आकारिक वर्ग नियम: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, एक '''औपचारिक''' '''वर्ग''' '''नियम''' (सामान्यतः) एक [[औपचारिक शक्ति श्रृंखला]] है, जो ऐसा व्यवहार करता है, जैसे कि यह एक झूठ वर्ग का उत्पाद था। उन्हें [[एस बोचनर (1946)]] द्वारा पेश किया गया था। औपचारिक वर्ग शब्द का अर्थ कभी-कभी औपचारिक वर्ग नियम के समान होता है, और कभी-कभी इसका अर्थ कई सामान्यीकरणों में से एक होता है। औपचारिक वर्ग झूठ वर्ग (या बीजगणितीय वर्गों) और झूठ बीजगणित के बीच मध्यवर्ती हैं। उनका उपयोग [[बीजगणितीय संख्या सिद्धांत]] और [[बीजगणितीय टोपोलॉजी]] में किया जाता है। | गणित में, एक '''औपचारिक''' '''वर्ग''' '''नियम''' (सामान्यतः) एक [[औपचारिक शक्ति श्रृंखला]] है, जो ऐसा व्यवहार करता है, जैसे कि यह एक झूठ वर्ग का उत्पाद था। उन्हें [[एस बोचनर (1946)]] द्वारा पेश किया गया था। औपचारिक वर्ग शब्द का अर्थ कभी-कभी औपचारिक वर्ग नियम के समान होता है, और कभी-कभी इसका अर्थ कई सामान्यीकरणों में से एक होता है। औपचारिक वर्ग झूठ वर्ग (या बीजगणितीय वर्गों) और झूठ बीजगणित के बीच मध्यवर्ती हैं। उनका उपयोग [[बीजगणितीय संख्या सिद्धांत]] और [[बीजगणितीय टोपोलॉजी|बीजगणितीय टोपोलॉ]]में किया जाता है। | ||
==परिभाषाएँ== | ==परिभाषाएँ== | ||
Line 14: | Line 14: | ||
औपचारिक वर्ग कानून को कम्यूटेटिव कहा जाता है, यदि F(x,y) = F(y,x) यदि R टॉरशन फ्री है, तो कोई R को Q-बीजगणित में एम्बेड कर सकता है, और किसी भी एक-आयामी औपचारिक वर्ग कानून F को F(x,y) = exp(log(x) + log(y)) के रूप में लिखने के लिए घातांकीय और लघुगणक का उपयोग कर सकता है, इसलिए F आवश्यक रूप से कम्यूटेटिव है।<ref>Note that the formula for the logarithm in terms of the invariant differential given in dimension one does not assume that ''F'' is commutative.</ref> अधिक आम तौर पर, हमारे पास है: | औपचारिक वर्ग कानून को कम्यूटेटिव कहा जाता है, यदि F(x,y) = F(y,x) यदि R टॉरशन फ्री है, तो कोई R को Q-बीजगणित में एम्बेड कर सकता है, और किसी भी एक-आयामी औपचारिक वर्ग कानून F को F(x,y) = exp(log(x) + log(y)) के रूप में लिखने के लिए घातांकीय और लघुगणक का उपयोग कर सकता है, इसलिए F आवश्यक रूप से कम्यूटेटिव है।<ref>Note that the formula for the logarithm in terms of the invariant differential given in dimension one does not assume that ''F'' is commutative.</ref> अधिक आम तौर पर, हमारे पास है: | ||
:प्रमेय. आर पर प्रत्येक एक-आयामी औपचारिक वर्ग कानून क्रमविनिमेय है, यदि आर में कोई नॉनज़ीरो टोरसन निलपोटेंट नहीं है, (यानी, कोई गैर-शून्य तत्व नहीं है जो मरोड़ और निलपोटेंट दोनों हैं)।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§6.1}}</ref> | :प्रमेय. आर पर प्रत्येक एक-आयामी औपचारिक वर्ग कानून क्रमविनिमेय है, यदि आर में कोई नॉनज़ीरो टोरसन निलपोटेंट नहीं है, (यानी, कोई गैर-शून्य तत्व नहीं है जो मरोड़ और निलपोटेंट दोनों हैं)।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§6.1}}</ref> | ||
[[समूह (गणित)|वर्ग (गणित)]] के लिए व्युत्क्रम तत्वों के अस्तित्व के अनुरूप स्वयंसिद्ध की कोई आवश्यकता नहीं है, क्योंकि यह औपचारिक वर्ग कानून की परिभाषा से स्वचालित रूप से अनुसरण करता है। जैसे कि F(x,G(x)) = 0 दूसरे शब्दों में, हम हमेशा एक (अद्वितीय) पावर श्रृंखला | [[समूह (गणित)|वर्ग (गणित)]] के लिए व्युत्क्रम तत्वों के अस्तित्व के अनुरूप स्वयंसिद्ध की कोई आवश्यकता नहीं है, क्योंकि यह औपचारिक वर्ग कानून की परिभाषा से स्वचालित रूप से अनुसरण करता है। जैसे कि F(x,G(x)) = 0 दूसरे शब्दों में, हम हमेशा एक (अद्वितीय) पावर श्रृंखला पा सकते हैं। | ||
आयाम m के औपचारिक वर्ग नियम F से आयाम n के औपचारिक वर्ग नियम | आयाम m के औपचारिक वर्ग नियम F से आयाम n के औपचारिक वर्ग नियम जी तक एक समरूपता m चर में n शक्ति श्रृंखला का एक संग्रह f है, जैसे कि | ||
::G(f(x), f(y)) = f(F(x,y)). | ::G(f(x), f(y)) = f(F(x,y)). | ||
व्युत्क्रम के साथ एक समरूपता को आइसोमोर्फिज्म कहा जाता है, और इसे सख्त आइसोमोर्फिज्म कहा जाता है, यदि इसके अलावाf(x) = x + उच्च डिग्री की शर्तें, उनके बीच एक आइसोमोर्फिज्म के साथ दो औपचारिक वर्ग कानून अनिवार्य रूप से समान हैं, वे केवल "निर्देशांक के परिवर्तन" से भिन्न होते हैं। | व्युत्क्रम के साथ एक समरूपता को आइसोमोर्फिज्म कहा जाता है, और इसे सख्त आइसोमोर्फिज्म कहा जाता है, यदि इसके अलावाf(x) = x + उच्च डिग्री की शर्तें, उनके बीच एक आइसोमोर्फिज्म के साथ दो औपचारिक वर्ग कानून अनिवार्य रूप से समान हैं, वे केवल "निर्देशांक के परिवर्तन" से भिन्न होते हैं। | ||
==उदाहरण== | ==उदाहरण== | ||
*योगात्मक | *योगात्मक औपचारिक वर्ग नियम द्वारा दिया गया है। | ||
:: <math>F(x,y) = x + y.\ </math> | :: <math>F(x,y) = x + y.\ </math> | ||
