प्राइम मॉडल: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{More citations needed|date=November 2022}} | {{More citations needed|date=November 2022}} | ||
गणित में, और विशेष रूप से [[मॉडल सिद्धांत]] में,<ref>{{Cite book |last=McNulty |first=George |url=https://people.math.sc.edu/mcnulty/762/modeltheory.pdf |title=प्राथमिक मॉडल सिद्धांत|publisher=UNIVERSITY OF SOUTH CAROLINA |year=2016 |pages=12}}</ref> अभाज्य मॉडल एक ऐसा [[मॉडल (गणितीय तर्क)]] है जो यथासंभव सरल है। विशेष रूप से, मॉडल <math>P</math> यदि यह किसी भी मॉडल में [[प्राथमिक एम्बेडिंग]] को स्वीकार करता | गणित में, और विशेष रूप से [[मॉडल सिद्धांत]] में,<ref>{{Cite book |last=McNulty |first=George |url=https://people.math.sc.edu/mcnulty/762/modeltheory.pdf |title=प्राथमिक मॉडल सिद्धांत|publisher=UNIVERSITY OF SOUTH CAROLINA |year=2016 |pages=12}}</ref> अभाज्य मॉडल एक ऐसा [[मॉडल (गणितीय तर्क)]] है जो यथासंभव सरल है। विशेष रूप से, मॉडल <math>P</math> यदि यह किसी भी मॉडल में [[प्राथमिक एम्बेडिंग]] को स्वीकार करता है। तो यह प्रमुख है <math>M</math> जिसके लिए यह [[मौलिक रूप से समतुल्य]] है। (अर्थात, किसी भी मॉडल में)। <math>M</math> उसी पूर्ण सिद्धांत को संतुष्ट करना <math>P</math>). | ||
==[[प्रमुखता]]== | ==[[प्रमुखता]]== | ||
[[संतृप्त मॉडल]] की धारणा के विपरीत, अभाज्य मॉडल लोवेनहेम - स्कोलेम प्रमेय द्वारा बहुत विशिष्ट कार्डिनैलिटी तक सीमित हैं। अगर <math>L</math> कार्डिनलिटी के साथ प्रथम-क्रम की भाषा हैI <math>\kappa</math> और <math>T</math> एक संपूर्ण सिद्धांत खत्म हो गया है <math>L,</math> तब यह प्रमेय एक मॉडल की गारंटी देता है। <math>T</math> प्रमुखता का <math>\max(\kappa,\aleph_0).</math> इसका कोई अभाज्य मॉडल नहीं है। <math>T</math> में बड़ी कार्डिनैलिटी हो सकती है क्योंकि कम से कम इसे ऐसे मॉडल में प्राथमिक रूप से एम्बेडेड होना | [[संतृप्त मॉडल]] की धारणा के विपरीत, अभाज्य मॉडल लोवेनहेम - स्कोलेम प्रमेय द्वारा बहुत विशिष्ट कार्डिनैलिटी तक सीमित हैं। अगर <math>L</math> कार्डिनलिटी के साथ प्रथम-क्रम की भाषा हैI <math>\kappa</math> और <math>T</math> एक संपूर्ण सिद्धांत खत्म हो गया है <math>L,</math> तब यह प्रमेय एक मॉडल की गारंटी देता है। <math>T</math> प्रमुखता का <math>\max(\kappa,\aleph_0).</math> इसका कोई अभाज्य मॉडल नहीं है। <math>T</math> में बड़ी कार्डिनैलिटी हो सकती है क्योंकि कम से कम इसे ऐसे मॉडल में प्राथमिक रूप से एम्बेडेड होना चाहिए। इससे वास्तविक प्रमुखता में अभी भी बहुत अस्पष्टता बनी हुई है। गणनीय भाषाओं के मामले में, सभी अभाज्य मॉडल अधिकतम गणनीय रूप से अनंत हैं। | ||
==संतृप्त मॉडल के साथ संबंध== | ==संतृप्त मॉडल के साथ संबंध== | ||
Line 10: | Line 10: | ||
अभाज्य और संतृप्त मॉडल की परिभाषाओं के बीच द्वंद्व है। इस द्वंद्व के आधे हिस्से की चर्चा संतृप्त मॉडलों पर लेख में की गई है, जबकि अन्य आधे की चर्चा इस प्रकार है। जबकि एक संतृप्त मॉडल जितना संभव हो उतने [[प्रकार (मॉडल सिद्धांत)]] का एहसास करता है, एक अभाज्य मॉडल जितना संभव हो उतना कम एहसास करता है: यह एक [[परमाणु मॉडल (गणितीय तर्क)]] है, केवल उन प्रकारों को समझता है जिन्हें छोड़ा नहीं जा सकता है और शेष को छोड़ दिया जाता है। इसकी व्याख्या इस अर्थ में की जा सकती है कि एक प्रमुख मॉडल किसी भी तामझाम को स्वीकार नहीं करता है: किसी मॉडल की कोई भी