सार्वभौमिक आवरण बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 75: Line 75:
अर्थात्, लाई ब्रैकेट भागफलन करने के लिए उपयोग किए जाने वाले तुल्यता संबंध को परिभाषित करता है। परिणाम अभी भी इकाई सहयोगी बीजगणित है, और कोई अभी भी किन्हीं दो सदस्यों का लाई ब्रैकेट ले सकता है। परिणाम की गणना करना सीधा-सीधा है, यदि कोई यह ध्यान में रखता है कि प्रत्येक अवयव <math>U(\mathfrak{g})</math> [[ सह समुच्चय |सह समुच्चय]] के रूप में समझा जा सकता है: कोई सदैव की तरह ब्रैकेट लेता है, और उस कोसेट की खोज करता है जिसमें परिणाम होता है। यह इस प्रकार का सबसे छोटा बीजगणित है; कोई भी इससे छोटी कोई चीज़ नहीं खोज सकता जो अभी भी साहचर्य बीजगणित के सिद्धांतबं का पालन करती हो।
अर्थात्, लाई ब्रैकेट भागफलन करने के लिए उपयोग किए जाने वाले तुल्यता संबंध को परिभाषित करता है। परिणाम अभी भी इकाई सहयोगी बीजगणित है, और कोई अभी भी किन्हीं दो सदस्यों का लाई ब्रैकेट ले सकता है। परिणाम की गणना करना सीधा-सीधा है, यदि कोई यह ध्यान में रखता है कि प्रत्येक अवयव <math>U(\mathfrak{g})</math> [[ सह समुच्चय |सह समुच्चय]] के रूप में समझा जा सकता है: कोई सदैव की तरह ब्रैकेट लेता है, और उस कोसेट की खोज करता है जिसमें परिणाम होता है। यह इस प्रकार का सबसे छोटा बीजगणित है; कोई भी इससे छोटी कोई चीज़ नहीं खोज सकता जो अभी भी साहचर्य बीजगणित के सिद्धांतबं का पालन करती हो।


सार्वभौमिक आवरण बीजगणित वह है जो पोइसन बीजगणित संरचना को संशोधित करने के पश्चात् टेंसर बीजगणित का अवशेष है। (यह गैर-तुच्छ कथन है; टेंसर बीजगणित की संरचना अधिक  जटिल है: अन्य बातबं के अतिरिक्त, यह [[हॉपफ बीजगणित]] है; पॉइसन बीजगणित भी इसी तरह जटिल है, जिसमें अनेक विशिष्ट गुण हैं। यह टेंसर बीजगणित के साथ संगत है, और इसलिए मॉडिंग किया जा सकता है। हॉपफ बीजगणित संरचना संरक्षित है; यही वह है जो इसके अनेक उपन्यास अनुप्रयोगों की ओर ले जाती है, उदाहरण के लिए [[स्ट्रिंग सिद्धांत]] में। चूंकि, औपचारिक परिभाषा के प्रयोजनों के लिए, इनमें से कोई भी विशेष रूप से मायने नहीं रखता है।)
सार्वभौमिक आवरण बीजगणित वह है जो पोइसन बीजगणित संरचना को संशोधित करने के पश्चात् टेंसर बीजगणित का अवशेष है। (यह गैर-तुच्छ कथन है; टेंसर बीजगणित की संरचना अधिक  समष्टि है: अन्य बातबं के अतिरिक्त, यह [[हॉपफ बीजगणित]] है; पॉइसन बीजगणित भी इसी तरह समष्टि है, जिसमें अनेक विशिष्ट गुण हैं। यह टेंसर बीजगणित के साथ संगत है, और इसलिए मॉडिंग किया जा सकता है। हॉपफ बीजगणित संरचना संरक्षित है; यही वह है जो इसके अनेक उपन्यास अनुप्रयोगों की ओर ले जाती है, उदाहरण के लिए [[स्ट्रिंग सिद्धांत]] में। चूंकि, औपचारिक परिभाषा के प्रयोजनों के लिए, इनमें से कोई भी विशेष रूप से मायने नहीं रखता है।)


निर्माण थोड़ा भिन्न (किन्तु अंततः समतुल्य) विधिया से किया जा सकता है। पल के लिए उपरोक्त उठान को भूल जाइए, और इसके अतिरिक्त  दो-तरफा आदर्श {{math|''I''}} पर विचार करें  प्रपत्र के अवयवों  द्वारा उत्पन्न
निर्माण थोड़ा भिन्न (किन्तु अंततः समतुल्य) विधिया से किया जा सकता है। पल के लिए उपरोक्त उठान को भूल जाइए, और इसके अतिरिक्त  दो-तरफा आदर्श {{math|''I''}} पर विचार करें  प्रपत्र के अवयवों  द्वारा उत्पन्न
Line 176: Line 176:
<math>G_m\mathfrak{g}</math> h> फ़िल्टर्ड बीजगणित भी बनाते हैं; इसकी सीमा <math>G(\mathfrak{g})</math> है यह निस्पंदन का [[संबद्ध श्रेणीबद्ध बीजगणित]] है।
<math>G_m\mathfrak{g}</math> h> फ़िल्टर्ड बीजगणित भी बनाते हैं; इसकी सीमा <math>G(\mathfrak{g})</math> है यह निस्पंदन का [[संबद्ध श्रेणीबद्ध बीजगणित]] है।


उपरोक्त निर्माण, भागफल के उपयोग के कारण, यह दर्शाता है कि की सीमा <math>G(\mathfrak{g})</math> के लिए समरूपी है <math>U(\mathfrak{g}).</math> अधिक सामान्य सेटिंग्स में, ढीली शर्तबं के साथ, कोई ऐसा पाता है <math>S(\mathfrak{g})\to G(\mathfrak{g})</math> प्रक्षेपण है, और फिर फ़िल्टर किए गए बीजगणित के संबंधित श्रेणीबद्ध बीजगणित के लिए पीबीडब्ल्यू-प्रकार के प्रमेय प्राप्त होते हैं। इस पर जोर देने के लिए, संकेतन <math>\operatorname{gr}U(\mathfrak{g})</math> कभी-कभी के लिए प्रयोग किया जाता है <math>G(\mathfrak{g}),</math> यह याद दिलाने के लिए कि यह फ़िल्टर किया हुआ बीजगणित है।
उपरोक्त निर्माण, भागफल के उपयोग के कारण, यह दर्शाता है कि <math>G(\mathfrak{g})</math> की सीमा <math>U(\mathfrak{g})                             </math> के लिए समरूपी है और अधिक सामान्य सेटिंग्स में, ढीली शर्त के साथ, कोई ऐसा पाता है जो कि <math>S(\mathfrak{g})\to G(\mathfrak{g})</math> प्रक्षेपण है, और फिर फ़िल्टर किए गए बीजगणित के संबंधित श्रेणीबद्ध बीजगणित के लिए पीबीडब्ल्यू-प्रकार के प्रमेय प्राप्त होते हैं। इस पर जोर देने के लिए, संकेतन <math>\operatorname{gr}U(\mathfrak{g})</math> का उपयोग कभी-कभी <math>G(\mathfrak{g}),</math> के लिए प्रयोग किया जाता है  यह याद दिलाने के लिए कि यह फ़िल्टर किया हुआ बीजगणित है।


===अन्य बीजगणित                                                                                      ===
===`अन्य बीजगणित                                                                                      ===
जॉर्डन बीजगणित पर प्रयुक्त प्रमेय, सममित बीजगणित के अतिरिक्त  बाहरी बीजगणित उत्पन्न करता है। संक्षेप में, निर्माण विरोधी कम्यूटेटर को शून्य कर देता है। परिणामी बीजगणित आवरण बीजगणित है, किन्तु सार्वभौमिक नहीं है। जैसा कि ऊपर उल्लेख किया गया है, यह असाधारण जॉर्डन बीजगणित को कवर करने में विफल रहता है।
जॉर्डन बीजगणित पर प्रयुक्त प्रमेय, सममित बीजगणित के अतिरिक्त  बाहरी बीजगणित उत्पन्न करता है। संक्षेप में, निर्माण विरोधी कम्यूटेटर को शून्य कर देता है। परिणामी बीजगणित आवरण बीजगणित है, किन्तु सार्वभौमिक नहीं है। जैसा कि ऊपर उल्लेख किया गया है, यह असाधारण जॉर्डन बीजगणित को कवर करने में विफल रहता है।


==वाम-अपरिवर्तनीय अंतर ऑपरेटर==
==वाम-अपरिवर्तनीय अंतर ऑपरेटर==
कल्पना करना <math>G</math> लाई बीजगणित के साथ वास्तविक लाई समूह है <math>\mathfrak{g}</math>. आधुनिक दृष्टिकोण अपनाकर हम पहचान सकते हैं <math>\mathfrak{g}</math> बाएं-अपरिवर्तनीय सदिश फ़ील्ड के स्थान के साथ (अर्थात, प्रथम-क्रम बाएं-अपरिवर्तनीय अंतर ऑपरेटर)। विशेष रूप से, यदि हम प्रारंभ में सोचते हैं <math>\mathfrak{g}</math> स्पर्शरेखा स्थान के रूप में <math>G</math> पहचान पर, फिर प्रत्येक सदिश में <math>\mathfrak{g}</math> अद्वितीय वाम-अपरिवर्तनीय विस्तार है। फिर हम संबंधित बाएं-अपरिवर्तनीय सदिश क्षेत्र के साथ स्पर्शरेखा स्थान में सदिश की पहचान करते हैं। अभी, दो बाएं-अपरिवर्तनीय सदिश फ़ील्ड का कम्यूटेटर (अंतर ऑपरेटर के रूप में) फिर से सदिश फ़ील्ड है और फिर से बाएं-अपरिवर्तनीय है। फिर हम ब्रैकेट ऑपरेशन को परिभाषित कर सकते हैं <math>\mathfrak{g}</math> संबंधित वाम-अपरिवर्तनीय सदिश फ़ील्ड पर कम्यूटेटर के रूप में।<ref>E.g. {{harvnb|Helgason|2001}} Chapter II, Section 1</ref> यह परिभाषा लाई समूह के लाई बीजगणित पर ब्रैकेट संरचना की किसी भी अन्य मानक परिभाषा से सहमत है।
मान लीजिए  <math>G</math> लाई बीजगणित के साथ वास्तविक लाई समूह <math>\mathfrak{g}</math> है आधुनिक दृष्टिकोण अपनाकर हम पहचान सकते हैं कि <math>\mathfrak{g}</math> बाएं-अपरिवर्तनीय सदिश क्षेत्र के स्थान के साथ (अर्थात, प्रथम-क्रम बाएं-अपरिवर्तनीय अंतर ऑपरेटर)। विशेष रूप से, यदि हम प्रारंभ में पहचान पर <math>\mathfrak{g}</math> को <math>G</math> स्पर्शरेखा स्थान के रूप में सोचते हैं    , फिर <math>\mathfrak{g}</math> प्रत्येक सदिश में  अद्वितीय वाम-अपरिवर्तनीय विस्तार है। फिर हम संबंधित बाएं-अपरिवर्तनीय सदिश क्षेत्र के साथ स्पर्शरेखा स्थान में सदिश की पहचान करते हैं। अभी, दो बाएं-अपरिवर्तनीय सदिश क्षेत्र का कम्यूटेटर (अंतर ऑपरेटर के रूप में) फिर से सदिश क्षेत्र है और फिर से बाएं-अपरिवर्तनीय है। फिर हम <math>\mathfrak{g}</math> ब्रैकेट ऑपरेशन को परिभाषित कर सकते हैं  संबंधित वाम-अपरिवर्तनीय सदिश क्षेत्र पर कम्यूटेटर के रूप में।<ref>E.g. {{harvnb|Helgason|2001}} Chapter II, Section 1</ref> यह परिभाषा लाई समूह के लाई बीजगणित पर ब्रैकेट संरचना की किसी भी अन्य मानक परिभाषा से सहमत है।


फिर हम इच्छानुसार क्रम के वाम-अपरिवर्तनीय अंतर संचालकों पर विचार कर सकते हैं। ऐसे हर ऑपरेटर <math>A</math> बाएं-अपरिवर्तनीय सदिश फ़ील्ड के उत्पादों के रैखिक संयोजन के रूप में (गैर-विशिष्ट रूप से) व्यक्त किया जा सकता है। सभी वाम-अपरिवर्तनीय अंतर संचालकों का संग्रह चालू है <math>G</math> बीजगणित बनाता है, निरूपित <math>D(G)</math>. ऐसा दिखाया जा सकता है <math>D(G)</math> सार्वभौमिक आवरण बीजगणित के समरूपी है <math>U(\mathfrak{g})</math>.<ref>{{harvnb|Helgason|2001}} Chapter II, Proposition 1.9</ref>
फिर हम इच्छानुसार क्रम के वाम-अपरिवर्तनीय अंतर संचालकों पर विचार कर सकते हैं। ऐसे हर ऑपरेटर <math>A</math> को बाएं-अपरिवर्तनीय सदिश क्षेत्र के उत्पादों के रैखिक संयोजन के रूप में (गैर-विशिष्ट रूप से) व्यक्त किया जा सकता है। <math>G</math> पर सभी वाम-अपरिवर्तनीय अंतर संचालकों का संग्रह बीजगणित बनाता है, जिसे <math>D(G)</math> दर्शाया गया है। . ऐसा दिखाया जा सकता है <math>D(G)</math> सार्वभौमिक आवरण बीजगणित <math>U(\mathfrak{g})</math> के समरूपी है .<ref>{{harvnb|Helgason|2001}} Chapter II, Proposition 1.9</ref>
उस स्तिथियां में <math>\mathfrak{g}</math> वास्तविक लाई समूह के लाई बीजगणित के रूप में उत्पन्न होता है, कोई पोंकारे-बिरखॉफ-विट प्रमेय का विश्लेषणात्मक प्रमाण देने के लिए बाएं-अपरिवर्तनीय अंतर संचालकों का उपयोग कर सकता है। विशेष रूप से, बीजगणित <math>D(G)</math> बाएं-अपरिवर्तनीय अंतर संचालकों का निर्माण उन अवयवों  (बाएं-अपरिवर्तनीय सदिश फ़ील्ड) द्वारा किया जाता है जो कम्यूटेशन संबंधों को संतुष्ट करते हैं <math>\mathfrak{g}</math>. इस प्रकार, आवरण बीजगणित की सार्वभौमिक संपत्ति द्वारा, <math>D(G)</math> का भागफल है <math>U(\mathfrak{g})</math>. इस प्रकार, यदि PBW आधार अवयव रैखिक रूप से स्वतंत्र हैं <math>D(G)</math>-जिसे कोई विश्लेषणात्मक रूप से स्थापित कर सकता है - उन्हें निश्चित रूप से रैखिक रूप से स्वतंत्र होना चाहिए <math>U(\mathfrak{g})</math>. (और, इस बिंदु पर, की समरूपता <math>D(G)</math> साथ <math>U(\mathfrak{g})</math> स्पष्ट है।)


==प्रतीकों का बीजगणित==
उस स्तिथियां में  वास्तविक लाई समूह के लाई बीजगणित के रूप में <math>\mathfrak{g}</math> उत्पन्न होता है, कोई पोंकारे-बिरखॉफ-विट प्रमेय का विश्लेषणात्मक प्रमाण देने के लिए बाएं-अपरिवर्तनीय अंतर संचालकों का उपयोग कर सकता है। विशेष रूप से, बाएं-अपरिवर्तनीय अंतर संचालकों का बीजगणित <math>D(G)</math> निर्माण उन अवयवों  (बाएं-अपरिवर्तनीय सदिश फ़ील्ड) द्वारा उत्पन्न किया जाता है जो <math>\mathfrak{g}</math> कम्यूटेशन संबंधों को संतुष्ट करते हैं . इस प्रकार, आवरण बीजगणित की सार्वभौमिक संपत्ति के अनुसार <math>D(G)</math> <math>U(\mathfrak{g})</math> का भागफल होता है . इस प्रकार, यदि पीबीडब्लू आधार अवयव <math>D(G)</math>में रैखिक रूप से स्वतंत्र हैं -जिसे कोई विश्लेषणात्मक रूप से स्थापित कर सकता है - उन्हें निश्चित रूप से रैखिक रूप से <math>U(\mathfrak{g})</math> स्वतंत्र होना चाहिए . (और, इस बिंदु पर, की समरूपता <math>D(G)</math> साथ <math>U(\mathfrak{g})</math> स्पष्ट है।)
का अंतर्निहित सदिश स्थान <math>S(\mathfrak{g})</math> नई बीजगणित संरचना दी जा सकती है जिससे कि <math>U(\mathfrak{g})</math> और <math>S(\mathfrak{g})</math> साहचर्य बीजगणित के रूप में समरूपी हैं। इससे 'प्रतीकों के बीजगणित' की अवधारणा सामने आती है <math>\star(\mathfrak{g})</math>: [[सममित बहुपद]]ों का स्थान, गुणनफल से संपन्न <math>\star</math>, जो लाई बीजगणित की बीजगणितीय संरचना को अन्यथा मानक साहचर्य बीजगणित पर रखता है। अर्थात्, जिसे पीबीडब्ल्यू प्रमेय अस्पष्ट करता है (कम्यूटेशन संबंध), प्रतीकों का बीजगणित उसे सुर्खियों में पुनर्स्थापित करता है।