*गुणात्मक | *गुणात्मक औपचारिक वर्ग नियम द्वारा दिया गया है। | ||
:: <math>F(x,y) = x + y + xy.\ </math> | :: <math>F(x,y) = x + y + xy.\ </math> | ||
:इस नियम को इस प्रकार समझा जा सकता है। रिंग | :इस नियम को इस प्रकार समझा जा सकता है। रिंग R के गुणक समूह में गुणनफल G को G(a,b) = ab द्वारा दिया गया है। यदि हम a = 1 + x, b = 1 + y, और G = 1 + F डालकर 0 को पहचान बनाने के लिए "निर्देशांक बदलते हैं", तो हम पाते हैं कि F(x,y) = x + y + xy। | ||
[[तर्कसंगत | [[तर्कसंगत संख्याओं]] पर, योगात्मक औपचारिक वर्ग नियम से गुणक तक एक आइसोमोर्फिज्म होता है, जो एक्सपी (एक्स) − 1 द्वारा दिया जाता है। सामान्य कम्यूटेटिव रिंग्स आर पर ऐसा कोई समरूपता नहीं है क्योंकि इसे परिभाषित करने के लिए गैर-अभिन्न तर्कसंगत संख्याओं की आवश्यकता होती है, और योजक और गुणक औपचारिक वर्ग आमतौर पर आइसोमोर्फिक नहीं होते हैं। | ||
*सामान्यतः, हम पहचान पर निर्देशांक लेकर और उत्पाद मानचित्र के | *सामान्यतः, आम तौर पर, हम पहचान पर निर्देशांक लेकर और उत्पाद मानचित्र के औपचारिक शक्ति श्रृंखला विस्तार को लिखकर किसी भी बीजगणितीय समूह या आयाम एन के झूठ समूह से आयाम एन के एक औपचारिक समूह कानून का निर्माण कर सकते हैं। योगात्मक और गुणक औपचारिक समूह कानून इस तरह से योगात्मक और गुणक बीजगणितीय वर्गों से प्राप्त किए जाते हैं। इसका एक और महत्वपूर्ण विशेष मामला एक [[अंडाकार वक्र]] (या [[एबेलियन किस्म]]) का औपचारिक समूह (नियम) है। | ||
*F(x,y) = (x + y)/(1 + xy) | *F(x,y) = (x + y)/(1 + xy) हाइपरबॉलिक स्पर्शरेखा फ़ंक्शन के लिए अतिरिक्त सूत्र से आने वाला एक औपचारिक समूह नियम है: tanh(x + y) = F(tanh(x), tanh(y)), और यह [[विशेष सापेक्षता]] में वेगों को जोड़ने का सूत्र भी है (1 के बराबर [[प्रकाश की गति]] के साथ)। | ||
*<math display="inline">F(x,y) = \left. \left(x\sqrt{1-y^4} +y\sqrt{1-x^4}\right) \right/ \!(1+x^2y^2)</math> | *<math display="inline">F(x,y) = \left. \left(x\sqrt{1-y^4} +y\sqrt{1-x^4}\right) \right/ \!(1+x^2y^2)</math> जेड पर एक औपचारिक समूह कानून है[1/2] [[यूलर]] द्वारा पाया गया, एक एलिप्टिक इंटीग्रल (स्ट्रिकलैंड) के लिए अतिरिक्त सूत्र के रूप में: | ||
:: <math>\int_0^x{dt\over \sqrt{1-t^4}} + \int_0^y{dt\over \sqrt{1-t^4}} = \int_0^{F(x,y)}{dt\over \sqrt{1-t^4}}.</math> | :: <math>\int_0^x{dt\over \sqrt{1-t^4}} + \int_0^y{dt\over \sqrt{1-t^4}} = \int_0^{F(x,y)}{dt\over \sqrt{1-t^4}}.</math> | ||
==लाई बीजगणित== | ==लाई बीजगणित== | ||
कोई भी एन-आयामी | कोई भी एन-आयामी औपचारिक समूह कानून रिंग आर पर एक एन-आयामी लाई बीजगणित देता है, जिसे औपचारिक समूह कानून के द्विघात भाग एफ 2 के संदर्भ में परिभाषित किया गया है। | ||
:[x,y] = एफ<sub>2</sub>(एक्स,वाई) - एफ<sub>2</sub>(वाई,एक्स) | :[x,y] = एफ<sub>2</sub>(एक्स,वाई) - एफ<sub>2</sub>(वाई,एक्स) | ||
लाई वर्गों या बीजगणितीय | लाई वर्गों या बीजगणितीय समूहों से लाई बीजगणित तक के प्राकृतिक कार्य को लाई वर्गों से औपचारिक समूह कानूनों में शामिल किया जा सकता है, इसके बाद औपचारिक समूह के झूठ बीजगणित को लिया जा सकता है: | ||
::लाई वर्ग → | ::लाई वर्ग → औपचारिक वर्ग नियम → लाई बीजगणित | ||
[[विशेषता (बीजगणित)]] 0 के | [[विशेषता (बीजगणित)]] 0 के क्षेत्रों में, औपचारिक समूह कानून अनिवार्य रूप से परिमित-आयामी लाई बीजगणित के समान होते हैं: अधिक सटीक रूप से, परिमित-आयामी औपचारिक समूह कानूनों से परिमित-आयामी झूठ बीजगणित तक फ़ैक्टर श्रेणियों का एक समतुल्य है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§14.2.3}}</ref> गैर-शून्य विशेषता वाले क्षेत्रों में, औपचारिक समूह कानून लाई बीजगणित के समकक्ष नहीं हैं। वास्तव में, इस मामले में यह सर्वविदित है कि एक बीजगणितीय समूह से उसके लाई बीजगणित में जाने से अक्सर बहुत अधिक जानकारी दूर हो जाती है, लेकिन इसके बजाय औपचारिक समूह कानून में जाने से अक्सर पर्याप्त जानकारी बच जाती है। तो कुछ अर्थों में औपचारिक समूह कानून विशेषता पी > 0 में लाई बीजगणित के लिए "सही" विकल्प हैं। | ||
==क्रमविनिमेय आकारिक वर्ग नियम का लघुगणक== | ==क्रमविनिमेय आकारिक वर्ग नियम का लघुगणक== | ||
यदि | यदि एफ एक कम्यूटेटिव क्यू-बीजगणित आर पर एक कम्यूटेटिव एन-आयामी औपचारिक समूह कानून है, तो यह योगात्मक औपचारिक समूह कानून के लिए सख्ती से आइसोमोर्फिक है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§11.1.6}}</ref> दूसरे शब्दों में, योगात्मक औपचारिक समूह से एफ तक एक सख्त आइसोमोर्फिज्म एफ है, जिसे एफ का लघुगणक कहा जाता है, ताकि | ||
::f(F(x,y)) = f(x) + f(y). | ::f(F(x,y)) = f(x) + f(y). | ||
Line 53: | Line 51: | ||
