नमूने के माध्यम से . हम एसडीई पर ध्यान केंद्रित कर सकते हैं क्योंकि हम यह जानते हैं लिखा जा सकता है . जैसा कि पहले कहा गया है, बहाव के साथ ब्राउनियन गति को बहाव के बिना ब्राउनियन गति में झुकाया जा सकता है। इसलिए, हम चुनते हैं . संभाव्यता अनुपात . इस संभावना अनुपात को दर्शाया जाएगा . यह सुनिश्चित करने के लिए कि यह एक वास्तविक संभावना अनुपात है, इसे दिखाया जाना चाहिए . यह स्थिति मानते हुए, यह दिखाया जा सकता है . इसलिए, अस्वीकृति नमूनाकरण निर्धारित करता है कि एक मानक ब्राउनियन गति से नमूना लें और संभाव्यता के साथ स्वीकार करें .
आनमन पैरामीटर का विकल्प
सिगमंड का एल्गोरिदम
मान लीजिए आई.आई.डी. एक्स लाइट टेल्ड डिस्ट्रीब्यूशन के साथ और . अनुमान लगाने के लिए कहाँ , कब बड़ा है और इसलिए छोटा, एल्गोरिथ्म महत्व वितरण प्राप्त करने के लिए घातीय आनमन का उपयोग करता है। एल्गोरिदम का उपयोग कई पहलुओं में किया जाता है, जैसे अनुक्रमिक परीक्षण,[12] जी/जी/1 कतार प्रतीक्षा समय, और बर्बाद सिद्धांत में अंतिम बर्बादी की संभावना के रूप में उपयोग किया जाता है। इस संदर्भ में, यह सुनिश्चित करना तर्कसंगत है . कसौटी , कहाँ एस.टी. है इसे हासिल करता है. सिगमंड के एल्गोरिदम का उपयोग करता है , यदि यह मौजूद है, तो कहां निम्नलिखित प्रकार से परिभाषित किया गया है:
.
ऐसा दिखाया गया है सीमित सापेक्ष त्रुटि उत्पन्न करने वाला एकमात्र आनमन पैरामीटर है ().[13]
ब्लैक-बॉक्स एल्गोरिदम
हम ब्लैक बॉक्स की संरचना को जाने बिना केवल उसके इनपुट और आउटपुट को देख सकते हैं। एल्गोरिदम को इसकी संरचना पर केवल न्यूनतम जानकारी का उपयोग करना है। जब हम यादृच्छिक संख्याएँ उत्पन्न करते हैं, तो आउटपुट नहीं हो सकता है समान सामान्य पैरामीट्रिक वर्ग के भीतर, जैसे सामान्य या चरघातांकी वितरण। ईसीएम करने के लिए स्वचालित तरीके का उपयोग किया जा सकता है। होने देना आई.आई.डी. हो वितरण के साथ आर.वी ; सरलता के लिए हम मान लेते हैं . परिभाषित करना , कहाँ , . . . स्वतंत्र (0, 1) वर्दी हैं। के लिए एक यादृच्छिक रुकने का समय , . . . तब रुकने का समय w.r.t. है निस्पंदन , . . . आगे चलो वितरण का एक वर्ग बनें पर साथ और परिभाषित करें द्वारा . हम दिए गए के लिए ईसीएम के लिए एक ब्लैक-बॉक्स एल्गोरिदम परिभाषित करते हैं और दी गई कक्षा यादृच्छिक रोक समय की एक जोड़ी के रूप में वितरण का और एक मापने योग्य आर.वी. ऐसा है कि के अनुसार वितरित किया जाता है किसी के लिए . औपचारिक रूप से, हम इसे इस प्रकार लिखते हैं सभी के लिए . दूसरे शब्दों में, गेम के नियम यह हैं कि एल्गोरिदम का उपयोग किया जा सकता है से सिम्युलेटेड मान और आर.वी. तैयार करने के लिए अतिरिक्त वर्दी। से .[14]
यह भी देखें
- महत्व नमूनाकरण
- अस्वीकृति नमूनाकरण
- मोंटे कार्लो विधि
- घातीय समूह
- एस्चेर परिवर्तन
संदर्भ
- ↑ H.U. Gerber & E.S.W. Shiu (1994). "Esscher द्वारा विकल्प मूल्य निर्धारण परिवर्तन". Transactions of the Society of Actuaries. 46: 99–191.
- ↑ Cruz, Marcelo (2015). परिचालन जोखिम और बीमा विश्लेषण के मौलिक पहलू. Wiley. pp. 784–796. ISBN 978-1-118-11839-9.
- ↑ Butler, Ronald (2007). अनुप्रयोगों के साथ सैडल प्वाइंट सन्निकटन. Cambridge University Press. pp. 156. ISBN 9780521872508.
- ↑ Siegmund, D. (1976). "Importance Sampling in the Monte Carlo Study of Sequential Tests". The Annals of Statistics. 4 (4): 673–684. doi:10.1214/aos/1176343541.
- ↑ Asmussen Soren & Glynn Peter (2007). Stochastic Simulation. Springer. p. 130. ISBN 978-0-387-30679-7.
- ↑ Fuh, Cheng-Der; Teng, Huei-Wen; Wang, Ren-Her (2013). "Efficient Importance Sampling for Rare Event Simulation with Applications".
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Asmussen, Soren & Glynn, Peter (2007). Stochastic Simulation. Springer. pp. 164–167. ISBN 978-0-387-30679-7
- ↑ Butler, Ronald (2007). अनुप्रयोगों के साथ सैडल प्वाइंट सन्निकटन. Cambridge University Press. pp. 156–157. ISBN 9780521872508.
- ↑ Seeber, G.U.H. (1992). जीएलआईएम और सांख्यिकीय मॉडलिंग में प्रगति. Springer. pp. 195–200. ISBN 978-0-387-97873-4.
- ↑ Asmussen Soren & Glynn Peter (2007). स्टोकेस्टिक सिमुलेशन. Springer. p. 407. ISBN 978-0-387-30679-7.
- ↑ Steele, J. Michael (2001). स्टोकेस्टिक कैलकुलस और वित्तीय अनुप्रयोग. Springer. pp. 213–229. ISBN 978-1-4419-2862-7.
- ↑ D. Siegmund (1985) Sequential Analysis. Springer-Verlag
- ↑ Asmussen Soren & Glynn Peter, Peter (2007). स्टोकेस्टिक सिमुलेशन. Springer. pp. 164–167. ISBN 978-0-387-30679-7.
- ↑ Asmussen, Soren & Glynn, Peter (2007). Stochastic Simulation. Springer. pp. 416–420. ISBN 978-0-387-30679-7