बीजगणित के अवयवों  को लेकर प्राप्त किया जाता है <math>S(\mathfrak{g})</math> और प्रत्येक जनरेटर को बदलना <math>e_i</math> अनिश्चित, आवागमनशील चर द्वारा <math>t_i</math> सममित बहुपदों का स्थान प्राप्त करने के लिए <math>K[t_i]</math> मैदान के ऊपर <math>K</math>. वास्तव में, पत्राचार तुच्छ है: कोई केवल प्रतीक को प्रतिस्थापित करता है <math>t_i</math> के लिए <math>e_i</math>. परिणामी बहुपद को इसके संगत अवयव का प्रतीक कहा जाता है <math>S(\mathfrak{g})</math>. उलटा नक्शा है
==प्रतीकों का बीजगणित                                                                       ==
<math>S(\mathfrak{g})</math> का अंतर्निहित सदिश स्थान  नई बीजगणित संरचना दी जा सकती है जिससे कि <math>U(\mathfrak{g})</math> और <math>S(\mathfrak{g})</math> साहचर्य बीजगणित के रूप में समरूपी हैं। इससे 'प्रतीकों के बीजगणित' की अवधारणा सामने आती है <math>\star(\mathfrak{g})</math> [[सममित बहुपद|सममित बहुपदो]] का स्थान, गुणनफल <math>\star</math> से संपन्न , जो लाई बीजगणित की बीजगणितीय संरचना को अन्यथा मानक साहचर्य बीजगणित पर रखता है। अर्थात्, जिसे पीबीडब्ल्यू प्रमेय अस्पष्ट करता है (कम्यूटेशन संबंध), प्रतीकों का बीजगणित उसे सुर्खियों में पुनर्स्थापित करता है।
 
बीजगणित <math>S(\mathfrak{g})</math> के अवयवों  को लेकर प्राप्त किया जाता है  और प्रत्येक जनरेटर <math>e_i</math> को बदलना अनिश्चित,आवागमनशील वेरिएबल <math>t_i</math> को बदलकर क्षेत्र <math>K</math> पर सममित बहुपद <math>K[t_i]</math> का स्थान प्राप्त करने के द्वारा प्राप्त किया जाता है। वास्तव में, पत्राचार तुच्छ है: कोई केवल <math>e_i</math> के लिए प्रतीक <math>t_i</math> को प्रतिस्थापित करता है  . परिणामी बहुपद को <math>S(\mathfrak{g})</math> इसके संगत अवयव का प्रतीक कहा जाता है जो कि उलटा नक्शा है
:<math>w: \star(\mathfrak{g})\to U(\mathfrak{g})</math>
:<math>w: \star(\mathfrak{g})\to U(\mathfrak{g})</math>
जो प्रत्येक प्रतीक को प्रतिस्थापित करता है <math>t_i</math> द्वारा <math>e_i</math>. बीजगणितीय संरचना उस उत्पाद की आवश्यकता के द्वारा प्राप्त की जाती है <math>\star</math> समरूपता के रूप में कार्य करें, अर्थात, जिससे कि
जो प्रत्येक प्रतीक <math>t_i</math> द्वारा <math>e_i</math>को प्रतिस्थापित करता है . बीजगणितीय संरचना उस उत्पाद की आवश्यकता के द्वारा प्राप्त की जाती है <math>\star</math> समरूपता के रूप में कार्य करें, अर्थात, जिससे कि
:<math>w(p \star q) = w(p)\otimes w(q)</math>
:<math>w(p \star q) = w(p)\otimes w(q)</math>
बहुपदों के लिए <math>p,q\in \star(\mathfrak{g}).</math>
बहुपदों के लिए <math>p,q\in \star(\mathfrak{g}).</math>
इस निर्माण के साथ प्राथमिक उद्देश्य यही है <math>w(p)\otimes w(q)</math> तुच्छ नहीं है, स्वाभाविक रूप से इसका सदस्य है <math>U(\mathfrak{g})</math>, जैसा कि लिखा गया है, और अवयव प्राप्त करने के लिए सबसे पहले आधार अवयवों  (आवश्यकतानुसार संरचना स्थिरांक को प्रयुक्त करना) का कठिन फेरबदल करना होगा <math>U(\mathfrak{g})</math> उचित रूप से क्रमबद्ध आधार पर। इस उत्पाद के लिए स्पष्ट अभिव्यक्ति दी जा सकती है: यह बेरेज़िन सूत्र है।<ref>{{cite journal | last1 = Berezin | first1 = F.A. | author-link = Felix Berezin | year = 1967 | title = लाई बीजगणित के संबंधित लिफ़ाफ़े के बारे में कुछ टिप्पणियाँ| journal = Funct. Anal. Appl. | volume = 1 | issue = 2| page = 91 | doi=10.1007/bf01076082}}</ref> यह अनिवार्य रूप से लाई समूह के दो अवयवों  के उत्पाद के लिए बेकर-कैंपबेल-हॉसडॉर्फ सूत्र का अनुसरण करता है।


एक बंद रूप अभिव्यक्ति द्वारा दिया गया है<ref>Xavier Bekaert, "[http://www.ulb.ac.be/sciences/ptm/pmif/Rencontres/ModaveI/Xavier.pdf Universal enveloping algebras and some applications in physics]" (2005) ''Lecture, Modave Summer School in Mathematical Physics''.</ref>
इस निर्माण के साथ प्राथमिक उद्देश्य यही है जैसा कि लिखा गया है <math>w(p)\otimes w(q)</math>  तुच्छ रूप से तथा स्वाभाविक रूप से <math>U(\mathfrak{g})</math> इसका सदस्य नहीं है, , , और उचित रूप से क्रमबद्ध आधार में <math>U(\mathfrak{g})</math> का अवयव प्राप्त करने के लिए सबसे पहले आधार अवयवों  (आवश्यकतानुसार संरचना स्थिरांक को प्रयुक्त करना) का कठिन परिवर्तन  करना होगा  । इस उत्पाद के लिए स्पष्ट अभिव्यक्ति दी जा सकती है: यह बेरेज़िन सूत्र है।<ref>{{cite journal | last1 = Berezin | first1 = F.A. | author-link = Felix Berezin | year = 1967 | title = लाई बीजगणित के संबंधित लिफ़ाफ़े के बारे में कुछ टिप्पणियाँ| journal = Funct. Anal. Appl. | volume = 1 | issue = 2| page = 91 | doi=10.1007/bf01076082}}</ref> यह अनिवार्य रूप से लाई समूह के दो अवयवों  के उत्पाद के लिए बेकर-कैंपबेल-हॉसडॉर्फ सूत्र का अनुसरण करता है।
 
एक संवर्त रूप अभिव्यक्ति द्वारा दिया गया है<ref>Xavier Bekaert, "[http://www.ulb.ac.be/sciences/ptm/pmif/Rencontres/ModaveI/Xavier.pdf Universal enveloping algebras and some applications in physics]" (2005) ''Lecture, Modave Summer School in Mathematical Physics''.</ref>
:<math>p(t)\star q(t)= \left. \exp\left(t_i  
:<math>p(t)\star q(t)= \left. \exp\left(t_i  
m^i \left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v} \right)
m^i \left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v} \right)
Line 208: Line 210:


==प्रतिनिधित्व सिद्धांत==
==प्रतिनिधित्व सिद्धांत==
सार्वभौमिक आवरण बीजगणित प्रतिनिधित्व सिद्धांत को संरक्षित करता है: लाई बीजगणित का प्रतिनिधित्व <math>\mathfrak{g}</math> [[मॉड्यूल (गणित)]] के ऊपर एक-से-एक विधिया से मेल करें <math>U(\mathfrak{g})</math>. अधिक अमूर्त शब्दों में, लाई बीजगणित के सभी प्रतिनिधित्व की [[एबेलियन श्रेणी]] <math>\mathfrak{g}</math> सभी बाएँ मॉड्यूल की एबेलियन श्रेणी के लिए [[श्रेणियों की समरूपता]] है <math>U(\mathfrak{g})</math>.
सार्वभौमिक आवरण बीजगणित प्रतिनिधित्व सिद्धांत को संरक्षित करता है: लाई बीजगणित का प्रतिनिधित्व <math>\mathfrak{g}</math> [[मॉड्यूल (गणित)]] के ऊपर एक-से-एक विधिया <math>U(\mathfrak{g})</math> से मेल करें. अधिक अमूर्त शब्दों में, लाई बीजगणित के सभी प्रतिनिधित्व की [[एबेलियन श्रेणी]] <math>\mathfrak{g}</math> सभी बाएँ मॉड्यूल की एबेलियन श्रेणी के लिए [[श्रेणियों की समरूपता]] <math>U(\mathfrak{g})</math> है .


अर्धसरल लाई बीजगणित का प्रतिनिधित्व सिद्धांत इस अवलोकन पर आधारित है कि समरूपता है, जिसे [[क्रोनकर गुणांक]] के रूप में जाना जाता है:
अर्धसरल लाई बीजगणित का प्रतिनिधित्व सिद्धांत इस अवलोकन पर आधारित है कि समरूपता है, जिसे [[क्रोनकर गुणांक]] के रूप में जाना जाता है:
Line 217: Line 219:
जहाँ  
जहाँ  
:<math>i:\mathfrak{g}\to U(\mathfrak{g})</math>
:<math>i:\mathfrak{g}\to U(\mathfrak{g})</math>
केवल विहित एम्बेडिंग है (क्रमशः बीजगणित और दो के लिए सबस्क्रिप्ट के साथ)। ऊपर दिए गए नुस्खे के अनुसार, यह सत्यापित करना सीधा है कि यह एम्बेडिंग ऊपर उठती है। चूँकि, ऐसा करने के कुछ उत्तम बिंदुओं की समीक्षा के लिए टेंसर अलजेब्रा पर लेख में बायलजेब्रा संरचना की चर्चा देखें: विशेष रूप से, वहां नियोजित शफ़ल उत्पाद विग्नर-राका गुणांक, अर्थात [[6j-प्रतीक]] से मेल खाता है। और 9j-प्रतीक, आदि।
केवल विहित एम्बेडिंग है (क्रमशः बीजगणित और दो के लिए सबस्क्रिप्ट के साथ)। ऊपर दिए गए नुस्खे के अनुसार, यह सत्यापित करना सीधा है कि यह एम्बेडिंग ऊपर उठती है। चूँकि, ऐसा करने के कुछ उत्तम बिंदुओं की समीक्षा के लिए टेंसर बीजगणित पर लेख में बायलजेब्रा संरचना की चर्चा देखें: विशेष रूप से, वहां नियोजित शफ़ल उत्पाद विग्नर-राका गुणांक, अर्थात [[6j-प्रतीक|6j-प्रतीक और 9j-प्रतीक]] आदि से मेल खाता है। ,


यह भी महत्वपूर्ण है कि मुक्त लाई बीजगणित का सार्वभौमिक आवरण बीजगणित [[मुक्त साहचर्य बीजगणित]] के लिए समरूपी है।
यह भी महत्वपूर्ण है कि मुक्त लाई बीजगणित का सार्वभौमिक आवरण बीजगणित [[मुक्त साहचर्य बीजगणित]] के लिए समरूपी है।
Line 223: Line 225:
अभ्यावेदन का निर्माण सामान्यतः [[उच्चतम वजन]] के वर्मा मॉड्यूल के निर्माण से होता है।
अभ्यावेदन का निर्माण सामान्यतः [[उच्चतम वजन]] के वर्मा मॉड्यूल के निर्माण से होता है।


एक विशिष्ट संदर्भ में जहां <math>\mathfrak{g}</math> अनंत सूक्ष्म परिवर्तनों द्वारा कार्य कर रहा है, के अवयव <math>U(\mathfrak{g})</math> सभी आदेशों के [[विभेदक ऑपरेटर|विभेदक]] संचालकों की तरह कार्य करें। (उदाहरण के लिए, संबंधित समूह पर बाएं-अपरिवर्तनीय अंतर संचालकों के रूप में सार्वभौमिक आवरण बीजगणित की प्राप्ति देखें, जैसा कि ऊपर चर्चा की गई है।)
एक विशिष्ट संदर्भ में जहां <math>\mathfrak{g}</math> के अवयव <math>U(\mathfrak{g})</math> अनंत सूक्ष्म परिवर्तनों द्वारा कार्य कर रहा है, सभी आदेशों के [[विभेदक ऑपरेटर|विभेदक]] संचालकों की तरह कार्य करें। (उदाहरण के लिए, संबंधित समूह पर बाएं-अपरिवर्तनीय अंतर संचालकों के रूप में सार्वभौमिक आवरण बीजगणित की प्राप्ति देखें, जैसा कि ऊपर चर्चा की गई है।)


==कैसिमिर ऑपरेटर्स==
==कैसिमिर ऑपरेटर्स==
{{See also|हरीश-चंद्र समरूपता}}
{{See also|हरीश-चंद्र समरूपता}}
[[बीजगणित का केंद्र]] <math>U(\mathfrak{g})</math> है <math>Z(U(\mathfrak{g}))</math> और के केंद्रीकरणकर्ता से पहचाना जा सकता है <math>\mathfrak{g}</math> में <math>U(\mathfrak{g}).</math> का कोई भी अवयव <math>Z(U(\mathfrak{g}))</math> सभी के साथ आना-जाना चाहिए <math>U(\mathfrak{g}),</math> और विशेष रूप से विहित एम्बेडिंग के साथ <math>\mathfrak{g}</math> में <math>U({\mathfrak {g}}).</math> इस वजह से, केंद्र सीधे तौर पर अभ्यावेदन को वर्गीकृत करने के लिए उपयोगी है <math>\mathfrak{g}</math>. परिमित-आयामी अर्धसरल लाई बीजगणित के लिए, कासिमिर ऑपरेटर केंद्र से विशिष्ट आधार बनाते हैं <math>Z(U(\mathfrak{g}))</math>. इनका निर्माण निम्नानुसार किया जा सकता है।
<math>U(\mathfrak{g})</math> [[बीजगणित का केंद्र]] <math>Z(U(\mathfrak{g}))</math> है और <math>\mathfrak{g}</math> के केंद्रीकरणकर्ता <math>\mathfrak{g}</math> में से पहचाना जा सकता है <math>U(\mathfrak{g})</math> <math>Z(U(\mathfrak{g}))</math> का कोई भी अवयव सभी <math>U(\mathfrak{g}),</math>के साथ आना-जाना चाहिए  और विशेष रूप से विहित एम्बेडिंग के साथ <math>\mathfrak{g}</math> में <math>U({\mathfrak {g}}).</math> इस वजह से, केंद्र सीधे तौर पर अभ्यावेदन को वर्गीकृत करने के लिए उपयोगी है <math>\mathfrak{g}</math>. परिमित-आयामी अर्धसरल लाई बीजगणित के लिए, कासिमिर ऑपरेटर केंद्र <math>Z(U(\mathfrak{g}))</math> से विशिष्ट आधार बनाते हैं . इनका निर्माण निम्नानुसार किया जा सकता है।