*''F''(''x'',''y'') = ''x'' + ''y'' +''xy'' का लघुगणक ''f''(''x) है '') = लॉग(1+''x''), क्योंकि लॉग(1+''x''+''y''+''xy'') = लॉग(1+''x'')+ लॉग(1+''y''). | *''F''(''x'',''y'') = ''x'' + ''y'' +''xy'' का लघुगणक ''f''(''x) है '') = लॉग(1+''x''), क्योंकि लॉग(1+''x''+''y''+''xy'') = लॉग(1+''x'')+ लॉग(1+''y''). | ||
यदि | यदि R में परिमेय नहीं है, तो R ⊗ Q तक अदिश राशि के विस्तार द्वारा एक मानचित्र f का निर्माण किया जा सकता है, लेकिन यदि R में सकारात्मक विशेषता है तो यह सब कुछ शून्य पर भेज देगा। रिंग आर पर औपचारिक समूह कानून अक्सर उनके लघुगणक को आर ⊗ क्यू में गुणांक के साथ एक शक्ति श्रृंखला के रूप में लिखकर बनाया जाता है, और फिर यह साबित किया जाता है कि आर ⊗ क्यू पर संबंधित औपचारिक समूह के गुणांक वास्तव में आर में हैं। सकारात्मक में काम करते समय विशेषता, कोई आम तौर पर आर को एक मिश्रित विशेषता रिंग से बदल देता है जिसका आर पर प्रक्षेपण होता है, जैसे कि विट वैक्टर की रिंग डब्ल्यू (आर), और अंत में आर तक कम हो जाती है। | ||
=== अपरिवर्तनीय अंतर === | === अपरिवर्तनीय अंतर === | ||
जब F एक-आयामी है, तो कोई | जब F एक-आयामी होता है, तो कोई इसके लघुगणक को अपरिवर्तनीय विभेदक ω(t) के संदर्भ में लिख सकता है।<ref>{{Cite web |last=Mavraki |first=Niki Myrto |title=औपचारिक समूह|url=https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |url-status=live |archive-url=https://web.archive.org/web/20220912144322/https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |archive-date=2022-09-12}}</ref> होने देना <math display="block">\omega(t) = \frac{\partial F}{\partial x}(0,t)^{-1} dt \in R[[t]]dt,</math>कहाँ <math display="inline">R[[t]] dt</math> नि: शुल्क है <math display="inline">R[[t]]</math>-एक प्रतीक डीटी पर रैंक 1 का मॉड्यूल, तो फिर ω इस अर्थ में अनुवाद अपरिवर्तनीय है कि <math display="block">F^* \omega = \omega,</math>अगर हम लिखते हैं<math display="inline">\omega(t) = p(t)dt</math>, तो परिभाषा के अनुसार<math display="block">F^* \omega := p(F(t,s)) \frac{\partial F}{\partial x}(t,s) dt.</math>यदि कोई विस्तार पर विचार करता है।<math display="inline">\omega(t) = (1 + c_1 t + c_2 t^2 + \dots) dt</math>, सूत्र<math display="block">f(t) = \int \omega(t) = t + \frac{c_1}{2} t^2 + \frac{c_2}{3} t^3 + \dots</math>F के लघुगणक को परिभाषित करता है। | ||
==आकारिक वर्ग नियम का आकारिक वर्ग वलय== | ==आकारिक वर्ग नियम का आकारिक वर्ग वलय== | ||
Line 81: | Line 79: | ||
हम 'एफ'(एस) की परिभाषा को कुछ टोपोलॉजिकल बीजगणित|टोपोलॉजिकल आर-बीजगणित तक बढ़ा सकते हैं। विशेष रूप से, यदि S असतत R बीजगणित की व्युत्क्रम सीमा है, तो हम 'F'(S) को संबंधित वर्गों की व्युत्क्रम सीमा के रूप में परिभाषित कर सकते हैं। उदाहरण के लिए, यह हमें 'F'('Z') को परिभाषित करने की अनुमति देता है<sub>''p''</sub>) पी-एडिक संख्या|पी-एडिक संख्याओं में मानों के साथ। | हम 'एफ'(एस) की परिभाषा को कुछ टोपोलॉजिकल बीजगणित|टोपोलॉजिकल आर-बीजगणित तक बढ़ा सकते हैं। विशेष रूप से, यदि S असतत R बीजगणित की व्युत्क्रम सीमा है, तो हम 'F'(S) को संबंधित वर्गों की व्युत्क्रम सीमा के रूप में परिभाषित कर सकते हैं। उदाहरण के लिए, यह हमें 'F'('Z') को परिभाषित करने की अनुमति देता है<sub>''p''</sub>) पी-एडिक संख्या|पी-एडिक संख्याओं में मानों के साथ। | ||
'एफ' के वर्ग-मूल्यवान फ़ैक्टर को 'एफ' के आकारिक वर्ग रिंग एच का उपयोग करके भी वर्णित किया जा सकता है। सरलता के लिए हम मान लेंगे कि 'एफ' 1-आयामी है; सामान्य मामला समान है. किसी भी सह-विनिमेय हॉपफ बीजगणित के लिए, एक तत्व | 'एफ' के वर्ग-मूल्यवान फ़ैक्टर को 'एफ' के आकारिक वर्ग रिंग एच का उपयोग करके भी वर्णित किया जा सकता है। सरलता के लिए हम मान लेंगे कि 'एफ' 1-आयामी है; सामान्य मामला समान है. किसी भी सह-विनिमेय हॉपफ बीजगणित के लिए, एक तत्व जी को 'वर्ग-समान' कहा जाता है यदि Δg = g ⊗ g और εg = 1, और वर्ग-समान तत्व गुणन के तहत एक वर्ग बनाते हैं। एक रिंग पर आकारिक वर्ग नियम के हॉपफ बीजगणित के मामले में, वर्ग जैसे तत्व बिल्कुल फॉर्म के होते हैं | ||
:डी<sup>(0)+डी<sup>(1)x+डी<sup>(2)x<sup>2</sup> +... | :डी<sup>(0)+डी<sup>(1)x+डी<sup>(2)x<sup>2</sup> +... | ||
शून्यशक्तिशाली तत्वों x के लिए। विशेष रूप से हम H ⊗ S के वर्ग-जैसे तत्वों की पहचान S के निलपोटेंट तत्वों से कर सकते हैं, और H ⊗ S के वर्ग-जैसे तत्वों पर वर्ग संरचना की पहचान 'F'(S) पर वर्ग संरचना से की जाती है। | शून्यशक्तिशाली तत्वों x के लिए। विशेष रूप से हम H ⊗ S के वर्ग-जैसे तत्वों की पहचान S के निलपोटेंट तत्वों से कर सकते हैं, और H ⊗ S के वर्ग-जैसे तत्वों पर वर्ग संरचना की पहचान 'F'(S) पर वर्ग संरचना से की जाती है। | ||
Line 119: | Line 117: | ||