विशेषता जो वैकल्पिक है, उसे इसमें नजरअंदाज कर दिया जाता है। | अभाज्य और संतृप्त मॉडल की परिभाषाओं के बीच द्वंद्व है। इस द्वंद्व के आधे हिस्से की चर्चा संतृप्त मॉडलों पर लेख में की गई है, जबकि अन्य आधे की चर्चा इस प्रकार है। जबकि एक संतृप्त मॉडल जितना संभव हो उतने [[प्रकार (मॉडल सिद्धांत)]] का एहसास करता है, एक अभाज्य मॉडल जितना संभव हो उतना कम एहसास करता है: यह एक [[परमाणु मॉडल (गणितीय तर्क)]] है, केवल उन प्रकारों को समझता है जिन्हें छोड़ा नहीं जा सकता है और शेष को छोड़ दिया जाता है। इसकी व्याख्या इस अर्थ में की जा सकती है कि एक प्रमुख मॉडल किसी भी तामझाम को स्वीकार नहीं करता है: किसी मॉडल की कोई भी विशेषता जो वैकल्पिक है, उसे इसमें नजरअंदाज कर दिया जाता है। | ||
उदाहरण के लिए, मॉडल <math>\langle {\mathbb N}, S\rangle</math> उत्तराधिकारी ऑपरेशन एस के साथ प्राकृतिक संख्या एन के सिद्धांत का एक प्रमुख मॉडल है; एक गैर-प्रधान मॉडल हो सकता है। <math>\langle {\mathbb N} + {\mathbb Z}, S\rangle ,</math> इसका मतलब | उदाहरण के लिए, मॉडल <math>\langle {\mathbb N}, S\rangle</math> उत्तराधिकारी ऑपरेशन एस के साथ प्राकृतिक संख्या एन के सिद्धांत का एक प्रमुख मॉडल है; एक गैर-प्रधान मॉडल हो सकता है। <math>\langle {\mathbb N} + {\mathbb Z}, S\rangle ,</math> इसका मतलब है। कि पूर्ण पूर्णांकों की एक प्रति है। जो इस मॉडल के भीतर प्राकृतिक संख्याओं की मूल प्रति से अलग है; इस ऐड-ऑन में, अंकगणित हमेशा की तरह काम करता है। ये मॉडल मौलिक रूप से समतुल्य हैं; उनका सिद्धांत निम्नलिखित स्वयंसिद्धीकरण (मौखिक रूप से) को स्वीकार करता है: | ||
# एक अद्वितीय तत्व है जो किसी भी तत्व का परवर्ती नहीं है; | # एक अद्वितीय तत्व है जो किसी भी तत्व का परवर्ती नहीं है; | ||
# किसी भी दो अलग-अलग तत्वों का उत्तराधिकारी एक जैसा नहीं होता; | # किसी भी दो अलग-अलग तत्वों का उत्तराधिकारी एक जैसा नहीं होता; | ||
# कोई भी तत्व Sn(x) = x को n > 0 से संतुष्ट नहीं करता है। | # कोई भी तत्व Sn(x) = x को n > 0 से संतुष्ट नहीं करता है। | ||
वास्तव में, पीनो के दो स्वयंसिद्ध हैं, जबकि तीसरा प्रेरण द्वारा पहले से अनुसरण करता है (पीनो के स्वयंसिद्धों में से एक)। इस सिद्धांत के किसी भी मॉडल में प्राकृतिक संख्याओं के अलावा पूर्ण पूर्णांकों की असंयुक्त प्रतियां शामिल होती हैं, क्योंकि | वास्तव में, पीनो के दो स्वयंसिद्ध हैं, जबकि तीसरा प्रेरण द्वारा पहले से अनुसरण करता है (पीनो के स्वयंसिद्धों में से एक)। इस सिद्धांत के किसी भी मॉडल में प्राकृतिक संख्याओं के अलावा पूर्ण पूर्णांकों की असंयुक्त प्रतियां शामिल होती हैं, क्योंकि जब कोई 0 से एक उपमॉडल उत्पन्न करता है तो शेष सभी बिंदु पूर्ववर्ती और परवर्ती दोनों को अनिश्चित काल के लिए स्वीकार करते हैं। यह इस बात के प्रमाण की रूपरेखा है <math>\langle {\mathbb N}, S\rangle</math> एक प्रमुख मॉडल है। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 15:29, 23 July 2023
This article needs additional citations for verification. (November 2022) (Learn how and when to remove this template message) |
गणित में, और विशेष रूप से मॉडल सिद्धांत में,[1] अभाज्य मॉडल एक ऐसा मॉडल (गणितीय तर्क) है जो यथासंभव सरल है। विशेष रूप से, मॉडल यदि यह किसी भी मॉडल में प्राथमिक एम्बेडिंग को स्वीकार करता है। तो यह प्रमुख है जिसके लिए यह मौलिक रूप से समतुल्य है। (अर्थात, किसी भी मॉडल में)। उसी पूर्ण सिद्धांत को संतुष्ट करना ).