मध्य में <math>Z(U(\mathfrak{g}))</math> सभी अवयवों  के रैखिक संयोजन से मेल खाता है <math>z=v\otimes w \otimes \cdots \otimes u \in U(\mathfrak{g})</math> जो सभी अवयवों के साथ आवागमन करता है <math>x\in \mathfrak{g};</math> अर्थात, जिसके लिए <math>[z,x]=\mbox{ad}_x(z)=0.</math> अर्थात् वह के मूल में हैं <math>\mbox{ad}_\mathfrak{g}.</math> इस प्रकार, उस कर्नेल की गणना के लिए विधि  की आवश्यकता है। हमारे पास जो कुछ है वह आसन्न प्रतिनिधित्व की कार्रवाई है <math>\mathfrak{g};</math> हमें इसकी आवश्यकता है <math>U(\mathfrak{g}).</math> सबसे आसान मार्ग यह नोट करना है <math>\mbox{ad}_\mathfrak{g}</math> [[व्युत्पत्ति (अमूर्त बीजगणित)]] है, और व्युत्पत्ति के स्थान को ऊपर उठाया जा सकता है <math>T(\mathfrak{g})</math> और इस प्रकार <math>U(\mathfrak{g}).</math> इसका तात्पर्य यह है कि यहदोनों विभेदक बीजगणित हैं।
मध्य में <math>Z(U(\mathfrak{g}))</math> सभी अवयवों  <math>z=v\otimes w \otimes \cdots \otimes u \in U(\mathfrak{g})</math> के रैखिक संयोजन से मेल खाता है  जो सभी अवयवों <math>x\in \mathfrak{g};</math> के साथ आवागमन करता है  अर्थात, जिसके लिए <math>[z,x]=\mbox{ad}_x(z)=0.</math> अर्थात् वह <math>\mbox{ad}_\mathfrak{g}.</math>के मूल में हैं  इस प्रकार, उस कर्नेल की गणना के लिए विधि  की आवश्यकता है। हमारे पास <math>\mathfrak{g};</math> जो कुछ है वह आसन्न प्रतिनिधित्व की कार्रवाई है  हमें इसकी आवश्यकता <math>U(\mathfrak{g}).</math>ह ैोती ह  सबसे आसान मार्ग यह नोट करना है <math>\mbox{ad}_\mathfrak{g}</math> [[व्युत्पत्ति (अमूर्त बीजगणित)]] है, और व्युत्पत्ति के स्थान को <math>T(\mathfrak{g})</math> ऊपर उठाया जा सकता है  और इस प्रकार <math>U(\mathfrak{g}).</math> इसका तात्पर्य यह है कि यहदोनों विभेदक बीजगणित हैं।


परिभाषा से, <math>\delta:\mathfrak{g}\to\mathfrak{g}</math> पर व्युत्पत्ति है <math>\mathfrak{g}</math> यदि यह उत्पाद नियम का पालन करता है|लीबनिज़ का नियम:
 
परिभाषा से, <math>\delta:\mathfrak{g}\to\mathfrak{g}</math> पर व्युत्पत्ति <math>\mathfrak{g}</math> है यदि यह उत्पाद नियम का पालन करता है|लीबनिज़ का नियम:


:<math>\delta([v,w])=[\delta(v),w]+[v,\delta(w)]</math>
:<math>\delta([v,w])=[\delta(v),w]+[v,\delta(w)]</math>
(कब <math>\mathfrak{g}</math> समूह पर बाएँ अपरिवर्तनीय सदिश फ़ील्ड का स्थान है <math>G</math>, लाई ब्रैकेट सदिश फ़ील्ड्स का है।) लिफ्टिंग को परिभाषित करके किया जाता है
(तब  <math>\mathfrak{g}</math> समूह पर बाएँ अपरिवर्तनीय सदिश क्षेत्र <math>G</math> का स्थान है  लाई ब्रैकेट सदिश क्षेत्र का है।) लिफ्टिंग को परिभाषित करके किया जाता है
:<math>\begin{align}\delta(v\otimes w \otimes \cdots \otimes u)
:<math>\begin{align}\delta(v\otimes w \otimes \cdots \otimes u)
=& \, \delta(v) \otimes w \otimes \cdots \otimes u \\
=& \, \delta(v) \otimes w \otimes \cdots \otimes u \\
Line 245: Line 248:


:<math>C_{(m)} = \kappa^{ab\cdots c}e_a\otimes e_b\otimes \cdots\otimes e_c</math>
:<math>C_{(m)} = \kappa^{ab\cdots c}e_a\otimes e_b\otimes \cdots\otimes e_c</math>
वहां हैं जहां <math>m</math> टेंसर उत्पाद में शर्तें, और <math>\kappa^{ab\cdots c}</math> क्रम का पूर्णतः सममित टेंसर है <math>m</math> आसन्न प्रतिनिधित्व से संबंधित। वह है, <math>\kappa^{ab\cdots c}</math> के अवयव के रूप में सोचा जा सकता है (होना चाहिए)। <math>\left(\operatorname{ad}_\mathfrak{g}\right)^{\otimes m}.</math> याद रखें कि आसन्न प्रतिनिधित्व सीधे संरचना स्थिरांक द्वारा दिया जाता है, और इसलिए उपरोक्त समीकरणों का स्पष्ट अनुक्रमित रूप, ली बीजगणित आधार के संदर्भ में दिया जा सकता है; यह मूल रूप से इज़राइल गेलफैंड का प्रमेय है। अर्थात्, से <math>[x,C_{(m)}]=0</math>, यह इस प्रकार है कि
वहां हैं जहां <math>m</math> टेंसर उत्पाद में शर्तें, और <math>\kappa^{ab\cdots c}</math> क्रम का पूर्णतः सममित टेंसर <math>m</math> है आसन्न प्रतिनिधित्व से संबंधित। वह है, <math>\kappa^{ab\cdots c}</math> के अवयव के रूप में सोचा जा सकता है (होना चाहिए)। <math>\left(\operatorname{ad}_\mathfrak{g}\right)^{\otimes m}.</math> याद रखें कि आसन्न प्रतिनिधित्व सीधे संरचना स्थिरांक द्वारा दिया जाता है, और इसलिए उपरोक्त समीकरणों का स्पष्ट अनुक्रमित रूप,लाई बीजगणित आधार के संदर्भ में दिया जा सकता है; यह मूल रूप से इज़राइल गेलफैंड का प्रमेय है। अर्थात्, से <math>[x,C_{(m)}]=0</math>, यह इस प्रकार है कि


:<math>f_{ij}^{\;\; k} \kappa^{jl\cdots m}  
:<math>f_{ij}^{\;\; k} \kappa^{jl\cdots m}  
Line 253: Line 256:
जहां संरचना स्थिरांक हैं
जहां संरचना स्थिरांक हैं
:<math>[e_i,e_j]=f_{ij}^{\;\; k}e_k</math>
:<math>[e_i,e_j]=f_{ij}^{\;\; k}e_k</math>
उदाहरण के तौर पर, द्विघात कासिमिर ऑपरेटर है
उदाहरण के रूप में , द्विघात कासिमिर ऑपरेटर है
:<math>C_{(2)} = \kappa^{ij} e_i\otimes e_j</math>
:<math>C_{(2)} = \kappa^{ij} e_i\otimes e_j</math>
जहाँ  <math>\kappa^{ij}</math> [[ संहार रूप |संहार रूप]] का व्युत्क्रम आव्युह है <math>\kappa_{ij}.</math> वह कासिमिर ऑपरेटर <math>C_{(2)}</math> केंद्र का है <math>Z(U(\mathfrak{g}))</math> इस तथ्य से पता चलता है कि संयुक्त कार्रवाई के अनुसार हत्या का रूप अपरिवर्तनीय है।
जहाँ  <math>\kappa^{ij}</math> [[ संहार रूप |संहार रूप]] का व्युत्क्रम आव्युह है <math>\kappa_{ij}.</math> वह कासिमिर ऑपरेटर <math>C_{(2)}</math> केंद्र का है <math>Z(U(\mathfrak{g}))</math> इस तथ्य से पता चलता है कि संयुक्त कार्रवाई के अनुसार हत्या का रूप अपरिवर्तनीय है।
Line 259: Line 262:
एक सरल बीजगणित के सार्वभौमिक आवरण बीजगणित का केंद्र [[हरीश-चंद्र समरूपता]] द्वारा विस्तार से दिया गया है।
एक सरल बीजगणित के सार्वभौमिक आवरण बीजगणित का केंद्र [[हरीश-चंद्र समरूपता]] द्वारा विस्तार से दिया गया है।


===रैंक===
===रैंक                                                                       ===
एक परिमित-आयामी अर्धसरल लाई बीजगणित के बीजगणितीय रूप से स्वतंत्र कासिमिर संचालकों की संख्या उस बीजगणित की रैंक के सामान्तर है, अर्थात शेवेल्ली आधार | कार्टन-वेइल आधार की रैंक के सामान्तर है। इसे इस प्रकार देखा जा सकता है। के लिए {{math|''d''}}-आयामी सदिश समष्टि {{math|''V''}}, याद रखें कि निर्धारक [[पूरी तरह से एंटीसिमेट्रिक टेंसर]] है <math>V^{\otimes d}</math>. आव्युह दिया गया {{math|''M''}}, कोई इसका लक्षण बहुपद लिख सकता है {{math|''M''}} जैसा
एक परिमित-आयामी अर्धसरल लाई बीजगणित के बीजगणितीय रूप से स्वतंत्र कासिमिर संचालकों की संख्या उस बीजगणित की रैंक के सामान्तर है, अर्थात शेवेल्ली आधार | कार्टन-वेइल आधार की रैंक के सामान्तर है। इसे इस प्रकार देखा जा सकता है। के लिए {{math|''d''}}-आयामी सदिश समष्टि {{math|''V''}}, याद रखें कि निर्धारक [[पूरी तरह से एंटीसिमेट्रिक टेंसर]] है <math>V^{\otimes d}</math>. आव्युह दिया गया {{math|''M''}}, कोई इसका लक्षण बहुपद लिख सकता है {{math|''M''}} जैसा
:<math>\det(tI-M)=\sum_{n=0}^d p_nt^n</math>
:<math>\det(tI-M)=\sum_{n=0}^d p_nt^n</math>
Line 266: Line 269:
इसका आशय है <math>\operatorname{ad}_x</math> है {{math|''d''}}-आयामी एंडोमोर्फिज्म, और इसलिए विशेषता समीकरण है
इसका आशय है <math>\operatorname{ad}_x</math> है {{math|''d''}}-आयामी एंडोमोर्फिज्म, और इसलिए विशेषता समीकरण है
:<math>\det(tI-\operatorname{ad}_x)=\sum_{n=0}^d p_n(x)t^n</math>
:<math>\det(tI-\operatorname{ad}_x)=\sum_{n=0}^d p_n(x)t^n</math>
अवयवों  के लिए <math>x\in \mathfrak{g}.</math> इस विशेषता बहुपद की गैर-शून्य जड़ें (जो सभी के लिए जड़ें हैं {{math|''x''}}) बीजगणित की मूल प्रणाली बनाते हैं। सामान्यतः, वहाँ ही हैं {{math|''r''}}ऐसी जड़ें; यह बीजगणित की श्रेणी है. इसका तात्पर्य यह है कि का उच्चतम मूल्य {{math|''n''}} जिसके लिए <math>p_n(x)</math> न मिटने वाला है {{math|''r''.}} <math>p_n(x)</math> h> डिग्री के [[सजातीय बहुपद]] हैं {{math|''d''&nbsp;−&nbsp;''n''.}} इसे अनेक तरीकों से देखा जा सकता है: स्थिरांक दिया गया <math>k\in K</math>, विज्ञापन रैखिक है, इसलिए <math>\operatorname{ad}_{kx}=k\,\operatorname{ad}_x.</math> उपरोक्त में [[प्लग और चुग]] करने से व्यक्ति उसे प्राप्त कर लेता है
अवयवों  के लिए <math>x\in \mathfrak{g}.</math> इस विशेषता बहुपद की गैर-शून्य जड़ें (जो सभी के लिए जड़ें हैं {{math|''x''}}) बीजगणित की मूल प्रणाली बनाते हैं। सामान्यतः, वहाँ ही हैं {{math|''r''}} ऐसी जड़ें;है  यह बीजगणित की श्रेणी है. इसका तात्पर्य यह है कि का उच्चतम मूल्य {{math|''n''}} जिसके लिए <math>p_n(x)</math> न मिटने वाला है {{math|''r''.}} <math>p_n(x)</math> h> डिग्री के [[सजातीय बहुपद]] हैं {{math|''d''&nbsp;−&nbsp;''n''.}} इसे अनेक तरीकों से देखा जा सकता है: स्थिरांक दिया गया <math>k\in K</math>, विज्ञापन रैखिक है, इसलिए <math>\operatorname{ad}_{kx}=k\,\operatorname{ad}_x.</math> उपरोक्त में [[प्लग और चुग]] करने से व्यक्ति उसे प्राप्त कर लेता है


:<math>p_n(kx)=k^{d-n}p_n(x).</math>
:<math>p_n(kx)=k^{d-n}p_n(x).</math>
Line 275: Line 278:
वह <math>\kappa</math> रैंक का टेंसर है <math>m=d-n</math>. रैखिकता और जोड़ की क्रमपरिवर्तनशीलता द्वारा, अर्थात <math>\operatorname{ad}_{x+y}=\operatorname{ad}_{y+x},</math>, कोई यह निष्कर्ष निकालता है कि यह टेंसर पूरी तरह से सममित होना चाहिए। यह टेंसर वास्तव में ऑर्डर का कासिमिर अपरिवर्तनीय है {{math|''m''.}}
वह <math>\kappa</math> रैंक का टेंसर है <math>m=d-n</math>. रैखिकता और जोड़ की क्रमपरिवर्तनशीलता द्वारा, अर्थात <math>\operatorname{ad}_{x+y}=\operatorname{ad}_{y+x},</math>, कोई यह निष्कर्ष निकालता है कि यह टेंसर पूरी तरह से सममित होना चाहिए। यह टेंसर वास्तव में ऑर्डर का कासिमिर अपरिवर्तनीय है {{math|''m''.}}


मध्य में <math>Z(\mathfrak{g})</math> उन अवयवों  के अनुरूप <math>z\in Z(\mathfrak{g})</math> जिसके लिए <math>\operatorname{ad}_x(z)=0</math> सभी के लिए {{math|''x'';}} उपरोक्त के अनुसार, यहस्पष्ट रूप से विशेषता समीकरण की जड़ों से मेल खाते हैं। कोई यह निष्कर्ष निकालता है कि जड़ें रैंक का स्थान बनाती हैं {{math|''r''}} और यह कि कासिमिर अपरिवर्तनीय इस स्थान तक फैले हुए हैं। अर्थात्, कासिमिर अपरिवर्तनीय केंद्र उत्पन्न करते हैं <math>Z(U(\mathfrak{g})).</math>
मध्य में <math>Z(\mathfrak{g})</math> उन अवयवों  के अनुरूप <math>z\in Z(\mathfrak{g})</math> जिसके लिए सभी {{math|''x'';}} के लिए <math>\operatorname{ad}_x(z)=0</math> उपरोक्त के अनुसार, यहस्पष्ट रूप से विशेषता समीकरण की जड़ों से मेल खाते हैं। कोई यह निष्कर्ष निकालता है कि जड़ें रैंक का स्थान बनाती हैं {{math|''r''}} और यह कि कासिमिर अपरिवर्तनीय इस स्थान तक फैले हुए हैं। अर्थात्, कासिमिर अपरिवर्तनीय केंद्र <math>Z(U(\mathfrak{g}))</math> उत्पन्न करते हैं
 