आकारिक वर्ग [[औपचारिक योजना|आकारिक योजना]]ओं की [[श्रेणी (गणित)]] में एक [[समूह वस्तु|वर्ग वस्तु]] है। | आकारिक वर्ग [[औपचारिक योजना|आकारिक योजना]]ओं की [[श्रेणी (गणित)]] में एक [[समूह वस्तु|वर्ग वस्तु]] है। | ||
* अगर <math>G</math> [[बीजगणित की कला]] से वर्गों के लिए एक फ़नकार है जिसे सटीक फ़नकार छोड़ दिया जाता है, तो यह प्रतिनिधित्व योग्य है ( | * अगर <math>G</math> [[बीजगणित की कला]] से वर्गों के लिए एक फ़नकार है जिसे सटीक फ़नकार छोड़ दिया जाता है, तो यह प्रतिनिधित्व योग्य है (एक आकारिक वर्ग के बिंदुओं का फ़नकार है। (फ़नकार की बाईं सटीकता परिमित प्रक्षेप्य सीमाओं के साथ आने के बराबर है)। | ||
* अगर <math>G</math> तो यह एक [[समूह योजना|वर्ग योजना]] है <math> \widehat{G} </math>, पहचान पर | * अगर <math>G</math> तो यह एक [[समूह योजना|वर्ग योजना]] है <math> \widehat{G} </math>, पहचान पर का आकारिक समापन, एक आकारिक वर्ग की संरचना है। | ||
*एक सुचारु वर्ग योजना का आकारिक समापन समरूपी है <math>\mathrm{Spf}(R[[T_1,\ldots,T_n]])</math>. कुछ लोग आकारिक वर्ग योजना को सुचारू कहते हैं यदि इसका विपरीत प्रभाव पड़ता है; अन्य लोग इस रूप की स्थानीय वस्तुओं के लिए आकारिक वर्ग शब्द को आरक्षित रखते हैं।<ref>{{cite web | last=Weinstein | first=Jared | title=ल्यूबिन-टेट स्पेस की ज्यामिति| url=http://math.bu.edu/people/jsweinst/FRGLecture.pdf}}</ref> | *एक सुचारु वर्ग योजना का आकारिक समापन समरूपी है <math>\mathrm{Spf}(R[[T_1,\ldots,T_n]])</math>. कुछ लोग आकारिक वर्ग योजना को सुचारू कहते हैं यदि इसका विपरीत प्रभाव पड़ता है; अन्य लोग इस रूप की स्थानीय वस्तुओं के लिए आकारिक वर्ग शब्द को आरक्षित रखते हैं।<ref>{{cite web | last=Weinstein | first=Jared | title=ल्यूबिन-टेट स्पेस की ज्यामिति| url=http://math.bu.edu/people/jsweinst/FRGLecture.pdf}}</ref> | ||
*आकारिक सहजता विकृतियों की लिफ्टों के अस्तित्व पर जोर देती है और उन आकारिक योजनाओं पर लागू हो सकती है जो बिंदुओं से बड़ी हैं। एक सुचारु आकारिक वर्ग योजना आकारिक वर्ग योजना का एक विशेष मामला है। | *आकारिक सहजता विकृतियों की लिफ्टों के अस्तित्व पर जोर देती है और उन आकारिक योजनाओं पर लागू हो सकती है जो बिंदुओं से बड़ी हैं। एक सुचारु आकारिक वर्ग योजना आकारिक वर्ग योजना का एक विशेष मामला है। |
Revision as of 10:07, 20 July 2023
गणित में, एक औपचारिक वर्ग नियम (सामान्यतः) एक औपचारिक शक्ति श्रृंखला है, जो ऐसा व्यवहार करता है, जैसे कि यह एक झूठ वर्ग का उत्पाद था। उन्हें एस बोचनर (1946) द्वारा पेश किया गया था। औपचारिक वर्ग शब्द का अर्थ कभी-कभी औपचारिक वर्ग नियम के समान होता है, और कभी-कभी इसका अर्थ कई सामान्यीकरणों में से एक होता है। औपचारिक वर्ग झूठ वर्ग (या बीजगणितीय वर्गों) और झूठ बीजगणित के बीच मध्यवर्ती हैं। उनका उपयोग बीजगणितीय संख्या सिद्धांत और बीजगणितीय टोपोलॉमें किया जाता है।
परिभाषाएँ
एक क्रमविनिमेय वलय R पर एक आयामी औपचारिक वर्ग नियम एक शक्ति श्रृंखला F (x, y) है जिसमें R में गुणांक होते हैं, जैसे कि
- F(x,y) = x + y + उच्च डिग्री के पद
- F(x, F(y,z)) = F(F(x ,y), z) (सहयोगिता)।
सबसे सरल उदाहरण योजक औपचारिक वर्ग कानून F(x, y) = x + y है। परिभाषा का विचार यह है, कि एफ को एक झूठ वर्ग के उत्पाद के औपचारिक शक्ति श्रृंखला विस्तार की तरह कुछ होना चाहिए, जहां हम निर्देशांक चुनते हैं, ताकि झूठ वर्ग की पहचान मूल सकती है।
अधिक आम तौर पर, एक एन-आयामी औपचारिक वर्ग कानून 2n चर में एन पावर श्रृंखला एफआई Fi(x1, x2, ..., xn, y1, y2, ..., yn)) का एक संग्रह है, जैसे कि
- F(x,y) = x + y + उच्च डिग्री के पद
- F(x, F(y,z)) = F(F(x,y), z)
जहां हम F के लिए (F1, ..., Fn), x के लिए (x1, ..., xn), और इसी तरह लिखते हैं।
औपचारिक वर्ग कानून को कम्यूटेटिव कहा जाता है, यदि F(x,y) = F(y,x) यदि R टॉरशन फ्री है, तो कोई R को Q-बीजगणित में एम्बेड कर सकता है, और किसी भी एक-आयामी औपचारिक वर्ग कानून F को F(x,y) = exp(log(x) + log(y)) के रूप में लिखने के लिए घातांकीय और लघुगणक का उपयोग कर सकता है, इसलिए F आवश्यक रूप से कम्यूटेटिव है।[1] अधिक आम तौर पर, हमारे पास है:
- प्रमेय. आर पर प्रत्येक एक-आयामी औपचारिक वर्ग कानून क्रमविनिमेय है, यदि आर में कोई नॉनज़ीरो टोरसन निलपोटेंट नहीं है, (यानी, कोई गैर-शून्य तत्व नहीं है जो मरोड़ और निलपोटेंट दोनों हैं)।[2]
वर्ग (गणित) के लिए व्युत्क्रम तत्वों के अस्तित्व के अनुरूप स्वयंसिद्ध की कोई आवश्यकता नहीं है, क्योंकि यह औपचारिक वर्ग कानून की परिभाषा से स्वचालित रूप से अनुसरण करता है। जैसे कि F(x,G(x)) = 0 दूसरे शब्दों में, हम हमेशा एक (अद्वितीय) पावर श्रृंखला पा सकते हैं।
आयाम m के औपचारिक वर्ग नियम F से आयाम n के औपचारिक वर्ग नियम जी तक एक समरूपता m चर में n शक्ति श्रृंखला का एक संग्रह f है, जैसे कि
- G(f(x), f(y)) = f(F(x,y)).
