हिरज़ेब्रुच सतह: Difference between revisions
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
=== [[जीआईटी भागफल]] === | === [[जीआईटी भागफल]] === | ||
हिरज़ेब्रुच सतह के निर्माण की एक विधि जीआईटी भागफल का उपयोग करना है<ref name=":0">{{cite arXiv | last=Manetti | first=Marco | date=2005-07-14|title=जटिल मैनिफोल्ड्स की विकृतियों पर व्याख्यान| eprint=math/0507286}}</ref>{{rp|21}}<math display="block">\Sigma_n = (\Complex^2-\{0\})\times (\Complex^2-\{0\})/(\Complex^*\times\Complex^*)</math>जहां <math>\Complex^*\times\Complex^*</math> की क्रिया दी गई है<math display="block">(\lambda, \mu)\cdot(l_0,l_1,t_0,t_1) = (\lambda l_0, \lambda l_1, \mu t_0,\lambda^{-n}\mu t_1)</math>इस क्रिया की व्याख्या इस प्रकार की जा सकती है कि पहले दो कारकों पर <math>\lambda</math> की क्रिया <math>\mathbb{P}^1</math> को परिभाषित करने वाले <math>\Complex^*</math> पर <math>\Complex^2 - \{0\}</math> की क्रिया से आती है, और दूसरी क्रिया <math>\mathbb{P}^1</math> पर लाइन बंडलों के प्रत्यक्ष योग के निर्माण और उनके प्रक्षेपीकरण का एक संयोजन है। प्रत्यक्ष योग <math>\mathcal{O}\oplus \mathcal{O}(-n)</math> के लिए इसे भागफल विविधता द्वारा दिया जा सकता है<ref name=":0" />{{rp|24}}<math display="block">\mathcal{O}\oplus \mathcal{O}(-n) = (\Complex^2-\{0\})\times \Complex^2/\Complex^*</math>जहां <math>\Complex^*</math>की क्रिया दी गई है<math display="block">\lambda \cdot (l_0,l_1,t_0,t_1) = (\lambda l_0, \lambda l_1,\lambda^a t_0, \lambda^0 t_1 = t_1)</math>फिर, प्रक्षेपीकरण <math>\mathbb{P}(\mathcal{O}\oplus\mathcal{O}(-n))</math> एक अन्य <math>\Complex^*</math>-एक्शन द्वारा एक तुल्यता वर्ग <math>[l_0,l_1,t_0,t_1] \in\mathcal{O}\oplus\mathcal{O}(-n)</math> भेजकर दिया जाता है।<ref name=":0" />{{rp|22}}<math display="block">\mu \cdot [l_0,l_1,t_0,t_1] = [l_0,l_1,\mu t_0,\mu t_1]</math>इन दोनों क्रियाओं को मिलाने से मूल भागफल ऊपर आ जाता है। | |||
हिरज़ेब्रुच सतह के निर्माण की एक विधि जीआईटी भागफल का उपयोग करना है<ref name=":0">{{cite arXiv | last=Manetti | first=Marco | date=2005-07-14|title=जटिल मैनिफोल्ड्स की विकृतियों पर व्याख्यान| eprint=math/0507286}}</ref>{{rp|21}}<math display="block">\Sigma_n = (\Complex^2-\{0\})\times (\Complex^2-\{0\})/(\Complex^*\times\Complex^*) | |||
</math>जहां <math>\Complex^*\times\Complex^*</math> की क्रिया दी गई है<math display="block">(\lambda, \mu)\cdot(l_0,l_1,t_0,t_1) = (\lambda l_0, \lambda l_1, \mu t_0,\lambda^{-n}\mu t_1)</math>इस क्रिया की व्याख्या इस प्रकार की जा सकती है कि पहले दो कारकों पर <math>\lambda</math> की क्रिया <math>\mathbb{P}^1</math> को परिभाषित करने वाले <math>\Complex^*</math> पर <math>\Complex^2 - \{0\}</math> की क्रिया से आती है, और दूसरी क्रिया <math>\mathbb{P}^1</math> पर लाइन बंडलों के प्रत्यक्ष योग के निर्माण और उनके प्रक्षेपीकरण का एक संयोजन है। प्रत्यक्ष योग <math>\mathcal{O}\oplus \mathcal{O}(-n)</math> के लिए इसे भागफल विविधता द्वारा दिया जा सकता है<ref name=":0" />{{rp|24}}<math display="block">\mathcal{O}\oplus \mathcal{O}(-n) = (\Complex^2-\{0\})\times \Complex^2/\Complex^*</math>जहां <math>\Complex^*</math>की क्रिया दी गई है<math display="block">\lambda \cdot (l_0,l_1,t_0,t_1) = (\lambda l_0, \lambda l_1,\lambda^a t_0, \lambda^0 t_1 = t_1)</math>फिर, प्रक्षेपीकरण <math>\mathbb{P}(\mathcal{O}\oplus\mathcal{O}(-n))</math> एक अन्य <math>\Complex^*</math>-एक्शन द्वारा एक तुल्यता वर्ग <math>[l_0,l_1,t_0,t_1] \in\mathcal{O}\oplus\mathcal{O}(-n)</math> भेजकर दिया जाता है।<ref name=":0" />{{rp|22}}<math display="block">\mu \cdot [l_0,l_1,t_0,t_1] = [l_0,l_1,\mu t_0,\mu t_1]</math>इन दोनों क्रियाओं को मिलाने से मूल भागफल ऊपर आ जाता है। | |||