===उदाहरण: [[घूर्णन समूह SO(3)]]===
===उदाहरण: [[घूर्णन समूह SO(3)]]===
रोटेशन समूह SO(3) रैंक का है, और इस प्रकार इसमें कासिमिर ऑपरेटर है। यह त्रि-आयामी है, और इस प्रकार कासिमिर ऑपरेटर का क्रम (3 − 1) = 2 होना चाहिए अर्थात द्विघात होना चाहिए। बेशक, यह लाई बीजगणित है <math>A_1.</math> प्राथमिक अभ्यास के रूप में, कोई इसकी सीधे गणना कर सकता है। में संकेतन बदलना <math>e_i=L_i,</math> साथ <math>L_i</math> सहायक प्रतिनिधि से संबंधित, सामान्य बीजगणित अवयव है <math>xL_1+yL_2+zL_3</math> और प्रत्यक्ष गणना देता है
रोटेशन समूह SO(3) रैंक का है, और इस प्रकार इसमें कासिमिर ऑपरेटर है। यह त्रि-आयामी है, और इस प्रकार कासिमिर ऑपरेटर का क्रम (3 − 1) = 2 होना चाहिए अर्थात द्विघात होना चाहिए। बेशक, <math>A_1</math>यह लाई बीजगणित है  प्राथमिक अभ्यास के रूप में, कोई इसकी सीधे गणना कर सकता है। आसन्न प्रतिनिधि से संबंधित <math>L_i</math> के साथ अंकन को <math>e_i=L_i,</math> में बदलने पर, एक सामान्य बीजगणित अवयव <math>xL_1+yL_2+zL_3</math> होता है और प्रत्यक्ष गणना देता है


:<math>\det\left(xL_1+yL_2+zL_3-tI\right)=-t^3-(x^2+y^2+z^2)t</math>
:<math>\det\left(xL_1+yL_2+zL_3-tI\right)=-t^3-(x^2+y^2+z^2)t</math>
द्विघात पद को इस प्रकार पढ़ा जा सकता है <math>\kappa^{ij}=\delta^{ij}</math>, और इसलिए रोटेशन समूह के लिए वर्ग [[कोणीय गति ऑपरेटर]] वह कासिमिर ऑपरेटर है। वह है,
द्विघात पद को <math>\kappa^{ij}=\delta^{ij}</math> के रूप में पढ़ा जा सकता है , और इसलिए रोटेशन समूह के लिए वर्ग [[कोणीय गति ऑपरेटर]] वह कासिमिर ऑपरेटर है। वह है,
:<math>C_{(2)} = L^2 = e_1\otimes e_1 +  e_2\otimes e_2 + e_3\otimes e_3</math>
:<math>C_{(2)} = L^2 = e_1\otimes e_1 +  e_2\otimes e_2 + e_3\otimes e_3</math>
और स्पष्ट गणना यह दर्शाती है
और स्पष्ट गणना यह दर्शाती है
Line 291: Line 295:


===उदाहरण: छद्म-अंतर ऑपरेटर===
===उदाहरण: छद्म-अंतर ऑपरेटर===
के निर्माण के समय प्रमुख अवलोकन <math>U(\mathfrak{g})</math> ऊपर यह था कि यह विभेदक बीजगणित था, इस तथ्य के आधार पर कि लाई बीजगणित पर किसी भी व्युत्पत्ति को उठाया जा सकता है <math>U(\mathfrak{g})</math>. इस प्रकार, किसी को [[छद्म-विभेदक ऑपरेटर|छद्म-विभेदक]] संचालकों की अंगूठी की ओर ले जाया जाता है, जहां से कोई कासिमिर इनवेरिएंट का निर्माण कर सकता है।
<math>U(\mathfrak{g})</math> के निर्माण के समय प्रमुख अवलोकन ऊपर यह था कि यह विभेदक बीजगणित था, इस तथ्य के आधार पर कि लाई बीजगणित पर किसी भी व्युत्पत्ति को <math>U(\mathfrak{g})</math> उठाया जा सकता है . इस प्रकार, किसी को [[छद्म-विभेदक ऑपरेटर|छद्म-विभेदक]] संचालकों की अंगूठी की ओर ले जाया जाता है, जहां से कोई कासिमिर इनवेरिएंट का निर्माण कर सकता है।


यदि लाई बीजगणित <math>\mathfrak{g}</math> रैखिक संचालकों के स्थान पर कार्य करता है, जैसे कि [[फ्रेडहोम सिद्धांत]] में, फिर कोई संचालकों के संबंधित स्थान पर कासिमिर इनवेरिएंट का निर्माण कर सकता है। द्विघात कासिमिर ऑपरेटर अण्डाकार ऑपरेटर से मेल खाता है।
यदि लाई बीजगणित <math>\mathfrak{g}</math> रैखिक संचालकों के स्थान पर कार्य करता है, जैसे कि [[फ्रेडहोम सिद्धांत]] में, फिर कोई संचालकों के संबंधित स्थान पर कासिमिर इनवेरिएंट का निर्माण कर सकता है। द्विघात कासिमिर ऑपरेटर अण्डाकार ऑपरेटर से मेल खाता है।


यदि ली बीजगणित विभेदक मैनिफोल्ड पर कार्य करता है, तब प्रत्येक कासिमिर ऑपरेटर कोटैंजेंट मैनिफोल्ड पर उच्च-क्रम अंतर से मेल खाता है, दूसरे क्रम का अंतर सबसे आम और सबसे महत्वपूर्ण है।
यदि लाई बीजगणित विभेदक मैनिफोल्ड पर कार्य करता है, तब प्रत्येक कासिमिर ऑपरेटर कोटैंजेंट मैनिफोल्ड पर उच्च-क्रम अंतर से मेल खाता है, दूसरे क्रम का अंतर सबसे सामान्य और सबसे महत्वपूर्ण है।


यदि बीजगणित की क्रिया [[आइसोमेट्री समूह]] है, जैसा कि मीट्रिक और समरूपता समूह [[SO(N)]] और अनिश्चित ऑर्थोगोनल समूह|SO (P, Q) से संपन्न [[छद्म-[[रीमैनियन मैनिफोल्ड]]]] या छद्म-रिमैनियन मैनिफोल्ड के स्तिथियां में होगा, क्रमशः, फिर अधिक रोचक संरचनाएं प्राप्त करने के लिए ऊपरी और निचले सूचकांकों (मीट्रिक टेंसर के साथ) को अनुबंधित कर सकते हैं। द्विघात कासिमिर अपरिवर्तनीय के लिए, यह [[लाप्लासियन]] है। क्वार्टिक कासिमिर संचालक [[यांग-मिल्स कार्रवाई]] को जन्म देते हुए, तनाव-ऊर्जा टेंसर को वर्गाकार करने की अनुमति देते हैं। कोलमैन-मंडुला प्रमेय उस रूप को प्रतिबंधित करता है जो यहले सकते हैं, जब कोई सामान्य लाई बीजगणित पर विचार करता है। चूँकि, ली सुपरएलजेब्रा कोलमैन-मंडुला प्रमेय के परिसर से बचने में सक्षम हैं, और इसका उपयोग अंतरिक्ष और आंतरिक समरूपता को साथ मिलाने के लिए किया जा सकता है।
यदि बीजगणित की क्रिया [[आइसोमेट्री समूह]] है, जैसा कि मीट्रिक और समरूपता समूह [[SO(N)|एसओ(एन)]] और अनिश्चित ऑर्थोगोनल समूह| एसओ (पी, क्यू) से संपन्न [[छद्म-[[रीमैनियन मैनिफोल्ड]]]] या छद्म-रिमैनियन मैनिफोल्ड के स्तिथियां में होगा, क्रमशः, फिर अधिक रोचक संरचनाएं प्राप्त करने के लिए ऊपरी और निचले सूचकांकों (मीट्रिक टेंसर के साथ) को अनुबंधित कर सकते हैं। द्विघात कासिमिर अपरिवर्तनीय के लिए, यह [[लाप्लासियन]] है। क्वार्टिक कासिमिर संचालक [[यांग-मिल्स कार्रवाई]] को जन्म देते हुए, तनाव-ऊर्जा टेंसर को वर्गाकार करने की अनुमति देते हैं। कोलमैन-मंडुला प्रमेय उस रूप को प्रतिबंधित करता है जो यहले सकते हैं, जब कोई सामान्य लाई बीजगणित पर विचार करता है। चूँकि,लाई सुपरएलजेब्रा कोलमैन-मंडुला प्रमेय के परिसर से बचने में सक्षम हैं, और इसका उपयोग अंतरिक्ष और आंतरिक समरूपता को साथ मिलाने के लिए किया जा सकता है।


==विशेष स्तिथियों  में उदाहरण==
==विशेष स्तिथियों  में उदाहरण==
Line 311: Line 315:
0 & 0 \\
0 & 0 \\
1 & 0
1 & 0
\end{pmatrix}</math></blockquote>जो मानक ब्रैकेट के अंतर्गत निम्नलिखित पहचान को संतुष्ट करता है:<blockquote><math>[h,g] = -2g</math>, <math>[h,f] = 2f</math>, और <math>[g,f] = - h </math></blockquote>यह हमें दिखाता है कि सार्वभौमिक आवरण बीजगणित की प्रस्तुति<blockquote> है<math>U(\mathfrak{sl}_2) = \frac{\mathbb{C}\langle x,y,z\rangle}{(xy - yx + 2y, xz - zx - 2z, yz - zy + x)}</math></ब्लॉकक्वॉट>एक गैर-कम्यूटेटिव रिंग के रूप में।
\end{pmatrix}</math></blockquote>जो मानक ब्रैकेट के अंतर्गत निम्नलिखित पहचान को संतुष्ट करता है:<blockquote><math>[h,g] = -2g</math>, <math>[h,f] = 2f</math>, और <math>[g,f] = - h </math></blockquote>यह हमें दिखाता है कि सार्वभौमिक आवरण बीजगणित की प्रस्तुति                         <blockquote> है<math>U(\mathfrak{sl}_2) = \frac{\mathbb{C}\langle x,y,z\rangle}{(xy - yx + 2y, xz - zx - 2z, yz - zy + x)}</math> एक गैर-कम्यूटेटिव रिंग के रूप में।


यदि <math>\mathfrak{g}</math> एबेलियन है (अर्थात, ब्रैकेट सदैव है {{math|0}}), तब <math>U(\mathfrak{g})</math> क्रमविनिमेय है; और यदि सदिश समष्टि का [[आधार (रैखिक बीजगणित)]]<math>\mathfrak{g}</math> तब फिर चुना गया है <math>U(\mathfrak{g})</math> [[बहुपद]] बीजगणित से पहचाना जा सकता है {{math|''K''}}, प्रति आधार अवयव चर के साथ।
यदि <math>\mathfrak{g}</math> एबेलियन है (अर्थात, ब्रैकेट सदैव है {{math|0}}), तब <math>U(\mathfrak{g})</math> क्रमविनिमेय है; और यदि सदिश समष्टि का [[आधार (रैखिक बीजगणित)]] है। <math>\mathfrak{g}</math> तब फिर चुना गया है तब  <math>U(\mathfrak{g})</math> को {{math|''K''}} [[बहुपद]] बीजगणित से पहचाना जा सकता है , प्रति आधार अवयव वेरिएबल के साथ दर्शाया गया ।


यदि <math>\mathfrak{g}</math> लाई समूह के अनुरूप लाई बीजगणित है {{math|''G''}}, तब <math>U(\mathfrak{g})</math> बाएं-अपरिवर्तनीय अंतर संचालकों (सभी आदेशों के) के बीजगणित से पहचाना जा सकता है {{math|''G''}}; साथ <math>\mathfrak{g}</math> प्रथम-क्रम अंतर संचालकों के रूप में बाएं-अपरिवर्तनीय [[वेक्टर फ़ील्ड|सदिश फ़ील्ड]] के रूप में इसके अंदर लाई बोल रहा है।
यदि <math>\mathfrak{g}</math> लाई समूह {{math|''G''}} के अनुरूप लाई बीजगणित है , तब <math>U(\mathfrak{g})</math> {{math|''G''}} बाएं-अपरिवर्तनीय अंतर संचालकों (सभी आदेशों के) के बीजगणित से पहचाना जा सकता है प्रथम-क्रम विभेदक संचालकों के रूप में बाएं-अपरिवर्तनीय [[वेक्टर फ़ील्ड|सदिश]] क्षेत्र के रूप में इसके अंदर झूठ बोलने वाले <math>\mathfrak{g}</math> के साथ।


उपरोक्त दो स्तिथियों  को जोड़ने के लिए: यदि <math>\mathfrak{g}</math> सदिश स्थान है {{math|''V''}} एबेलियन ले बीजगणित के रूप में, बाएं-अपरिवर्तनीय अंतर ऑपरेटर स्थिर गुणांक ऑपरेटर हैं, जो वास्तव में पहले क्रम के [[आंशिक व्युत्पन्न]] में बहुपद बीजगणित हैं।
उपरोक्त दो स्तिथियों  को जोड़ने के लिए: यदि <math>\mathfrak{g}</math> एबेलियन ले बीजगणित के रूप में सदिश स्थान {{math|''V''}} है, बाएं-अपरिवर्तनीय अंतर ऑपरेटर स्थिर गुणांक ऑपरेटर हैं, जो वास्तव में पहले क्रम के [[आंशिक व्युत्पन्न]] में बहुपद बीजगणित हैं।


मध्य में <math>Z(\mathfrak{g})</math> इसमें बाएँ और दाएँ-अपरिवर्तनीय अंतर ऑपरेटर सम्मिलित हैं; इस, के स्तिथियां में {{math|''G''}} क्रमविनिमेय नहीं है, अधिकांशतः प्रथम-क्रम संचालकों द्वारा उत्पन्न नहीं होता है (उदाहरण के लिए अर्ध-सरल लाई बीजगणित का कासिमिर ऑपरेटर देखें)।
मध्य में <math>Z(\mathfrak{g})</math> इसमें बाएँ और दाएँ-अपरिवर्तनीय अंतर ऑपरेटर सम्मिलित हैं; इस, {{math|''G''}} के स्तिथियां में  क्रमविनिमेय नहीं है, अधिकांशतः प्रथम-क्रम संचालकों द्वारा उत्पन्न नहीं होता है (उदाहरण के लिए अर्ध-सरल लाई बीजगणित का कासिमिर ऑपरेटर देखें)।


लाई समूह सिद्धांत में और लक्षण वर्णन है <math>U(\mathfrak{g})</math> [[वितरण (गणित)]] के दृढ़ बीजगणित के रूप में समर्थन (गणित) # वितरण का समर्थन केवल [[पहचान तत्व|पहचान]] अवयव पर वितरित किया जाता है {{math|''e''}} का {{math|''G''}}.
लाई समूह सिद्धांत में और लक्षण वर्णन <math>U(\mathfrak{g})</math> है जो कि [[वितरण (गणित)]] के दृढ़ बीजगणित के रूप में समर्थन (गणित) या  वितरण का समर्थन केवल {{math|''G''}}. [[पहचान तत्व|पहचान]] अवयव {{math|''e''}} पर वितरित किया जाता है 


विभेदक संचालकों का बीजगणित {{math|''n''}} बहुपद गुणांक वाले चर [[हाइजेनबर्ग समूह]] के लाई बीजगणित से प्रारंभ करके प्राप्त किए जा सकते हैं। इसके लिए वेइल बीजगणित देखें; किसी को भागफल अवश्य लेना चाहिए, जिससे कि लाई बीजगणित के केंद्रीय अवयव निर्धारित अदिश के रूप में कार्य करें।
विभेदक संचालकों का बीजगणित {{math|''n''}} बहुपद गुणांक वाले वेरिएबल [[हाइजेनबर्ग समूह]] के लाई बीजगणित से प्रारंभ करके प्राप्त किए जा सकते हैं। इसके लिए वेइल बीजगणित देखें; किसी को भागफल अवश्य लेना चाहिए, जिससे कि लाई बीजगणित के केंद्रीय अवयव निर्धारित अदिश के रूप में कार्य करें।


एक परिमित-आयामी लाई बीजगणित का सार्वभौमिक आवरण बीजगणित फ़िल्टर्ड [[द्विघात बीजगणित]] है।
एक परिमित-आयामी लाई बीजगणित का सार्वभौमिक आवरण बीजगणित फ़िल्टर्ड [[द्विघात बीजगणित]] है।


== हॉपफ बीजगणित और क्वांटम समूह ==
== हॉपफ बीजगणित और क्वांटम समूह ==
किसी दिए गए [[समूह (गणित)]] के लिए समूह वलय का निर्माण अनेक मायनों में किसी दिए गए बीजगणित के लिए सार्वभौमिक आवरण बीजगणित के निर्माण के समान है। दोनों निर्माण सार्वभौमिक हैं और प्रतिनिधित्व सिद्धांत को मॉड्यूल सिद्धांत में अनुवादित करते हैं। इसके अतिरिक्त, समूह बीजगणित और सार्वभौमिक आवरण बीजगणित दोनों में प्राकृतिक [[कोलजेब्रा]] होता है जो उन्हें हॉपफ बीजगणित में बदल देता है। इसे टेंसर बीजगणित पर लेख में त्रुटिहीन बनाया गया है: टेंसर बीजगणित पर हॉपफ बीजगणित संरचना होती है, और क्योंकि ली ब्रैकेट हॉपफ संरचना के अनुरूप है (इसके लिए स्थिरता की शर्तबं का पालन करता है), यह सार्वभौमिक आवरण बीजगणित द्वारा विरासत में मिला है .
किसी दिए गए [[समूह (गणित)]] के लिए समूह वलय का निर्माण अनेक मायनों में किसी दिए गए बीजगणित के लिए सार्वभौमिक आवरण बीजगणित के निर्माण के समान है। दोनों निर्माण सार्वभौमिक हैं और प्रतिनिधित्व सिद्धांत को मॉड्यूल सिद्धांत में अनुवादित करते हैं। इसके अतिरिक्त, समूह बीजगणित और सार्वभौमिक आवरण बीजगणित दोनों में प्राकृतिक [[कोलजेब्रा]] होता है जो उन्हें हॉपफ बीजगणित में बदल देता है। इसे टेंसर बीजगणित पर लेख में त्रुटिहीन बनाया गया है: टेंसर बीजगणित पर हॉपफ बीजगणित संरचना होती है, और क्योंकिलाई ब्रैकेट हॉपफ संरचना के अनुरूप है (इसके लिए स्थिरता की शर्तबं का पालन करता है), यह सार्वभौमिक आवरण बीजगणित द्वारा विरासत में मिला है .