व्युत्क्रम के साथ एक समरूपता को आइसोमोर्फिज्म कहा जाता है, और इसे सख्त आइसोमोर्फिज्म कहा जाता है, यदि इसके अलावाf(x) = x + उच्च डिग्री की शर्तें, उनके बीच एक आइसोमोर्फिज्म के साथ दो औपचारिक वर्ग कानून अनिवार्य रूप से समान हैं, वे केवल "निर्देशांक के परिवर्तन" से भिन्न होते हैं।
उदाहरण
- योगात्मक औपचारिक वर्ग नियम द्वारा दिया गया है।
- गुणात्मक औपचारिक वर्ग नियम द्वारा दिया गया है।
- इस नियम को इस प्रकार समझा जा सकता है। रिंग R के गुणक समूह में गुणनफल G को G(a,b) = ab द्वारा दिया गया है। यदि हम a = 1 + x, b = 1 + y, और G = 1 + F डालकर 0 को पहचान बनाने के लिए "निर्देशांक बदलते हैं", तो हम पाते हैं कि F(x,y) = x + y + xy।
तर्कसंगत संख्याओं पर, योगात्मक औपचारिक वर्ग नियम से गुणक तक एक आइसोमोर्फिज्म होता है, जो एक्सपी (एक्स) − 1 द्वारा दिया जाता है। सामान्य कम्यूटेटिव रिंग्स आर पर ऐसा कोई समरूपता नहीं है क्योंकि इसे परिभाषित करने के लिए गैर-अभिन्न तर्कसंगत संख्याओं की आवश्यकता होती है, और योजक और गुणक औपचारिक वर्ग आमतौर पर आइसोमोर्फिक नहीं होते हैं।
- सामान्यतः, आम तौर पर, हम पहचान पर निर्देशांक लेकर और उत्पाद मानचित्र के औपचारिक शक्ति श्रृंखला विस्तार को लिखकर किसी भी बीजगणितीय समूह या आयाम एन के झूठ समूह से आयाम एन के एक औपचारिक समूह कानून का निर्माण कर सकते हैं। योगात्मक और गुणक औपचारिक समूह कानून इस तरह से योगात्मक और गुणक बीजगणितीय वर्गों से प्राप्त किए जाते हैं। इसका एक और महत्वपूर्ण विशेष मामला एक अंडाकार वक्र (या एबेलियन किस्म) का औपचारिक समूह (नियम) है।
- F(x,y) = (x + y)/(1 + xy) हाइपरबॉलिक स्पर्शरेखा फ़ंक्शन के लिए अतिरिक्त सूत्र से आने वाला एक औपचारिक समूह नियम है: tanh(x + y) = F(tanh(x), tanh(y)), और यह विशेष सापेक्षता में वेगों को जोड़ने का सूत्र भी है (1 के बराबर प्रकाश की गति के साथ)।
- जेड पर एक औपचारिक समूह कानून है[1/2] यूलर द्वारा पाया गया, एक एलिप्टिक इंटीग्रल (स्ट्रिकलैंड) के लिए अतिरिक्त सूत्र के रूप में:
लाई बीजगणित
कोई भी एन-आयामी औपचारिक समूह कानून रिंग आर पर एक एन-आयामी लाई बीजगणित देता है, जिसे औपचारिक समूह कानून के द्विघात भाग एफ 2 के संदर्भ में परिभाषित किया गया है।
- [x,y] = एफ2(एक्स,वाई) - एफ2(वाई,एक्स)
लाई वर्गों या बीजगणितीय समूहों से लाई बीजगणित तक के प्राकृतिक कार्य को लाई वर्गों से औपचारिक समूह कानूनों में शामिल किया जा सकता है, इसके बाद औपचारिक समूह के झूठ बीजगणित को लिया जा सकता है:
- लाई वर्ग → औपचारिक वर्ग नियम → लाई बीजगणित
विशेषता (बीजगणित) 0 के क्षेत्रों में, औपचारिक समूह कानून अनिवार्य रूप से परिमित-आयामी लाई बीजगणित के समान होते हैं: अधिक सटीक रूप से, परिमित-आयामी औपचारिक समूह कानूनों से परिमित-आयामी झूठ बीजगणित तक फ़ैक्टर श्रेणियों का एक समतुल्य है।[3] गैर-शून्य विशेषता वाले क्षेत्रों में, औपचारिक समूह कानून लाई बीजगणित के समकक्ष नहीं हैं। वास्तव में, इस मामले में यह सर्वविदित है कि एक बीजगणितीय समूह से उसके लाई बीजगणित में जाने से अक्सर बहुत अधिक जानकारी दूर हो जाती है, लेकिन इसके बजाय औपचारिक समूह कानून में जाने से अक्सर पर्याप्त जानकारी बच जाती है। तो कुछ अर्थों में औपचारिक समूह कानून विशेषता पी > 0 में लाई बीजगणित के लिए "सही" विकल्प हैं।
क्रमविनिमेय आकारिक वर्ग नियम का लघुगणक
यदि एफ एक कम्यूटेटिव क्यू-बीजगणित आर पर एक कम्यूटेटिव एन-आयामी औपचारिक समूह कानून है, तो यह योगात्मक औपचारिक समूह कानून के लिए सख्ती से आइसोमोर्फिक है।[4] दूसरे शब्दों में, योगात्मक औपचारिक समूह से एफ तक एक सख्त आइसोमोर्फिज्म एफ है, जिसे एफ का लघुगणक कहा जाता है, ताकि
- f(F(x,y)) = f(x) + f(y).
उदाहरण:
- F(x,y) = x + y का लघुगणक f(x) = है एक्स।
- F(x,y) = x + y +xy का लघुगणक f(x) है ) = लॉग(1+x), क्योंकि लॉग(1+x+y+xy) = लॉग(1+x)+ लॉग(1+y).