=== संक्रमण मानचित्र === | === संक्रमण मानचित्र === |
Revision as of 11:50, 22 July 2023
गणित में, हिरज़ेब्रुच सतह प्रक्षेप्य रेखा के ऊपर एक निर्णयिक सतह होती है। इनका अध्ययन Friedrich Hirzebruch (1951) द्वारा किया गया था।
परिभाषा
हिरज़ेब्रुच सतह -बंडल है, जिसे प्रोजेक्टिव बंडल कहा जाता है, जो शीफ़ से जुड़े से अधिक है
जीआईटी भागफल
हिरज़ेब्रुच सतह के निर्माण की एक विधि जीआईटी भागफल का उपयोग करना है[1]: 21
संक्रमण मानचित्र
इस -बंडल को बनाने का एक विधि ट्रांज़िशन फलन का उपयोग करना है। चूँकि एफ़िन सदिश बंडल आवश्यक रूप से तुच्छ हैं, द्वारा परिभाषित के चार्ट पर बंडल का स्थानीय मॉडल है
गुण
प्रक्षेप्य रैंक 2 बंडल P1 के ऊपर
ध्यान दें कि ग्रोथेंडिक के प्रमेय के अनुसार, किसी भी सदिश बंडल के लिए पर संख्याएं हैं जैसे कि
हिरज़ेब्रुच सतहों की समरूपताएँ
विशेष रूप से, उपरोक्त अवलोकन बीच में एक समरूपता देता है और चूँकि समरूपता सदिश बंडल है
संबंधित सममित बीजगणित का विश्लेषण
याद रखें कि प्रोजेक्टिव बंडलों का निर्माण सापेक्ष परियोजना का उपयोग करके किया जा सकता है, जो कि बीजगणित के श्रेणीबद्ध शीफ से बनता है
प्रतिच्छेदन सिद्धांत
n > 0 के लिए हिरज़ेब्रुक सतहों पर एक विशेष तर्कसंगत वक्र C होता है: सतह O(−n) का प्रक्षेप्य बंडल है और वक्र C शून्य खंड है। इस वक्र में स्व-प्रतिच्छेदन संख्या −n है, और यह ऋणात्मक स्व-प्रतिच्छेदन संख्या वाला एकमात्र अपरिवर्तनीय वक्र है। शून्य स्व-प्रतिच्छेदन संख्या वाले एकमात्र अघुलनशील वक्र हिरज़ेब्रुक सतह के फाइबर हैं (P1 पर फाइबर बंडल के रूप में माना जाता है)। पिकार्ड समूह वक्र सी और फाइबर में से एक द्वारा उत्पन्न होता है, और इन जनरेटर में प्रतिच्छेदन आव्यूह होता है
इसलिए द्विरेखीय रूप दो आयामी एक-मॉड्यूलर है, और यह सम या विषम है, यह इस पर निर्भर करता है कि n सम है या विषम हिरज़ेब्रुक सतह Σn (n > 1)को विशेष वक्र C पर एक बिंदु पर उड़ाया जाता है, यह Σn+1 के समरूपी है जो विशेष वक्र पर नहीं एक बिंदु पर उड़ाया जाता है।
यह भी देखें
- प्रक्षेप्य बंडल
संदर्भ
- ↑ 1.0 1.1 1.2 Manetti, Marco (2005-07-14). "जटिल मैनिफोल्ड्स की विकृतियों पर व्याख्यान". arXiv:math/0507286.
- ↑ Gathmann, Andreas. "बीजगणितीय ज्यामिति" (PDF). Fachbereich Mathematik - TU Kaiserslautern.
{{cite web}}
: CS1 maint: url-status (link) - ↑ "Section 27.20 (02NB): Twisting by invertible sheaves and relative Proj—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-05-23.
- Barth, Wolf P.; Hulek, Klaus; Peters, Chris A.M.; Van de Ven, Antonius (2004), Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 4, Springer-Verlag, Berlin, ISBN 978-3-540-00832-3, MR 2030225
- Beauville, Arnaud (1996), Complex algebraic surfaces, London Mathematical Society Student Texts, vol. 34 (2nd ed.), Cambridge University Press, ISBN 978-0-521-49510-3, MR1406314
- Hirzebruch, Friedrich (1951), "Über eine Klasse von einfachzusammenhängenden komplexen Mannigfaltigkeiten", Mathematische Annalen, 124: 77–86, doi:10.1007/BF01343552, hdl:21.11116/0000-0004-3A56-B, ISSN 0025-5831, MR 0045384, S2CID 122844063