एक लाई समूह दिया गया {{math|''G''}}, कोई सदिश समष्टि का निर्माण कर सकता है {{math|C(''G'')}} निरंतर जटिल-मूल्यवान कार्यों पर {{math|''G''}}, और इसे C*-बीजगणित में बदल दें। इस बीजगणित में प्राकृतिक हॉपफ बीजगणित संरचना है: इसमें दो कार्य दिए गए हैं
एक लाई समूह {{math|''G''}} दिया गया , कोई व्यक्ति {{math|''G''}} पर निरंतर समष्टि-मूल्यवान कार्यों पर सदिश समष्टि {{math|C(''G'')}} का निर्माण कर सकता है, और इसे C*-बीजगणित में बदल दें। इस बीजगणित में प्राकृतिक हॉपफ बीजगणित संरचना है: इसमें दो कार्य <math>\varphi, \psi\in C(G)</math> दिए गए है कोई गुणन को इस प्रकार परिभाषित करता है
<math>\varphi, \psi\in C(G)</math>, कोई गुणन को इस प्रकार परिभाषित करता है
:<math>(\nabla(\varphi, \psi))(x)=\varphi(x)\psi(x)</math>
:<math>(\nabla(\varphi, \psi))(x)=\varphi(x)\psi(x)</math>
और सहगुणन के रूप में
और सहगुणन के रूप में
Line 339: Line 342:
और एंटीपोड के रूप में
और एंटीपोड के रूप में
:<math>(S(\varphi))(x)=\varphi(x^{-1}).</math>
:<math>(S(\varphi))(x)=\varphi(x^{-1}).</math>
अभी, गेलफैंड-नैमार्क प्रमेय अनिवार्य रूप से बताता है कि प्रत्येक क्रमविनिमेय हॉपफ बीजगणित कुछ कॉम्पैक्ट टोपोलॉजिकल समूह पर निरंतर कार्यों के हॉपफ बीजगणित के लिए आइसोमोर्फिक है। {{math|''G''}}—कॉम्पैक्ट टोपोलॉजिकल समूहों का सिद्धांत और क्रमविनिमेय हॉपफ बीजगणित का सिद्धांत समान हैं। लाई समूहों के लिए, इसका तात्पर्य यह है {{math|C(''G'')}} समरूपी रूप से दोहरा है <math>U(\mathfrak{g})</math>; अधिक त्रुटिहीन रूप से, यह दोहरे स्थान के उप-स्थान के लिए समरूपी है <math>U^*(\mathfrak{g}).</math>
अभी, गेलफैंड-नैमार्क प्रमेय अनिवार्य रूप से बताता है कि प्रत्येक क्रमविनिमेय हॉपफ बीजगणित कुछ कॉम्पैक्ट टोपोलॉजिकल समूह {{math|''G''}} पर निरंतर कार्यों के हॉपफ बीजगणित के लिए आइसोमोर्फिक है। —कॉम्पैक्ट टोपोलॉजिकल समूहों का सिद्धांत और क्रमविनिमेय हॉपफ बीजगणित का सिद्धांत समान हैं। लाई समूहों के लिए, इसका तात्पर्य यह है {{math|C(''G'')}} समरूपी रूप से दोहरा है <math>U(\mathfrak{g})</math>; अधिक त्रुटिहीन रूप से, यह दोहरे स्थान के उप-स्थान <math>U^*(\mathfrak{g}).</math> के लिए समरूपी है
 
फिर इन विचारों को गैर-अनुक्रमणीय स्तिथियां तक बढ़ाया जा सकता है। [[अर्ध-त्रिकोणीय हॉपफ बीजगणित]] को परिभाषित करने से प्रारंभ होता है, और फिर संक्षेप में क्वांटम सार्वभौमिक आवरण बीजगणित, या क्वांटम समूह प्राप्त करने के लिए [[क्वांटम विरूपण]] कहा जाता है।
फिर इन विचारों को गैर-अनुक्रमणीय स्तिथियां तक बढ़ाया जा सकता है। [[अर्ध-त्रिकोणीय हॉपफ बीजगणित]] को परिभाषित करने से प्रारंभ होता है, और फिर संक्षेप में क्वांटम सार्वभौमिक आवरण बीजगणित, या क्वांटम समूह प्राप्त करने के लिए [[क्वांटम विरूपण]] कहा जाता है।



Revision as of 13:10, 21 July 2023

गणित में, लाई बीजगणित का सार्वभौमिक आवरण बीजगणित इकाई बीजगणित साहचर्य बीजगणित बीजगणित है जिसका बीजगणित प्रतिनिधित्व उस लाई बीजगणित के लाई बीजगणित के प्रतिनिधित्व से त्रुटिहीन रूप से मेल खाता है।

सार्वभौमिक आवरण बीजगणित का उपयोग लाई समूहों और लाई बीजगणित के प्रतिनिधित्व सिद्धांत में किया जाता है। उदाहरण के लिए, वर्मा मॉड्यूल का निर्माण सार्वभौमिक आवरण बीजगणित के भागफल के रूप में किया जा सकता है।[1] इसके अतिरिक्त, आवरण बीजगणित कासिमिर संचालकों के लिए त्रुटिहीन परिभाषा देता है। चूँकि कासिमिर संचालक लाई बीजगणित के सभी अवयवों के साथ आवागमन करते हैं, इसलिए उनका उपयोग अभ्यावेदन को वर्गीकृत करने के लिए किया जा सकता है। त्रुटिहीन परिभाषा कासिमिर संचालकों को गणित के अन्य क्षेत्रों में आयात करने की भी अनुमति देती है, विशेष रूप से, जिनमें अंतर बीजगणित होता है। वह गणित के कुछ हालिया विकासों में भी केंद्रीय भूमिका निभाते हैं। विशेष रूप से, उनका दोहरा सदिश स्थान गैर-कम्यूटेटिव ज्यामिति, क्वांटम समूहो में अध्ययन की गई वस्तुओं का क्रमविनिमेय उदाहरण प्रदान करता है। इस दोहरे को, गेलफैंड-नैमार्क प्रमेय द्वारा, संबंधित लाई समूह के सी-स्टार बीजगणित को सम्मिलित करने के लिए दिखाया जा सकता है। यह संबंध कॉम्पैक्ट टोपोलॉजिकल समूहों और उनके प्रतिनिधित्व के मध्य तन्नाका-क्रेन द्वंद्व के विचार को सामान्यीकृत करता है।

एक विश्लेषणात्मक दृष्टिकोण से, लाई समूह के लाई बीजगणित के सार्वभौमिक आवरण बीजगणित को समूह पर बाएं-अपरिवर्तनीय अंतर संचालकों के बीजगणित के साथ पहचाना जा सकता है।

अनौपचारिक निर्माण

सार्वभौमिक आवरण बीजगणित का विचार लाई बीजगणित को एम्बेड करना है साहचर्य बीजगणित में पहचान के साथ इस तरह से कि अमूर्त ब्रैकेट ऑपरेशन में , कम्यूटेटर से मेल खाता है और बीजगणित के अवयवों द्वारा उत्पन्न होता है ऐसी एम्बेडिंग बनाने की अनेक विधिया हो सकती हैं, किन्तु अनोखा सबसे बड़ा विधि है जिसे सार्वभौमिक आवरण बीजगणित कहा जाता है .

जनरेटर और संबंध

मान लीजिये कि लाई बीजगणित है , जिसे सरलता के लिए आधार के साथ परिमित-आयामी माना जाता है जिसका आधार है . मान लीजिए कि इस आधार के लिए संरचना स्थिरांक है

फिर सार्वभौमिक आवरण बीजगणित के संबंधों के अधीन अवयवों द्वारा उत्पन्न साहचर्य बीजगणित (पहचान के साथ) है

और कोई अन्य संबंध नहीं. नीचे हम से अधिक टेंसर बीजगणित के भागफल के रूप में सार्वभौमिक आवरण बीजगणित का निर्माण करके इस जनरेटर और संबंध निर्माण को और अधिक त्रुटिहीन बनाएंगे। .

उदाहरण के लिए, आव्यूहों द्वारा फैलाए गए बीजगणित SL(2,C)/sl(2,C) पर विचार करें

जो कम्यूटेशन संबंधों , और को संतुष्ट करता है sl(2,C) का सार्वभौमिक आवरण बीजगणित संबंधों के अधीन तीन अवयवों द्वारा उत्पन्न बीजगणित है

और कोई अन्य संबंध नहीं. हम इस बात पर जोर देते हैं कि सार्वभौमिक आवरण बीजगणित आव्यूह बीजगणित के समान (या उसमें निहित) नहीं है . उदाहरण के लिए, आव्यूह , को संतुष्ट करता है जैसा कि आसानी से सत्यापित है। किन्तु सार्वभौमिक आवरण बीजगणित में, अवयव , को संतुष्ट नहीं करता - क्योंकि हम इस संबंध को आवरण बीजगणित के निर्माण में लागू नहीं करते हैं। वास्तव में, यह पोंकारे-बिरखॉफ-विट प्रमेय (नीचे चर्चा) से इस प्रकार है कि अवयव सार्वभौमिक आवरण बीजगणित में सभी रैखिक रूप स्वतंत्र हैं।

आधार ढूँढना

सामान्यतः, सार्वभौमिक आवरण बीजगणित के अवयव सभी संभावित क्रमों में जनरेटर के उत्पादों के रैखिक संयोजन होते हैं। सार्वभौमिक आवरण बीजगणित के परिभाषित संबंधों का उपयोग करके, हम सदैव उन उत्पादों को विशेष क्रम में फिर से व्यवस्थित कर सकते हैं, जैसे कि पहले सभी कारकों के साथ। फिर के कारकों आदि के साथ। उदाहरण के लिए, जब भी हमारे पास कोई शब्द होता है जिसमे (गलत क्रम में) शामिल है हम इसे के साथ साथ 's के रैखिक संयोजन के रूप में फिर से लिखने के साथ ही इसके संबंधों का उपयोग कर सकते हैं । इस प्रकार का कार्य बार-बार करने से अंततः कोई भी अवयव आरोही क्रम में शब्दों के रैखिक संयोजन में परिवर्तित हो जाता है। इस प्रकार,के प्रपत्र के अवयव होते है |

साथ गैर-ऋणात्मक पूर्णांक होने के कारण, घेरने वाले बीजगणित का विस्तार करें। (हम अनुमति देते है, जिसका अर्थ है कि हम ऐसे शब्दों की अनुमति देते हैं जिनमें कोई कारक घटित होता नहीं है नीचे चर्चा की गई की पोंकारे-बिरखॉफ-विट प्रमेय का प्रामाणित है तथा यहअवयव रैखिक रूप से स्वतंत्र हैं और इस प्रकार सार्वभौमिक आवरण बीजगणित के लिए आधार बनाते हैं। विशेष रूप से, सार्वभौमिक आवरण बीजगणित सदैव अनंत आयामी होता है।

पोंकारे-बिरखॉफ-विट प्रमेय का तात्पर्य, विशेष रूप से, यह है कि अवयव स्वयं रैखिक रूप से स्वतंत्र हैं। इसलिए मूल लाई बीजगणित के जेनरेटर के साथ की पहचान करना सामान्य है - यदि संभावित रूप से भ्रमित करने वाला हो जनरेटर के साथ है । कहने का तात्पर्य यह है कि, हम मूल लाई बीजगणित को जनरेटर द्वारा फैलाए गए इसके सार्वभौमिक आवरण बीजगणित के उप-स्थान के रूप में पहचानते हैं। यद्यपि आव्युह का बीजगणित हो सकता है के सार्वभौमिक आवरण इसमें (परिमित-आयामी) आव्युह सम्मिलित नहीं है। विशेष रूप से, कोई परिमित-आयामी बीजगणित नहीं है जिसमें का सार्वभौमिक आवरण सम्मिलित हो; सार्वभौमिक आवरण बीजगणित सदैव अनंत आयामी होता है। इस प्रकार, sl(2,C) के स्तिथियां में, यदि हम अपने लाई बीजगणित को इसके सार्वभौमिक आवरण बीजगणित के उप-स्थान के रूप में पहचानते हैं,तो हमें , और जैसा आव्युह के रूप में व्याख्या नहीं करनी चाहिए, किंतु ऐसे प्रतीकों के रूप में जिनमें कोई और गुण नहीं हैं (कम्यूटेशन संबंधों के अतिरिक्त)।

औपचारिकताएं

सार्वभौमिक आवरण बीजगणित का औपचारिक निर्माण उपरोक्त विचारों को लेता है, और उन्हें नोटेशन और शब्दावली में लपेटता है जिससे इसके साथ काम करना अधिक सुविधाजनक हो जाता है। सबसे महत्वपूर्ण अंतर यह है कि उपरोक्त में प्रयुक्त मुक्त साहचर्य बीजगणित को टेंसर बीजगणित तक सीमित कर दिया गया है, जिससे कि प्रतीकों के उत्पाद को टेंसर उत्पाद समझा जा सके। कम्यूटेशन संबंध रूप के अवयवों वाले सबसे छोटे दो-तरफा आदर्श द्वारा उद्धृत टेन्सर बीजगणित के भागफल स्थान (रैखिक बीजगणित) का निर्माण करके लगाया जाते हैं। सार्वभौमिक आवरण बीजगणित मूल लाई बीजगणित के साथ संगत लाई ब्रैकेट के साथ के अवयवों द्वारा उत्पन्न सबसे बड़ा एकात्मक साहचर्य बीजगणित है।

औपचारिक परिभाषा

याद रखें कि हर लाई बीजगणित विशेष रूप से सदिश समष्टि है। इस प्रकार, कोई भी टेंसर बीजगणित का निर्माण करने के लिए स्वतंत्र है यंहा से टेंसर बीजगणित स्वतंत्र बीजगणित है: इसमें सभी संभावित सदिशो के सभी संभावित टेंसर उत्पाद सम्मिलित हैं , उन उत्पादों पर किसी भी तरह का कोई प्रतिबंध नहीं।

अर्थात् कोई स्थान का निर्माण करता है

जहाँ टेंसर उत्पाद है, और सदिश स्थानों का प्रत्यक्ष योग है। जहाँ, K वह क्षेत्र है जिस पर लाई बीजगणित परिभाषित किया गया है। जहाँ से, इस लेख के शेष भाग तक, टेंसर उत्पाद सदैव स्पष्ट रूप से दिखाया जाता है। तथा अनेक लेखक इसे छोड़ देते हैं, क्योंकि अभ्यास के साथ, इसके स्थान का सामान्यतः संदर्भ से अनुमान लगाया जा सकता है। जहाँ, अभिव्यक्तियों के अर्थ के बारे में किसी भी संभावित भ्रम को कम करने के लिए, बहुत ही स्पष्ट दृष्टिकोण अपनाया जाता है।