यदि R में परिमेय नहीं है, तो R ⊗ Q तक अदिश राशि के विस्तार द्वारा एक मानचित्र f का निर्माण किया जा सकता है, लेकिन यदि R में सकारात्मक विशेषता है तो यह सब कुछ शून्य पर भेज देगा। रिंग आर पर औपचारिक समूह कानून अक्सर उनके लघुगणक को आर ⊗ क्यू में गुणांक के साथ एक शक्ति श्रृंखला के रूप में लिखकर बनाया जाता है, और फिर यह साबित किया जाता है कि आर ⊗ क्यू पर संबंधित औपचारिक समूह के गुणांक वास्तव में आर में हैं। सकारात्मक में काम करते समय विशेषता, कोई आम तौर पर आर को एक मिश्रित विशेषता रिंग से बदल देता है जिसका आर पर प्रक्षेपण होता है, जैसे कि विट वैक्टर की रिंग डब्ल्यू (आर), और अंत में आर तक कम हो जाती है।
अपरिवर्तनीय अंतर
जब F एक-आयामी होता है, तो कोई इसके लघुगणक को अपरिवर्तनीय विभेदक ω(t) के संदर्भ में लिख सकता है।[5] होने देना
आकारिक वर्ग नियम का आकारिक वर्ग वलय
एक आकारिक वर्ग नियम का आकारिक वर्ग वलय एक वर्ग के वर्ग वलय और एक ली बीजगणित के सार्वभौमिक आवरण बीजगणित के अनुरूप एक सह-विनिमेय हॉपफ बीजगणित है, जो दोनों सह-अनुकरणीय हॉफ बीजगणित भी हैं। सामान्य तौर पर सह-विनिमेय हॉपफ बीजगणित बहुत हद तक वर्गों की तरह व्यवहार करते हैं।
सरलता के लिए हम 1-आयामी मामले का वर्णन करते हैं; उच्च-आयामी मामला समान है सिवाय इसके कि अंकन अधिक शामिल हो जाता है।
मान लीजिए कि F, R के ऊपर एक (1-आयामी) आकारिक वर्ग नियम है। इसका 'आकारिक वर्ग वलय' (जिसे इसका 'हाइपरलेजेब्रा' या इसका 'सहसंयोजक बायलजेब्रा' भी कहा जाता है) एक सह-विनिमेय हॉपफ बीजगणित H है, जिसका निर्माण इस प्रकार किया गया है।
- आर-मॉड्यूल (गणित) के रूप में, एच एक आधार 1 = डी के साथ मुफ़्त मॉड्यूल है(0), डी(1), डी(2),...
- सहउत्पाद Δ, ΔD द्वारा दिया जाता है(n) = ΣD(i)⊗ डी(n−i) (इसलिए इस कोलजेब्रा का द्वैत केवल आकारिक शक्ति श्रृंखला का वलय है)।
- गणक η D के गुणांक द्वारा दिया जाता है(0).
- पहचान 1 = D है(0).
- एंटीपोड एस डी लेता है(n) से (−1)एनडी(एन).
- डी का गुणांक(1) उत्पाद डी में(i)D(j)x का गुणांक हैमैंyj F(x,y) में।
इसके विपरीत, एक हॉपफ बीजगणित दिया गया है जिसकी कोलजेब्रा संरचना ऊपर दी गई है, हम इससे एक आकारिक वर्ग नियम एफ पुनर्प्राप्त कर सकते हैं। तो 1-आयामी आकारिक वर्ग नियम अनिवार्य रूप से हॉपफ बीजगणित के समान हैं जिनकी कोलजेब्रा संरचना ऊपर दी गई है।
कार्यकर्ताओं के रूप में आकारिक वर्ग नियम
R पर एक n-आयामी आकारिक वर्ग नियम 'F' और एक क्रमविनिमेय R-बीजगणित S को देखते हुए, हम एक वर्ग 'F'(S) बना सकते हैं जिसका अंतर्निहित सेट N हैn जहां N, S के शून्यप्रभावी तत्वों का समुच्चय है। N के तत्वों को गुणा करने के लिए 'F' का उपयोग करके उत्पाद दिया जाता है।n; मुद्दा यह है कि सभी आकारिक शक्ति श्रृंखलाएं अब एकत्रित हो गई हैं क्योंकि उन्हें शून्य-शक्तिशाली तत्वों पर लागू किया जा रहा है, इसलिए गैर-शून्य शब्दों की केवल एक सीमित संख्या है। यह 'F' को क्रमविनिमेय R-बीजगणित S से वर्गों तक एक फ़नकार बनाता है।
हम 'एफ'(एस) की परिभाषा को कुछ टोपोलॉजिकल बीजगणित|टोपोलॉजिकल आर-बीजगणित तक बढ़ा सकते हैं। विशेष रूप से, यदि S असतत R बीजगणित की व्युत्क्रम सीमा है, तो हम 'F'(S) को संबंधित वर्गों की व्युत्क्रम सीमा के रूप में परिभाषित कर सकते हैं। उदाहरण के लिए, यह हमें 'F'('Z') को परिभाषित करने की अनुमति देता हैp) पी-एडिक संख्या|पी-एडिक संख्याओं में मानों के साथ।
'एफ' के वर्ग-मूल्यवान फ़ैक्टर को 'एफ' के आकारिक वर्ग रिंग एच का उपयोग करके भी वर्णित किया जा सकता है। सरलता के लिए हम मान लेंगे कि 'एफ' 1-आयामी है; सामान्य मामला समान है. किसी भी सह-विनिमेय हॉपफ बीजगणित के लिए, एक तत्व जी को 'वर्ग-समान' कहा जाता है यदि Δg = g ⊗ g और εg = 1, और वर्ग-समान तत्व गुणन के तहत एक वर्ग बनाते हैं। एक रिंग पर आकारिक वर्ग नियम के हॉपफ बीजगणित के मामले में, वर्ग जैसे तत्व बिल्कुल फॉर्म के होते हैं
- डी(0)+डी(1)x+डी(2)x2 +...
शून्यशक्तिशाली तत्वों x के लिए। विशेष रूप से हम H ⊗ S के वर्ग-जैसे तत्वों की पहचान S के निलपोटेंट तत्वों से कर सकते हैं, और H ⊗ S के वर्ग-जैसे तत्वों पर वर्ग संरचना की पहचान 'F'(S) पर वर्ग संरचना से की जाती है।
ऊंचाई
मान लीजिए कि f विशेषता p > 0 के क्षेत्र पर एक-आयामी आकारिक वर्ग नियमों के बीच एक समरूपता है। तब f या तो शून्य है, या इसकी शक्ति श्रृंखला विस्तार में पहला गैर-शून्य शब्द है कुछ गैर-नकारात्मक पूर्णांक h के लिए, जिसे समरूपता f की 'ऊंचाई' कहा जाता है। शून्य समरूपता की ऊंचाई ∞ के रूप में परिभाषित की गई है।
विशेषता p > 0 के क्षेत्र पर एक आयामी आकारिक वर्ग नियम की 'ऊंचाई' को पी मानचित्र द्वारा इसके गुणन की ऊंचाई के रूप में परिभाषित किया गया है।
विशेषता p > 0 के बीजगणितीय रूप से बंद क्षेत्र पर दो एक-आयामी आकारिक वर्ग नियम आइसोमोर्फिक हैं यदि और केवल तभी जब उनकी ऊंचाई समान हो, और ऊंचाई कोई भी सकारात्मक पूर्णांक या ∞ हो सकती है।
उदाहरण:
- योगात्मक आकारिक वर्ग नियम F(x,y) = x + y की ऊंचाई ∞ है, क्योंकि इसका pth पावर मैप 0 है।
- गुणात्मक आकारिक वर्ग नियम F(x,y) = x + y + xy की ऊंचाई 1 है, क्योंकि इसका pth पावर मैप (1 + x) हैp - 1 = xप.