प्रमुखता
संतृप्त मॉडल की धारणा के विपरीत, अभाज्य मॉडल लोवेनहेम - स्कोलेम प्रमेय द्वारा बहुत विशिष्ट कार्डिनैलिटी तक सीमित हैं। अगर कार्डिनलिटी के साथ प्रथम-क्रम की भाषा हैI और एक संपूर्ण सिद्धांत खत्म हो गया है तब यह प्रमेय एक मॉडल की गारंटी देता है। प्रमुखता का इसका कोई अभाज्य मॉडल नहीं है। में बड़ी कार्डिनैलिटी हो सकती है क्योंकि कम से कम इसे ऐसे मॉडल में प्राथमिक रूप से एम्बेडेड होना चाहिए। इससे वास्तविक प्रमुखता में अभी भी बहुत अस्पष्टता बनी हुई है। गणनीय भाषाओं के मामले में, सभी अभाज्य मॉडल अधिकतम गणनीय रूप से अनंत हैं।
संतृप्त मॉडल के साथ संबंध
अभाज्य और संतृप्त मॉडल की परिभाषाओं के बीच द्वंद्व है। इस द्वंद्व के आधे हिस्से की चर्चा संतृप्त मॉडलों पर लेख में की गई है, जबकि अन्य आधे की चर्चा इस प्रकार है। जबकि एक संतृप्त मॉडल जितना संभव हो उतने प्रकार (मॉडल सिद्धांत) का एहसास करता है, एक अभाज्य मॉडल जितना संभव हो उतना कम एहसास करता है: यह एक परमाणु मॉडल (गणितीय तर्क) है, केवल उन प्रकारों को समझता है जिन्हें छोड़ा नहीं जा सकता है और शेष को छोड़ दिया जाता है। इसकी व्याख्या इस अर्थ में की जा सकती है कि एक प्रमुख मॉडल किसी भी तामझाम को स्वीकार नहीं करता है: किसी मॉडल की कोई भी विशेषता जो वैकल्पिक है, उसे इसमें नजरअंदाज कर दिया जाता है।
उदाहरण के लिए, मॉडल उत्तराधिकारी ऑपरेशन एस के साथ प्राकृतिक संख्या एन के सिद्धांत का एक प्रमुख मॉडल है; एक गैर-प्रधान मॉडल हो सकता है। इसका मतलब है। कि पूर्ण पूर्णांकों की एक प्रति है। जो इस मॉडल के भीतर प्राकृतिक संख्याओं की मूल प्रति से अलग है; इस ऐड-ऑन में, अंकगणित हमेशा की तरह काम करता है। ये मॉडल मौलिक रूप से समतुल्य हैं; उनका सिद्धांत निम्नलिखित स्वयंसिद्धीकरण (मौखिक रूप से) को स्वीकार करता है:
- एक अद्वितीय तत्व है जो किसी भी तत्व का परवर्ती नहीं है;
- किसी भी दो अलग-अलग तत्वों का उत्तराधिकारी एक जैसा नहीं होता;
- कोई भी तत्व Sn(x) = x को n > 0 से संतुष्ट नहीं करता है।
वास्तव में, पीनो के दो स्वयंसिद्ध हैं, जबकि तीसरा प्रेरण द्वारा पहले से अनुसरण करता है (पीनो के स्वयंसिद्धों में से एक)। इस सिद्धांत के किसी भी मॉडल में प्राकृतिक संख्याओं के अलावा पूर्ण पूर्णांकों की असंयुक्त प्रतियां शामिल होती हैं, क्योंकि जब कोई 0 से एक उपमॉडल उत्पन्न करता है तो शेष सभी बिंदु पूर्ववर्ती और परवर्ती दोनों को अनिश्चित काल के लिए स्वीकार करते हैं। यह इस बात के प्रमाण की रूपरेखा है एक प्रमुख मॉडल है।
संदर्भ
- ↑ McNulty, George (2016). प्राथमिक मॉडल सिद्धांत (PDF). UNIVERSITY OF SOUTH CAROLINA. p. 12.
- Chang, Chen Chung; Keisler, H. Jerome (1990) [1973], Model Theory, Studies in Logic and the Foundations of Mathematics (3rd ed.), Elsevier, ISBN 978-0-444-88054-3