निर्माण में पहला कदम लाई ब्रैकेट को लाई बीजगणित (जहां इसे परिभाषित किया गया है) से टेंसर बीजगणित (जहां यह नहीं है) तक उठाना है, जिससे कि कोई दो टेंसरों के लाई ब्रैकेट के साथ सुसंगत रूप से काम कर सके। उठाव निम्नानुसार किया जाता है। सबसे पहले, याद रखें कि लाई बीजगणित पर ब्रैकेट ऑपरेशन द्विरेखीय मानचित्र है वह द्विरेखीय रूप , तिरछा-सममित द्विरेखीय रूप है | तिरछा-सममित और जैकोबी पहचान को संतुष्ट करता है। हम लाई ब्रैकेट [-,-] को परिभाषित करना चाहते हैं जो मानचित्र है वह भी द्विरेखीय, तिरछा सममित है और जैकोबी पहचान का पालन करता है।

ग्रेड दर ग्रेड लिफ्टिंग की जा सकती है। कोष्ठक को परिभाषित करके प्रारंभ करें जैसा

यह सुसंगत, सुसंगत परिभाषा है, क्योंकि दोनों पक्ष द्विरेखीय हैं, और दोनों पक्ष तिरछी सममित हैं (जेकोबी पहचान शीघ्र ही अनुसरण करेगी)। उपरोक्त ब्रैकेट को पर परिभाषित करता है ; इसे अभी इच्छानुसार के लिए उठाया जाना चाहिए यह परिभाषित करके, पुनरावर्ती रूप से किया जाता है

और इसी तरह

यह सत्यापित करना सीधा है कि उपरोक्त परिभाषा द्विरेखीय है, और तिरछी-सममित है; कोई यह भी दिखा सकता है कि यह जैकोबी पहचान का पालन करता है। अंतिम परिणाम यह होता है कि किसी के पास लाई ब्रैकेट होता है जो लगातार सभी पर परिभाषित होता है तथा यह कहता है कि इसे आधार स्थान से लिफ्ट के पारंपरिक अर्थ में सभी के लिए उठा लिया गया है (जहाँ ,लाई बीजगणित) से स्थान को कवर करना (जहाँ ,टेंसर बीजगणित)

इस उठाने का परिणाम स्पष्ट रूप से पॉइसन बीजगणित है। यह लाई ब्रैकेट के साथ यूनिटल एसोसिएटिव बीजगणित है जो लाई बीजगणित ब्रैकेट के साथ संगत है; यह निर्माण द्वारा संगत है. चूँकि, यह ऐसा सबसे छोटा बीजगणित नहीं है; इसमें आवश्यकता से कहीं अधिक अवयव सम्मिलित हैं। कोई पीछे की ओर प्रक्षेपित करके कुछ छोटा प्राप्त कर सकता है। सार्वभौमिक आवरण बीजगणित का भागफल स्थान (रैखिक बीजगणित) के रूप में परिभाषित किया गया है

जहां तुल्यता संबंध द्वारा दिया गया है

अर्थात्, लाई ब्रैकेट भागफलन करने के लिए उपयोग किए जाने वाले तुल्यता संबंध को परिभाषित करता है। परिणाम अभी भी इकाई सहयोगी बीजगणित है, और कोई अभी भी किन्हीं दो सदस्यों का लाई ब्रैकेट ले सकता है। परिणाम की गणना करना सीधा-सीधा है, यदि कोई यह ध्यान में रखता है कि प्रत्येक अवयव सह समुच्चय के रूप में समझा जा सकता है: कोई सदैव की तरह ब्रैकेट लेता है, और उस कोसेट की खोज करता है जिसमें परिणाम होता है। यह इस प्रकार का सबसे छोटा बीजगणित है; कोई भी इससे छोटी कोई चीज़ नहीं खोज सकता जो अभी भी साहचर्य बीजगणित के सिद्धांतबं का पालन करती हो।

सार्वभौमिक आवरण बीजगणित वह है जो पोइसन बीजगणित संरचना को संशोधित करने के पश्चात् टेंसर बीजगणित का अवशेष है। (यह गैर-तुच्छ कथन है; टेंसर बीजगणित की संरचना अधिक समष्टि है: अन्य बातबं के अतिरिक्त, यह हॉपफ बीजगणित है; पॉइसन बीजगणित भी इसी तरह समष्टि है, जिसमें अनेक विशिष्ट गुण हैं। यह टेंसर बीजगणित के साथ संगत है, और इसलिए मॉडिंग किया जा सकता है। हॉपफ बीजगणित संरचना संरक्षित है; यही वह है जो इसके अनेक उपन्यास अनुप्रयोगों की ओर ले जाती है, उदाहरण के लिए स्ट्रिंग सिद्धांत में। चूंकि, औपचारिक परिभाषा के प्रयोजनों के लिए, इनमें से कोई भी विशेष रूप से मायने नहीं रखता है।)

निर्माण थोड़ा भिन्न (किन्तु अंततः समतुल्य) विधिया से किया जा सकता है। पल के लिए उपरोक्त उठान को भूल जाइए, और इसके अतिरिक्त दो-तरफा आदर्श I पर विचार करें प्रपत्र के अवयवों द्वारा उत्पन्न

यह जनरेटर का अवयव है

आदर्श का सामान्य सदस्य I रूप होगा

कुछ के लिए के सभी अवयव I इस रूप के अवयवों के रैखिक संयोजन के रूप में प्राप्त किए जाते हैं। स्पष्ट रूप से, उपस्थान है. यह आदर्श है, यदि और तब और यह स्थापित करना कि यह आदर्श है,तथा महत्वपूर्ण है, क्योंकि आदर्श वह चीजें हैं जिनके साथ कोई भी भाग ले सकता है; आदर्श भागफल मानचित्र के कर्नेल (रैखिक बीजगणित) में निहित हैं। अर्थात्, किसी के पास संक्षिप्त त्रुटिहीन अनुक्रम होता है

जहां प्रत्येक तीर रेखीय मानचित्र है, और उस मानचित्र का कर्नेल पिछले मानचित्र की छवि द्वारा दिया गया है। सार्वभौमिक आवरण बीजगणित को तब परिभाषित किया जा सकता है[2]

सुपरलेजब्रा और अन्य सामान्यीकरण

उपरोक्त निर्माण लाई बीजगणित और लाई ब्रैकेट, और इसकी तिरछापन और एंटीसिममेट्री पर केंद्रित है। कुछ सीमा तक, यह संपत्तियाँ निर्माण के लिए प्रासंगिक हैं। इसके अतिरिक्त सदिश समष्टि पर कुछ (इच्छानुसार) बीजगणित (लाई बीजगणित नहीं) पर विचार करें, अर्थात सदिश समष्टि गुणन से संपन्न अवयव लेता है यदि गुणन द्विरेखीय है, तब वही निर्माण और परिभाषाएँ चल सकती हैं। उठाने से प्रारंभ होता है जिससे कि को तक उठा लिया जाए जिससे कि आधार के समान सभी गुणों का पालन करता है जो आधार करता है - समरूपता या प्रतिसममिति या कुछ भी उठान बिल्कुल पहले की तरह ही प्रारंभ करके किया जाता है

यह त्रुटिहीन रूप से सुसंगत है क्योंकि टेंसर उत्पाद द्विरेखीय है, और गुणन द्विरेखीय है। शेष लिफ्ट को समरूपता के रूप में गुणन को संरक्षित करने के लिए किया जाता है। परिभाषा के अनुसार, कोई लिखता है

और वह भी

यह विस्तार मुक्त वस्तुओं पर लेम्मा की अपील के अनुरूप है: चूंकि टेंसर बीजगणित मुक्त बीजगणित है, इसके जेनरेटिंग समुच्चय पर किसी भी समरूपता को पूरे बीजगणित तक बढ़ाया जा सकता है। बाकी सब कुछ ऊपर वर्णित अनुसार आगे बढ़ता है और पूरा होने पर, किसी के पास इकाई सहयोगी बीजगणित होता है जो किऊपर वर्णित दो तरीकों में से किसी में भागफल ले सकता है।

उपरोक्त बिल्कुल वैसा ही है कि कैसे सुपर बीजगणित से प्यार है इसके लिए सार्वभौमिक आवरण बीजगणित का निर्माण किया जाता है। अवयवों को क्रमपरिवर्तित करते समय, किसी को केवल संकेत पर सावधानी पूर्वक नज़र रखने की आवश्यकता होती है। इस स्तिथियों में, सुपर बीजगणित का (एंटी-) कम्यूटेटर (एंटी-) कम्यूटिंग पॉइसन ब्रैकेट पर ले जाता है।

एक अन्य संभावना कवरिंग बीजगणित के रूप में टेंसर बीजगणित के अतिरिक्त किसी अन्य चीज़ का उपयोग करना है। ऐसी ही संभावना बाहरी बीजगणित का उपयोग करना है; अर्थात्, टेंसर उत्पाद की प्रत्येक घटना को बाहरी उत्पाद से प्रतिस्थापित करना। यदि आधार बीजगणित लाई बीजगणित है, तब परिणाम गेरस्टेनहाबर बीजगणित है; यह संबंधित लाई समूह का बाहरी बीजगणित है। पहले की तरह, इसमें बाहरी बीजगणित पर ग्रेडिंग से आने वाला ग्रेडिंग प्राकृतिक परिवर्तन है। (गेरस्टेनहाबर बीजगणित को पोइसन सुपरबीजगणित के साथ भ्रमित नहीं किया जाना चाहिए; दोनों एंटीकोम्यूटेशन का आह्वान करते हैं, किन्तु भिन्न-भिन्न तरीकों से।)

निर्माण को मालसेव बीजगणित, [3] बोल बीजगणित[4] और बाएं वैकल्पिक बीजगणित के लिए भी सामान्यीकृत किया गया है। [उद्धरण वांछित]

सार्वभौमिक संपत्ति

सार्वभौमिक आवरण बीजगणित, या यूँ कहें कि आवरण बीजगणित विहित मानचित्र के साथ सार्वभौमिक सार्वभौमिक संपत्ति रखता है।[5] मान लीजिए हमारे पास कोई लाई बीजगणित मानचित्र है

एक इकाई साहचर्य बीजगणित के लिए A (लेट ब्रैकेट के साथ A कम्यूटेटर द्वारा दिया गया)। अधिक स्पष्ट रूप से, इसका अर्थ यह है कि हम मान लेते हैं

सभी के लिए . फिर अद्वितीय इकाई बीजगणित समरूपता उपस्तिथ है

ऐसा है कि

जहाँ विहित मानचित्र है. (वो नक्शा एम्बेडिंग द्वारा प्राप्त किया जाता है इसके टेंसर बीजगणित में और फिर भागफल स्थान (रैखिक बीजगणित) के साथ सार्वभौमिक आवरण बीजगणित की रचना करना है। यह नक्शा पोंकारे-बिरखॉफ़-विट प्रमेय द्वारा एम्बेडिंग है।)

इसे भिन्न ढंग से कहें तब, यदि इकाई बीजगणित में रेखीय मानचित्र है संतुष्टि देने वाला , तब की बीजगणित समरूपता तक विस्तारित है तब से के अवयवों द्वारा उत्पन्न होता है , वो नक्शा उस आवश्यकता द्वारा विशिष्ट रूप से निर्धारित किया जाना चाहिए

.

उद्देश्य यह है कि क्योंकि सार्वभौमिक आवरण बीजगणित में रूपान्तरण संबंधों से आने वाले संबंधों के अतिरिक्त कोई अन्य संबंध नहीं हैं , वो नक्शा अच्छी तरह से परिभाषित है, यह इस बात से स्वतंत्र है कि कोई किसी दिए गए अवयव को कैसे लिखता है लाई बीजगणित अवयवों के उत्पादों के रैखिक संयोजन के रूप में।

घेरने वाले बीजगणित की सार्वभौमिक संपत्ति का तात्पर्य तुरंत यह है कि प्रत्येक प्रतिनिधित्व सदिश समष्टि पर कार्य करना के प्रतिनिधित्व तक विशिष्ट रूप से विस्तारित है . (लेना .) यह अवलोकन महत्वपूर्ण है क्योंकि यह कासिमिर अवयवों पर कार्रवाई करने की अनुमति देता है (जैसा कि नीचे चर्चा की गई है)। . यह ऑपरेटर (के केंद्र से) ) अदिश के रूप में कार्य करते हैं और अभ्यावेदन के बारे में महत्वपूर्ण जानकारी प्रदान करते हैं। इस संबंध में कासिमिर अवयव का विशेष महत्व है।

अन्य बीजगणित

यद्यपि ऊपर दिए गए विहित निर्माण को अन्य बीजगणित पर प्रयुक्त किया जा सकता है, परिणाम में, सामान्यतः, सार्वभौमिक संपत्ति नहीं होती है। इस प्रकार, उदाहरण के लिए, जब निर्माण को जॉर्डन बीजगणित पर प्रयुक्त किया जाता है, तब परिणामी आवरण बीजगणित में विशेष जॉर्डन बीजगणित होते हैं, किन्तु असाधारण नहीं: अर्थात, यह अल्बर्ट बीजगणित को कवर नहीं करता है। इसी तरह, नीचे पोंकारे-बिरखॉफ-विट प्रमेय, आवरण बीजगणित के लिए आधार का निर्माण करता है; यह सार्वभौमिक नहीं होगा. इसी तरह की टिप्पणियाँ लाई सुपरएलजेब्रा के लिए भी प्रयुक्त होती हैं।

पोंकारे-बिरखॉफ़-विट प्रमेय

पोंकारे-बिरखॉफ़-विट प्रमेय इसका त्रुटिहीन विवरण देता है. यह दो भिन्न-भिन्न तरीकों में से किसी में किया जा सकता है: या तब लाई बीजगणित पर स्पष्ट सदिश आधार के संदर्भ में, या समन्वय-मुक्त फैशन में।

आधार अवयवों का उपयोग करना

एक विधि यह मान लेना है कि लाई बीजगणित को पूरी तरह से व्यवस्थित आधार दिया जा सकता है, अर्थात, यह पूरी तरह से व्यवस्थित समुच्चय का मुक्त सदिश स्थान है। याद रखें कि मुक्त सदिश स्थान को समुच्चय X क्षेत्र में K से सभी परिमित समर्थित कार्यों के स्थान के रूप में परिभाषित किया गया है (अंततः समर्थित का अर्थ है कि केवल सीमित रूप से अनेक मान गैर-शून्य हैं) इसे आधार द्वारा दिया जा सकता है जैसे कि के लिए सूचक कार्य है . मान लीजिये से टेंसर बीजगणित में इंजेक्शन बनें होते है इसका उपयोग टेंसर बीजगणित को आधार देने के लिए भी किया जाता है। यह उठाने के द्वारा किया जाता है: कुछ इच्छानुसार अनुक्रम दिया गया , के विस्तार को परिभाषित करता है

पोंकारे-बिरखॉफ़-विट प्रमेय में कहा गया है कि कोई व्यक्ति बीजगणित पर X के कुल क्रम को लागू करके, उपरोक्त से ) के लिए आधार प्राप्त कर सकता है। अर्थात्, का एक आधार है

जहाँ , ऑर्डर समुच्चय X पर कुल ऑर्डर का होता है.[6] प्रमेय के प्रमाण में यह ध्यान देना सम्मिलित है कि, यदि कोई आउट-ऑफ़-ऑर्डर आधार अवयवों से प्रारंभ होता है, तब इन्हें सदैव कम्यूटेटर (संरचना स्थिरांक के साथ) का उपयोग करके स्वैप किया जा सकता है। प्रमाण का कठिन हिस्सा यह स्थापित करना है कि अंतिम परिणाम अद्वितीय है और उस क्रम से स्वतंत्र है जिसमें स्वैप किए गए थे।