- अण्डाकार वक्र के आकारिक वर्ग नियम की ऊंचाई या तो एक या दो होती है, यह इस पर निर्भर करता है कि वक्र सामान्य है या सुपरसिंगुलर। आइज़ेंस्टीन श्रृंखला के लुप्त होने से सुपरसिंग्युलैरिटी का पता लगाया जा सकता है .
लेज़ार्ड रिंग
एक सार्वभौमिक क्रमविनिमेय वलय पर एक सार्वभौमिक क्रमविनिमेय आकारिक वर्ग नियम है जिसे इस प्रकार परिभाषित किया गया है। हम जाने
- एफ(एक्स,वाई)
होना
- x + y + Σci,j xमैंyज
अनिश्चित के लिए
- सीi,j,
और हम सार्वभौमिक वलय R को तत्वों c द्वारा उत्पन्न क्रमविनिमेय वलय के रूप में परिभाषित करते हैंi,j, उन संबंधों के साथ जो आकारिक वर्ग नियमों के लिए साहचर्यता और क्रमविनिमेयता नियमों द्वारा मजबूर हैं। परिभाषा के अनुसार कमोबेश, वलय R में निम्नलिखित सार्वभौमिक गुण हैं:
- किसी भी क्रमविनिमेय वलय S के लिए, S पर एक-आयामी आकारिक वर्ग नियम R से S तक वलय समरूपता के अनुरूप हैं।
ऊपर निर्मित क्रमविनिमेय वलय R को 'लेज़ार्ड की सार्वभौमिक वलय' के रूप में जाना जाता है। पहली नज़र में यह अविश्वसनीय रूप से जटिल लगता है: इसके जनरेटर के बीच संबंध बहुत गड़बड़ हैं। हालाँकि लैज़ार्ड ने साबित किया कि इसकी एक बहुत ही सरल संरचना है: यह डिग्री 2, 4, 6, ... (जहाँ ci,j डिग्री 2(i+j−1)) है। डेनियल क्विलेन ने असामान्य ग्रेडिंग की व्याख्या करते हुए साबित किया कि जटिल कोबॉर्डिज्म का गुणांक रिंग स्वाभाविक रूप से लैजार्ड की सार्वभौमिक रिंग के लिए एक ग्रेडेड रिंग के रूप में आइसोमोर्फिक है।
आकारिक वर्ग
आकारिक वर्ग आकारिक योजनाओं की श्रेणी (गणित) में एक वर्ग वस्तु है।
- अगर बीजगणित की कला से वर्गों के लिए एक फ़नकार है जिसे सटीक फ़नकार छोड़ दिया जाता है, तो यह प्रतिनिधित्व योग्य है (एक आकारिक वर्ग के बिंदुओं का फ़नकार है। (फ़नकार की बाईं सटीकता परिमित प्रक्षेप्य सीमाओं के साथ आने के बराबर है)।
- अगर तो यह एक वर्ग योजना है , पहचान पर का आकारिक समापन, एक आकारिक वर्ग की संरचना है।
- एक सुचारु वर्ग योजना का आकारिक समापन समरूपी है . कुछ लोग आकारिक वर्ग योजना को सुचारू कहते हैं यदि इसका विपरीत प्रभाव पड़ता है; अन्य लोग इस रूप की स्थानीय वस्तुओं के लिए आकारिक वर्ग शब्द को आरक्षित रखते हैं।[6]
- आकारिक सहजता विकृतियों की लिफ्टों के अस्तित्व पर जोर देती है और उन आकारिक योजनाओं पर लागू हो सकती है जो बिंदुओं से बड़ी हैं। एक सुचारु आकारिक वर्ग योजना आकारिक वर्ग योजना का एक विशेष मामला है।
- एक सुचारू आकारिक वर्ग को देखते हुए, कोई भी अनुभागों का एक समान सेट चुनकर एक आकारिक वर्ग नियम और एक क्षेत्र का निर्माण कर सकता है।
- मापदंडों के परिवर्तन से प्रेरित आकारिक वर्ग नियमों के बीच (गैर-सख्त) समरूपताएं आकारिक वर्ग पर समन्वय परिवर्तन के वर्ग के तत्व बनाती हैं।
आकारिक वर्गों और आकारिक वर्ग नियमों को केवल क्रमविनिमेय रिंगों या क्षेत्रों के बजाय मनमानी योजना (गणित) पर भी परिभाषित किया जा सकता है, और परिवारों को आधार से पैरामीट्रिज़िंग ऑब्जेक्ट तक मानचित्रों द्वारा वर्गीकृत किया जा सकता है।
आकारिक वर्ग नियमों का मॉड्यूलि स्पेस अनंत-आयामी एफ़िन रिक्त स्थान का एक असंयुक्त संघ है, जिसके घटक आयाम द्वारा पैरामीट्रिज्ड होते हैं, और जिनके बिंदु पावर श्रृंखला 'एफ' के स्वीकार्य गुणांक द्वारा पैरामीट्रिज्ड होते हैं। सुचारू आकारिक वर्गों का संबंधित मॉड्यूलि स्टैक समन्वय परिवर्तनों के अनंत-आयामी वर्ग की विहित कार्रवाई द्वारा इस स्थान का एक भागफल है।
बीजगणितीय रूप से बंद क्षेत्र पर, एक-आयामी आकारिक वर्गों का उप-स्टैक या तो एक बिंदु (विशेषता शून्य में) या स्टैकी पॉइंट पैरामीट्रिज़िंग ऊंचाइयों की एक अनंत श्रृंखला है। विशेषता शून्य में, प्रत्येक बिंदु के बंद होने में अधिक ऊंचाई के सभी बिंदु शामिल होते हैं। यह अंतर आकारिक वर्गों को सकारात्मक और मिश्रित विशेषता में एक समृद्ध ज्यामितीय सिद्धांत देता है, जिसमें स्टीनरोड बीजगणित, पी-विभाज्य वर्ग, डायडोने सिद्धांत और गैलोइस अभ्यावेदन के संबंध हैं। उदाहरण के लिए, सेरे-टेट प्रमेय का तात्पर्य है कि एक वर्ग योजना की विकृतियाँ उसके आकारिक वर्ग द्वारा दृढ़ता से नियंत्रित की जाती हैं, विशेष रूप से सुपरसिंगुलर एबेलियन किस्म के मामले में। सुपरसिंगुलर अण्डाकार वक्रों के लिए, यह नियंत्रण पूर्ण है, और यह विशेषता शून्य स्थिति से काफी अलग है जहां आकारिक वर्ग में कोई विकृति नहीं है।
एक आकारिक वर्ग को कभी-कभी सह-विनिमेय हॉपफ बीजगणित के रूप में परिभाषित किया जाता है (आमतौर पर कुछ अतिरिक्त शर्तों को जोड़ा जाता है, जैसे इंगित किया जाना या जुड़ा होना)।[7] यह उपरोक्त धारणा से कमोबेश दोहरा है। सहज मामले में, निर्देशांक चुनना आकारिक वर्ग रिंग का विशिष्ट आधार लेने के बराबर है।
कुछ लेखक आकारिक वर्ग शब्द का प्रयोग आकारिक वर्ग नियम के अर्थ में करते हैं।
लुबिन-टेट आकारिक वर्ग नियम