इस आधार को सममित बीजगणित के आधार के रूप में आसानी से पहचाना जाना चाहिए। अर्थात्, के अंतर्निहित सदिश स्थान और सममित बीजगणित समरूपी है, और यह पीबीडब्ल्यू प्रमेय है जो दर्शाता है कि ऐसा है। चूँकि, समरूपता की प्रकृति के अधिक त्रुटिहीन विवरण के लिए, नीचे प्रतीकों के बीजगणित पर अनुभाग देखें।

संभवतः, प्रक्रिया को दो चरणों में विभाजित करना उपयोगी है। पहले चरण में, व्यक्ति मुक्त लाई बीजगणित का निर्माण करता है: यदि कोई सभी कम्यूटेटरों को मॉडिफाई करता है, तब उसे यही मिलता है, बिना यह निर्दिष्ट किये गये कम्यूटेटर के मान क्या हैं। दूसरा चरण विशिष्ट रूपान्तरण संबंधों को प्रयुक्त करना है पहला कदम सार्वभौमिक है, और विशिष्ट पर निर्भर नहीं करता है इसे त्रुटिहीन रूप से परिभाषित भी किया जा सकता है: आधार अवयव हॉल शब्द द्वारा दिए गए हैं, जिनमें से विशेष स्तिथि लिंडन शब्द हैं; इन्हें स्पष्ट रूप से कम्यूटेटर के रूप में उचित व्यवहार करने के लिए बनाया गया है।

समन्वय-मुक्त

कुल आदेशों और आधार अवयवों के उपयोग से बचते हुए, कोई भी प्रमेय को समन्वय-मुक्त विधिया से बता सकता है। यह तब सुविधाजनक होता है जब आधार वैक्टर को परिभाषित करने में कठिनाइयां होती हैं, जैसा कि अनंत-आयामी लाई बीजगणित के लिए हो सकता है। यह अधिक प्राकृतिक रूप भी देता है जिसे अन्य प्रकार के बीजगणित तक अधिक आसानी से बढ़ाया जा सकता है। यह निस्पंदन (गणित) का निर्माण करके पूरा किया जाता है जिसकी सीमा सार्वभौमिक आवरण बीजगणित है

सबसे पहले, टेंसर बीजगणित के उप-स्थानों के आरोही क्रम के लिए अंकन की आवश्यकता होती है। मान लीजिये

जहाँ

यह है -m टाइम्स टेंसर उत्पाद का h> (गणित) निस्पंदन बनाते है

अधिक त्रुटिहीन रूप से, यह फ़िल्टर्ड बीजगणित है, क्योंकि निस्पंदन उप-स्थानों के बीजगणितीय गुणों को संरक्षित करता है। ध्यान दें कि इस निस्पंदन की सीमा (श्रेणी सिद्धांत) टेंसर बीजगणित है

ऊपर, यह पहले से ही स्थापित किया गया था कि आदर्श द्वारा उद्धरण देना प्राकृतिक परिवर्तन है जो व्यक्ति को को आगे ले जाता है यह स्वाभाविक रूप से उप-स्थानों पर भी काम करता है, और इस प्रकार व्यक्ति को निस्पंदन प्राप्त होता है जिसकी सीमा सार्वभौमिक आवरण बीजगणित है

इसके पश्चात्, स्थान को परिभाषित करते है

यह सख्ती से छोटे निस्पंदन डिग्री के सभी उप-स्थानों का स्थान मॉड्यूलो है। ध्यान दें कि निस्पंदन के प्रमुख शब्द के बिल्कुल समान नहीं है, जैसा कि कोई भी सरलता से अनुमान लगा सकता है। इसका निर्माण निस्पंदन से जुड़े एक सेट घटाव तंत्र के माध्यम से नहीं किया गया है।

को से उद्धृत करने पर में परिभाषित सभी लाई कम्यूटेटर को शून्य पर समुच्चय करने का प्रभाव पड़ता है। शून्य करने के लिए. इसे कोई यह देख कर देख सकता है कि अवयवों की जोड़ी का कम्यूटेटर जिनके उत्पादों में निहित है वास्तव में अवयव देता है . यह संभवतः तुरंत स्पष्ट नहीं है: इस परिणाम को प्राप्त करने के लिए, व्यक्ति को बार-बार कम्यूटेशन संबंधों को प्रयुक्त करना होगा, और क्रैंक को घुमाना होगा। पोंकारे-बिरखॉफ़-विट प्रमेय का सार यह है कि ऐसा करना सदैव संभव है, और परिणाम अद्वितीय है।

चूंकि अवयवों के कम्यूटेटर जिनके उत्पादों को परिभाषित किया गया है में स्थित हैं ,इसीलिए वह उद्धरण है जो परिभाषित करता है कि सभी कम्यूटेटरों को शून्य पर समुच्चय करने का प्रभाव है। पीबीडब्ल्यू का कहना है कि अवयवों का कम्यूटेटर अनिवार्य रूप से शून्य है. जो बचे हैं वह ऐसे अवयव हैं जिन्हें कम्यूटेटर के रूप में व्यक्त नहीं किया जा सकता है।

इस तरह, व्यक्ति को तुरंत सममित बीजगणित की ओर ले जाया जाता है। यह बीजगणित है जहां सभी कम्यूटेटर गायब हो जाते हैं। इसे सममित टेंसर उत्पादों का के निस्पंदन के रूप में परिभाषित किया जा सकता है. इसकी सीमा सममित बीजगणित है इसका निर्माण पहले की तरह प्राकृतिकता की उसी धारणा की अपील द्वारा किया गया है। कोई ही टेंसर बीजगणित से प्रारंभ करता है, और बस भिन्न आदर्श का उपयोग करता है, वह आदर्श जो सभी अवयवों को परिवर्तित करता है:

इस प्रकार, कोई पोंकारे-बिरखॉफ़-विट प्रमेय को यह बताते हुए देख सकता है कि सममित बीजगणित के लिए समरूपी है, दोनों सदिश समष्टि और क्रमविनिमेय बीजगणित दोनों के रूप में।

h> फ़िल्टर्ड बीजगणित भी बनाते हैं; इसकी सीमा है यह निस्पंदन का संबद्ध श्रेणीबद्ध बीजगणित है।

उपरोक्त निर्माण, भागफल के उपयोग के कारण, यह दर्शाता है कि की सीमा के लिए समरूपी है और अधिक सामान्य सेटिंग्स में, ढीली शर्त के साथ, कोई ऐसा पाता है जो कि प्रक्षेपण है, और फिर फ़िल्टर किए गए बीजगणित के संबंधित श्रेणीबद्ध बीजगणित के लिए पीबीडब्ल्यू-प्रकार के प्रमेय प्राप्त होते हैं। इस पर जोर देने के लिए, संकेतन का उपयोग कभी-कभी के लिए प्रयोग किया जाता है यह याद दिलाने के लिए कि यह फ़िल्टर किया हुआ बीजगणित है।

`अन्य बीजगणित

जॉर्डन बीजगणित पर प्रयुक्त प्रमेय, सममित बीजगणित के अतिरिक्त बाहरी बीजगणित उत्पन्न करता है। संक्षेप में, निर्माण विरोधी कम्यूटेटर को शून्य कर देता है। परिणामी बीजगणित आवरण बीजगणित है, किन्तु सार्वभौमिक नहीं है। जैसा कि ऊपर उल्लेख किया गया है, यह असाधारण जॉर्डन बीजगणित को कवर करने में विफल रहता है।

वाम-अपरिवर्तनीय अंतर ऑपरेटर

मान लीजिए लाई बीजगणित के साथ वास्तविक लाई समूह है आधुनिक दृष्टिकोण अपनाकर हम पहचान सकते हैं कि बाएं-अपरिवर्तनीय सदिश क्षेत्र के स्थान के साथ (अर्थात, प्रथम-क्रम बाएं-अपरिवर्तनीय अंतर ऑपरेटर)। विशेष रूप से, यदि हम प्रारंभ में पहचान पर को स्पर्शरेखा स्थान के रूप में सोचते हैं , फिर प्रत्येक सदिश में अद्वितीय वाम-अपरिवर्तनीय विस्तार है। फिर हम संबंधित बाएं-अपरिवर्तनीय सदिश क्षेत्र के साथ स्पर्शरेखा स्थान में सदिश की पहचान करते हैं। अभी, दो बाएं-अपरिवर्तनीय सदिश क्षेत्र का कम्यूटेटर (अंतर ऑपरेटर के रूप में) फिर से सदिश क्षेत्र है और फिर से बाएं-अपरिवर्तनीय है। फिर हम ब्रैकेट ऑपरेशन को परिभाषित कर सकते हैं संबंधित वाम-अपरिवर्तनीय सदिश क्षेत्र पर कम्यूटेटर के रूप में।[7] यह परिभाषा लाई समूह के लाई बीजगणित पर ब्रैकेट संरचना की किसी भी अन्य मानक परिभाषा से सहमत है।

फिर हम इच्छानुसार क्रम के वाम-अपरिवर्तनीय अंतर संचालकों पर विचार कर सकते हैं। ऐसे हर ऑपरेटर को बाएं-अपरिवर्तनीय सदिश क्षेत्र के उत्पादों के रैखिक संयोजन के रूप में (गैर-विशिष्ट रूप से) व्यक्त किया जा सकता है। पर सभी वाम-अपरिवर्तनीय अंतर संचालकों का संग्रह बीजगणित बनाता है, जिसे दर्शाया गया है। . ऐसा दिखाया जा सकता है सार्वभौमिक आवरण बीजगणित के समरूपी है .[8]

उस स्तिथियां में वास्तविक लाई समूह के लाई बीजगणित के रूप में उत्पन्न होता है, कोई पोंकारे-बिरखॉफ-विट प्रमेय का विश्लेषणात्मक प्रमाण देने के लिए बाएं-अपरिवर्तनीय अंतर संचालकों का उपयोग कर सकता है। विशेष रूप से, बाएं-अपरिवर्तनीय अंतर संचालकों का बीजगणित निर्माण उन अवयवों (बाएं-अपरिवर्तनीय सदिश फ़ील्ड) द्वारा उत्पन्न किया जाता है जो कम्यूटेशन संबंधों को संतुष्ट करते हैं . इस प्रकार, आवरण बीजगणित की सार्वभौमिक संपत्ति के अनुसार का भागफल होता है . इस प्रकार, यदि पीबीडब्लू आधार अवयव में रैखिक रूप से स्वतंत्र हैं -जिसे कोई विश्लेषणात्मक रूप से स्थापित कर सकता है - उन्हें निश्चित रूप से रैखिक रूप से स्वतंत्र होना चाहिए . (और, इस बिंदु पर, की समरूपता साथ स्पष्ट है।)

प्रतीकों का बीजगणित

का अंतर्निहित सदिश स्थान नई बीजगणित संरचना दी जा सकती है जिससे कि और साहचर्य बीजगणित के रूप में समरूपी हैं। इससे 'प्रतीकों के बीजगणित' की अवधारणा सामने आती है सममित बहुपदो का स्थान, गुणनफल से संपन्न , जो लाई बीजगणित की बीजगणितीय संरचना को अन्यथा मानक साहचर्य बीजगणित पर रखता है। अर्थात्, जिसे पीबीडब्ल्यू प्रमेय अस्पष्ट करता है (कम्यूटेशन संबंध), प्रतीकों का बीजगणित उसे सुर्खियों में पुनर्स्थापित करता है।

बीजगणित के अवयवों को लेकर प्राप्त किया जाता है और प्रत्येक जनरेटर को बदलना अनिश्चित,आवागमनशील वेरिएबल को बदलकर क्षेत्र पर सममित बहुपद का स्थान प्राप्त करने के द्वारा प्राप्त किया जाता है। वास्तव में, पत्राचार तुच्छ है: कोई केवल के लिए प्रतीक को प्रतिस्थापित करता है . परिणामी बहुपद को इसके संगत अवयव का प्रतीक कहा जाता है जो कि उलटा नक्शा है

जो प्रत्येक प्रतीक द्वारा को प्रतिस्थापित करता है . बीजगणितीय संरचना उस उत्पाद की आवश्यकता के द्वारा प्राप्त की जाती है समरूपता के रूप में कार्य करें, अर्थात, जिससे कि

बहुपदों के लिए

इस निर्माण के साथ प्राथमिक उद्देश्य यही है जैसा कि लिखा गया है तुच्छ रूप से तथा स्वाभाविक रूप से इसका सदस्य नहीं है, , , और उचित रूप से क्रमबद्ध आधार में का अवयव प्राप्त करने के लिए सबसे पहले आधार अवयवों (आवश्यकतानुसार संरचना स्थिरांक को प्रयुक्त करना) का कठिन परिवर्तन करना होगा । इस उत्पाद के लिए स्पष्ट अभिव्यक्ति दी जा सकती है: यह बेरेज़िन सूत्र है।[9] यह अनिवार्य रूप से लाई समूह के दो अवयवों के उत्पाद के लिए बेकर-कैंपबेल-हॉसडॉर्फ सूत्र का अनुसरण करता है।

एक संवर्त रूप अभिव्यक्ति द्वारा दिया गया है[10]

जहाँ

और बस है चुने हुए आधार पर.

हाइजेनबर्ग बीजगणित का सार्वभौमिक आवरण बीजगणित वेइल बीजगणित है (संबंधित मापांक कि केंद्र इकाई है); जहाँ ही उत्पाद को मोयल उत्पाद कहा जाता है।

प्रतिनिधित्व सिद्धांत

सार्वभौमिक आवरण बीजगणित प्रतिनिधित्व सिद्धांत को संरक्षित करता है: लाई बीजगणित का प्रतिनिधित्व मॉड्यूल (गणित) के ऊपर एक-से-एक विधिया से मेल करें. अधिक अमूर्त शब्दों में, लाई बीजगणित के सभी प्रतिनिधित्व की एबेलियन श्रेणी सभी बाएँ मॉड्यूल की एबेलियन श्रेणी के लिए श्रेणियों की समरूपता है .