हमने Z को जाने दियाp p-adic पूर्णांकों का वलय बनें|p-adic पूर्णांकों का। 'लुबिन-टेट आकारिक वर्ग नियम' अद्वितीय (1-आयामी) आकारिक वर्ग नियम F है जैसे कि e(x) = px + xपीदूसरे शब्दों में, एफ का एक एंडोमोर्फिज्म है
अधिक सामान्यतः हम ई को किसी भी शक्ति श्रृंखला के रूप में अनुमति दे सकते हैं जैसे कि ई (एक्स) = पीएक्स + उच्च-डिग्री शब्द और ई (एक्स) = एक्सपीमॉड पी. इन शर्तों को पूरा करने वाले ई के विभिन्न विकल्पों के लिए सभी वर्ग नियम सख्ती से आइसोमोर्फिक हैं।[8] 'Z' में प्रत्येक तत्व a के लिएp ल्यूबिन-टेट आकारिक वर्ग नियम का एक अद्वितीय एंडोमोर्फिज्म एफ है जैसे कि एफ(एक्स) = कुल्हाड़ी + उच्च-डिग्री शब्द। यह वलय 'Z' की क्रिया देता हैp लुबिन-टेट आकारिक वर्ग नियम पर।
Z के साथ एक समान निर्माण हैp मूल्यांकन के परिमित अवशेष क्षेत्र के साथ किसी भी पूर्ण असतत मूल्यांकन रिंग द्वारा प्रतिस्थापित।[9] यह निर्माण किसके द्वारा शुरू किया गया था? Lubin & Tate (1965), अण्डाकार कार्यों के जटिल गुणन के शास्त्रीय सिद्धांत के स्थानीय क्षेत्र भाग को अलग करने के सफल प्रयास में। यह स्थानीय वर्ग क्षेत्र सिद्धांत के कुछ दृष्टिकोणों में भी एक प्रमुख घटक है[10] और रंगीन समरूपता सिद्धांत में मोरावा ई-सिद्धांत के निर्माण में एक आवश्यक घटक।[11]
यह भी देखें
- विट वेक्टर
- आर्टिन-हस्से घातीय
- ग्रुप फ़ैक्टर
- अतिरिक्त प्रमेय
संदर्भ
- ↑ Note that the formula for the logarithm in terms of the invariant differential given in dimension one does not assume that F is commutative.
- ↑ Hazewinkel, Michiel. औपचारिक समूह और अनुप्रयोग. §6.1.
- ↑ Hazewinkel, Michiel. औपचारिक समूह और अनुप्रयोग. §14.2.3.
- ↑ Hazewinkel, Michiel. औपचारिक समूह और अनुप्रयोग. §11.1.6.
- ↑ Mavraki, Niki Myrto. "औपचारिक समूह" (PDF). Archived (PDF) from the original on 2022-09-12.
- ↑ Weinstein, Jared. "ल्यूबिन-टेट स्पेस की ज्यामिति" (PDF).
- ↑ Underwood, Robert G. (2011). हॉपफ बीजगणित का परिचय. Berlin: Springer-Verlag. p. 121. ISBN 978-0-387-72765-3. Zbl 1234.16022.
- ↑ Manin, Yu. I.; Panchishkin, A. A. (2007). आधुनिक संख्या सिद्धांत का परिचय. Encyclopaedia of Mathematical Sciences. Vol. 49 (Second ed.). p. 168. ISBN 978-3-540-20364-3. ISSN 0938-0396. Zbl 1079.11002.
- ↑ Koch, Helmut (1997). बीजगणितीय संख्या सिद्धांत. Encycl. Math. Sci. Vol. 62 (2nd printing of 1st ed.). Springer-Verlag. pp. 62–63. ISBN 3-540-63003-1. Zbl 0819.11044.
- ↑ e.g. Serre, Jean-Pierre (1967). "Local class field theory". In Cassels, J.W.S.; Fröhlich, Albrecht (eds.). Algebraic Number Theory. Academic Press. pp. 128–161. Zbl 0153.07403.Hazewinkel, Michiel (1975). "Local class field theory is easy". Advances in Mathematics. 18 (2): 148–181. doi:10.1016/0001-8708(75)90156-5. Zbl 0312.12022.Iwasawa, Kenkichi (1986). Local class field theory. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press. ISBN 978-0-19-504030-2. MR 0863740. Zbl 0604.12014.
- ↑ Lurie, Jacob (April 27, 2010). "Lubin-Tate Theory (Lecture 21)" (PDF). harvard.edu. Retrieved June 23, 2023.
- Adams, J. Frank (1974), Stable homotopy and generalised homology, University of Chicago Press, ISBN 978-0-226-00524-9
- Bochner, Salomon (1946), "Formal Lie groups", Annals of Mathematics, Second Series, 47 (2): 192–201, doi:10.2307/1969242, ISSN 0003-486X, JSTOR 1969242, MR 0015397
- Demazure, Michel (1972), Lectures on p-divisible groups, Lecture Notes in Mathematics, vol. 302, doi:10.1007/BFb0060741, ISBN 0-387-06092-8
- Fröhlich, A. (1968), Formal groups, Lecture Notes in Mathematics, vol. 74, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0074373, ISBN 978-3-540-04244-0, MR 0242837
- P. Gabriel, Étude infinitésimale des schémas en groupes SGA 3 Exp. VIIB
- Formal Groups and Applications (Pure and Applied Math 78) Michiel Hazewinkel Publisher: Academic Pr (June 1978) ISBN 0-12-335150-2
- Lazard, Michel (1975), Commutative formal groups, Lecture Notes in Mathematics, vol. 443, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0070554, ISBN 978-3-540-07145-7, MR 0393050
- Lubin, Jonathan; Tate, John (1965), "Formal complex multiplication in local fields", Annals of Mathematics, Second Series, 81 (2): 380–387, doi:10.2307/1970622, ISSN 0003-486X, JSTOR 1970622, MR 0172878, Zbl 0128.26501
- Neukirch, Jürgen (1999). Algebraische Zahlentheorie. Grundlehren der mathematischen Wissenschaften. Vol. 322. Berlin: Springer-Verlag. ISBN 978-3-540-65399-8. MR 1697859. Zbl 0956.11021.
- Strickland, N. "Formal groups" (PDF).