अर्धसरल लाई बीजगणित का प्रतिनिधित्व सिद्धांत इस अवलोकन पर आधारित है कि समरूपता है, जिसे क्रोनकर गुणांक के रूप में जाना जाता है:

लाई बीजगणित के लिए . एम्बेडिंग को उठाने से समरूपता उत्पन्न होती है

जहाँ

केवल विहित एम्बेडिंग है (क्रमशः बीजगणित और दो के लिए सबस्क्रिप्ट के साथ)। ऊपर दिए गए नुस्खे के अनुसार, यह सत्यापित करना सीधा है कि यह एम्बेडिंग ऊपर उठती है। चूँकि, ऐसा करने के कुछ उत्तम बिंदुओं की समीक्षा के लिए टेंसर बीजगणित पर लेख में बायलजेब्रा संरचना की चर्चा देखें: विशेष रूप से, वहां नियोजित शफ़ल उत्पाद विग्नर-राका गुणांक, अर्थात 6j-प्रतीक और 9j-प्रतीक आदि से मेल खाता है। ,।

यह भी महत्वपूर्ण है कि मुक्त लाई बीजगणित का सार्वभौमिक आवरण बीजगणित मुक्त साहचर्य बीजगणित के लिए समरूपी है।

अभ्यावेदन का निर्माण सामान्यतः उच्चतम वजन के वर्मा मॉड्यूल के निर्माण से होता है।

एक विशिष्ट संदर्भ में जहां के अवयव अनंत सूक्ष्म परिवर्तनों द्वारा कार्य कर रहा है, सभी आदेशों के विभेदक संचालकों की तरह कार्य करें। (उदाहरण के लिए, संबंधित समूह पर बाएं-अपरिवर्तनीय अंतर संचालकों के रूप में सार्वभौमिक आवरण बीजगणित की प्राप्ति देखें, जैसा कि ऊपर चर्चा की गई है।)

कैसिमिर ऑपरेटर्स

बीजगणित का केंद्र है और के केंद्रीकरणकर्ता में से पहचाना जा सकता है का कोई भी अवयव सभी के साथ आना-जाना चाहिए और विशेष रूप से विहित एम्बेडिंग के साथ में इस वजह से, केंद्र सीधे तौर पर अभ्यावेदन को वर्गीकृत करने के लिए उपयोगी है . परिमित-आयामी अर्धसरल लाई बीजगणित के लिए, कासिमिर ऑपरेटर केंद्र से विशिष्ट आधार बनाते हैं . इनका निर्माण निम्नानुसार किया जा सकता है।

मध्य में सभी अवयवों के रैखिक संयोजन से मेल खाता है जो सभी अवयवों के साथ आवागमन करता है अर्थात, जिसके लिए अर्थात् वह के मूल में हैं इस प्रकार, उस कर्नेल की गणना के लिए विधि की आवश्यकता है। हमारे पास जो कुछ है वह आसन्न प्रतिनिधित्व की कार्रवाई है हमें इसकी आवश्यकता ह ैोती ह सबसे आसान मार्ग यह नोट करना है व्युत्पत्ति (अमूर्त बीजगणित) है, और व्युत्पत्ति के स्थान को ऊपर उठाया जा सकता है और इस प्रकार इसका तात्पर्य यह है कि यहदोनों विभेदक बीजगणित हैं।


परिभाषा से, पर व्युत्पत्ति है यदि यह उत्पाद नियम का पालन करता है|लीबनिज़ का नियम:

(तब समूह पर बाएँ अपरिवर्तनीय सदिश क्षेत्र का स्थान है लाई ब्रैकेट सदिश क्षेत्र का है।) लिफ्टिंग को परिभाषित करके किया जाता है

तब से किसी के लिए व्युत्पत्ति है उपरोक्त परिभाषित करता है अभिनय कर रहे और पीबीडब्ल्यू प्रमेय से, यह स्पष्ट है कि सभी केंद्रीय अवयव आधार अवयवों में सममित समरूप बहुपदों के रैखिक संयोजन हैं लाई बीजगणित का. कासिमिर अपरिवर्तनीय दी गई, निश्चित डिग्री के अपरिवर्तनीय समरूप बहुपद हैं। अर्थात आधार दिया गया है , ऑर्डर का कासिमिर ऑपरेटर रूप है

वहां हैं जहां टेंसर उत्पाद में शर्तें, और क्रम का पूर्णतः सममित टेंसर है आसन्न प्रतिनिधित्व से संबंधित। वह है, के अवयव के रूप में सोचा जा सकता है (होना चाहिए)। याद रखें कि आसन्न प्रतिनिधित्व सीधे संरचना स्थिरांक द्वारा दिया जाता है, और इसलिए उपरोक्त समीकरणों का स्पष्ट अनुक्रमित रूप,लाई बीजगणित आधार के संदर्भ में दिया जा सकता है; यह मूल रूप से इज़राइल गेलफैंड का प्रमेय है। अर्थात्, से , यह इस प्रकार है कि

जहां संरचना स्थिरांक हैं

उदाहरण के रूप में , द्विघात कासिमिर ऑपरेटर है

जहाँ संहार रूप का व्युत्क्रम आव्युह है वह कासिमिर ऑपरेटर केंद्र का है इस तथ्य से पता चलता है कि संयुक्त कार्रवाई के अनुसार हत्या का रूप अपरिवर्तनीय है।

एक सरल बीजगणित के सार्वभौमिक आवरण बीजगणित का केंद्र हरीश-चंद्र समरूपता द्वारा विस्तार से दिया गया है।

रैंक

एक परिमित-आयामी अर्धसरल लाई बीजगणित के बीजगणितीय रूप से स्वतंत्र कासिमिर संचालकों की संख्या उस बीजगणित की रैंक के सामान्तर है, अर्थात शेवेल्ली आधार | कार्टन-वेइल आधार की रैंक के सामान्तर है। इसे इस प्रकार देखा जा सकता है। के लिए d-आयामी सदिश समष्टि V, याद रखें कि निर्धारक पूरी तरह से एंटीसिमेट्रिक टेंसर है . आव्युह दिया गया M, कोई इसका लक्षण बहुपद लिख सकता है M जैसा

एक के लिए d-आयामी लाई बीजगणित, अर्थात, बीजगणित जिसका लाई बीजगणित का सहायक प्रतिनिधित्व है d-आयामी, रैखिक ऑपरेटर

इसका आशय है है d-आयामी एंडोमोर्फिज्म, और इसलिए विशेषता समीकरण है

अवयवों के लिए इस विशेषता बहुपद की गैर-शून्य जड़ें (जो सभी के लिए जड़ें हैं x) बीजगणित की मूल प्रणाली बनाते हैं। सामान्यतः, वहाँ ही हैं r ऐसी जड़ें;है यह बीजगणित की श्रेणी है. इसका तात्पर्य यह है कि का उच्चतम मूल्य n जिसके लिए न मिटने वाला है r. h> डिग्री के सजातीय बहुपद हैं d − n. इसे अनेक तरीकों से देखा जा सकता है: स्थिरांक दिया गया , विज्ञापन रैखिक है, इसलिए उपरोक्त में प्लग और चुग करने से व्यक्ति उसे प्राप्त कर लेता है

रैखिकता से, यदि कोई आधार में विस्तार करता है,

तब बहुपद का रूप होता है

वह रैंक का टेंसर है . रैखिकता और जोड़ की क्रमपरिवर्तनशीलता द्वारा, अर्थात , कोई यह निष्कर्ष निकालता है कि यह टेंसर पूरी तरह से सममित होना चाहिए। यह टेंसर वास्तव में ऑर्डर का कासिमिर अपरिवर्तनीय है m.

मध्य में उन अवयवों के अनुरूप जिसके लिए सभी x; के लिए उपरोक्त के अनुसार, यहस्पष्ट रूप से विशेषता समीकरण की जड़ों से मेल खाते हैं। कोई यह निष्कर्ष निकालता है कि जड़ें रैंक का स्थान बनाती हैं r और यह कि कासिमिर अपरिवर्तनीय इस स्थान तक फैले हुए हैं। अर्थात्, कासिमिर अपरिवर्तनीय केंद्र उत्पन्न करते हैं


उदाहरण: घूर्णन समूह SO(3)

रोटेशन समूह SO(3) रैंक का है, और इस प्रकार इसमें कासिमिर ऑपरेटर है। यह त्रि-आयामी है, और इस प्रकार कासिमिर ऑपरेटर का क्रम (3 − 1) = 2 होना चाहिए अर्थात द्विघात होना चाहिए। बेशक, यह लाई बीजगणित है प्राथमिक अभ्यास के रूप में, कोई इसकी सीधे गणना कर सकता है। आसन्न प्रतिनिधि से संबंधित के साथ अंकन को में बदलने पर, एक सामान्य बीजगणित अवयव होता है और प्रत्यक्ष गणना देता है

द्विघात पद को के रूप में पढ़ा जा सकता है , और इसलिए रोटेशन समूह के लिए वर्ग कोणीय गति ऑपरेटर वह कासिमिर ऑपरेटर है। वह है,

और स्पष्ट गणना यह दर्शाती है

संरचना स्थिरांक का उपयोग करने के पश्चात्


उदाहरण: छद्म-अंतर ऑपरेटर

के निर्माण के समय प्रमुख अवलोकन ऊपर यह था कि यह विभेदक बीजगणित था, इस तथ्य के आधार पर कि लाई बीजगणित पर किसी भी व्युत्पत्ति को उठाया जा सकता है . इस प्रकार, किसी को छद्म-विभेदक संचालकों की अंगूठी की ओर ले जाया जाता है, जहां से कोई कासिमिर इनवेरिएंट का निर्माण कर सकता है।

यदि लाई बीजगणित रैखिक संचालकों के स्थान पर कार्य करता है, जैसे कि फ्रेडहोम सिद्धांत में, फिर कोई संचालकों के संबंधित स्थान पर कासिमिर इनवेरिएंट का निर्माण कर सकता है। द्विघात कासिमिर ऑपरेटर अण्डाकार ऑपरेटर से मेल खाता है।

यदि लाई बीजगणित विभेदक मैनिफोल्ड पर कार्य करता है, तब प्रत्येक कासिमिर ऑपरेटर कोटैंजेंट मैनिफोल्ड पर उच्च-क्रम अंतर से मेल खाता है, दूसरे क्रम का अंतर सबसे सामान्य और सबसे महत्वपूर्ण है।

यदि बीजगणित की क्रिया आइसोमेट्री समूह है, जैसा कि मीट्रिक और समरूपता समूह एसओ(एन) और अनिश्चित ऑर्थोगोनल समूह| एसओ (पी, क्यू) से संपन्न [[छद्म-रीमैनियन मैनिफोल्ड]] या छद्म-रिमैनियन मैनिफोल्ड के स्तिथियां में होगा, क्रमशः, फिर अधिक रोचक संरचनाएं प्राप्त करने के लिए ऊपरी और निचले सूचकांकों (मीट्रिक टेंसर के साथ) को अनुबंधित कर सकते हैं। द्विघात कासिमिर अपरिवर्तनीय के लिए, यह लाप्लासियन है। क्वार्टिक कासिमिर संचालक यांग-मिल्स कार्रवाई को जन्म देते हुए, तनाव-ऊर्जा टेंसर को वर्गाकार करने की अनुमति देते हैं। कोलमैन-मंडुला प्रमेय उस रूप को प्रतिबंधित करता है जो यहले सकते हैं, जब कोई सामान्य लाई बीजगणित पर विचार करता है। चूँकि,लाई सुपरएलजेब्रा कोलमैन-मंडुला प्रमेय के परिसर से बचने में सक्षम हैं, और इसका उपयोग अंतरिक्ष और आंतरिक समरूपता को साथ मिलाने के लिए किया जा सकता है।

विशेष स्तिथियों में उदाहरण

यदि , तब इसका आधार आव्यूह

है

जो मानक ब्रैकेट के अंतर्गत निम्नलिखित पहचान को संतुष्ट करता है:

, , और

यह हमें दिखाता है कि सार्वभौमिक आवरण बीजगणित की प्रस्तुति

है एक गैर-कम्यूटेटिव रिंग के रूप में।

यदि एबेलियन है (अर्थात, ब्रैकेट सदैव है 0), तब क्रमविनिमेय है; और यदि सदिश समष्टि का आधार (रैखिक बीजगणित) है। तब फिर चुना गया है तब को K बहुपद बीजगणित से पहचाना जा सकता है , प्रति आधार अवयव वेरिएबल के साथ दर्शाया गया ।

यदि लाई समूह G के अनुरूप लाई बीजगणित है , तब G बाएं-अपरिवर्तनीय अंतर संचालकों (सभी आदेशों के) के बीजगणित से पहचाना जा सकता है प्रथम-क्रम विभेदक संचालकों के रूप में बाएं-अपरिवर्तनीय सदिश क्षेत्र के रूप में इसके अंदर झूठ बोलने वाले के साथ।

उपरोक्त दो स्तिथियों को जोड़ने के लिए: यदि एबेलियन ले बीजगणित के रूप में सदिश स्थान V है, बाएं-अपरिवर्तनीय अंतर ऑपरेटर स्थिर गुणांक ऑपरेटर हैं, जो वास्तव में पहले क्रम के आंशिक व्युत्पन्न में बहुपद बीजगणित हैं।

मध्य में इसमें बाएँ और दाएँ-अपरिवर्तनीय अंतर ऑपरेटर सम्मिलित हैं; इस, G के स्तिथियां में क्रमविनिमेय नहीं है, अधिकांशतः प्रथम-क्रम संचालकों द्वारा उत्पन्न नहीं होता है (उदाहरण के लिए अर्ध-सरल लाई बीजगणित का कासिमिर ऑपरेटर देखें)।

लाई समूह सिद्धांत में और लक्षण वर्णन है जो कि वितरण (गणित) के दृढ़ बीजगणित के रूप में समर्थन (गणित) या वितरण का समर्थन केवल G. पहचान अवयव e पर वितरित किया जाता है

विभेदक संचालकों का बीजगणित n बहुपद गुणांक वाले वेरिएबल हाइजेनबर्ग समूह के लाई बीजगणित से प्रारंभ करके प्राप्त किए जा सकते हैं। इसके लिए वेइल बीजगणित देखें; किसी को भागफल अवश्य लेना चाहिए, जिससे कि लाई बीजगणित के केंद्रीय अवयव निर्धारित अदिश के रूप में कार्य करें।

एक परिमित-आयामी लाई बीजगणित का सार्वभौमिक आवरण बीजगणित फ़िल्टर्ड द्विघात बीजगणित है।

हॉपफ बीजगणित और क्वांटम समूह

किसी दिए गए समूह (गणित) के लिए समूह वलय का निर्माण अनेक मायनों में किसी दिए गए बीजगणित के लिए सार्वभौमिक आवरण बीजगणित के निर्माण के समान है। दोनों निर्माण सार्वभौमिक हैं और प्रतिनिधित्व सिद्धांत को मॉड्यूल सिद्धांत में अनुवादित करते हैं। इसके अतिरिक्त, समूह बीजगणित और सार्वभौमिक आवरण बीजगणित दोनों में प्राकृतिक कोलजेब्रा होता है जो उन्हें हॉपफ बीजगणित में बदल देता है। इसे टेंसर बीजगणित पर लेख में त्रुटिहीन बनाया गया है: टेंसर बीजगणित पर हॉपफ बीजगणित संरचना होती है, और क्योंकिलाई ब्रैकेट हॉपफ संरचना के अनुरूप है (इसके लिए स्थिरता की शर्तबं का पालन करता है), यह सार्वभौमिक आवरण बीजगणित द्वारा विरासत में मिला है .

एक लाई समूह G दिया गया , कोई व्यक्ति G पर निरंतर समष्टि-मूल्यवान कार्यों पर सदिश समष्टि C(G) का निर्माण कर सकता है, और इसे C*-बीजगणित में बदल दें। इस बीजगणित में प्राकृतिक हॉपफ बीजगणित संरचना है: इसमें दो कार्य दिए गए है कोई गुणन को इस प्रकार परिभाषित करता है

और सहगुणन के रूप में

इकाई के रूप में

और एंटीपोड के रूप में

अभी, गेलफैंड-नैमार्क प्रमेय अनिवार्य रूप से बताता है कि प्रत्येक क्रमविनिमेय हॉपफ बीजगणित कुछ कॉम्पैक्ट टोपोलॉजिकल समूह G पर निरंतर कार्यों के हॉपफ बीजगणित के लिए आइसोमोर्फिक है। —कॉम्पैक्ट टोपोलॉजिकल समूहों का सिद्धांत और क्रमविनिमेय हॉपफ बीजगणित का सिद्धांत समान हैं। लाई समूहों के लिए, इसका तात्पर्य यह है C(G) समरूपी रूप से दोहरा है ; अधिक त्रुटिहीन रूप से, यह दोहरे स्थान के उप-स्थान के लिए समरूपी है

फिर इन विचारों को गैर-अनुक्रमणीय स्तिथियां तक बढ़ाया जा सकता है। अर्ध-त्रिकोणीय हॉपफ बीजगणित को परिभाषित करने से प्रारंभ होता है, और फिर संक्षेप में क्वांटम सार्वभौमिक आवरण बीजगणित, या क्वांटम समूह प्राप्त करने के लिए क्वांटम विरूपण कहा जाता है।

यह भी देखें

  • मिल्नोर-मूर प्रमेय
  • हरीश-चंद्र समरूपता

संदर्भ

  1. Hall 2015 Section 9.5
  2. Hall 2015 Section 9.3
  3. Perez-Izquierdo, J.M.; Shestakov, I.P. (2004). "मालसेव बीजगणित के लिए एक लिफाफा". Journal of Algebra. 272: 379–393. doi:10.1016/s0021-8693(03)00389-2. hdl:10338.dmlcz/140108.
  4. Perez-Izquierdo, J.M. (2005). "बोल बीजगणित के लिए एक लिफाफा". Journal of Algebra. 284 (2): 480–493. doi:10.1016/j.jalgebra.2004.09.038.
  5. Hall 2015 Theorem 9.7
  6. Hall 2015 Theorem 9.10
  7. E.g. Helgason 2001 Chapter II, Section 1
  8. Helgason 2001 Chapter II, Proposition 1.9
  9. Berezin, F.A. (1967). "लाई बीजगणित के संबंधित लिफ़ाफ़े के बारे में कुछ टिप्पणियाँ". Funct. Anal. Appl. 1 (2): 91. doi:10.1007/bf01076082.
  10. Xavier Bekaert, "Universal enveloping algebras and some applications in physics" (2005) Lecture, Modave Summer School in Mathematical Physics.