बोरेल माप: Difference between revisions

From Vigyanwiki
No edit summary
Line 14: Line 14:


===लेब्सग्यू-स्टिल्टजेस समाकलन===
===लेब्सग्यू-स्टिल्टजेस समाकलन===
{{Main|Lebesgue–Stieltjes integration}}
{{Main|लेब्सग्यू-स्टिल्टजेस समाकलन}}
लेब्सग्यू-स्टिल्टजेस समाकलन लेब्सग्यू-स्टिल्टजेस माप के रूप में जानने वाले माप के संबंध में सामान्य [[लेब्सग इंटीग्रल|लेब्सग समाकलन]] जो वास्तविक रेखा पर सीमित भिन्नता के किसी भी कार्य से जुड़ा हो सकता है लेब्सग्यू-स्टिल्टजेस माप एक [[नियमित बोरेल माप]] है जो इसके विपरीत वास्तविक रेखा पर प्रत्येक नियमित बोरेल माप इस प्रकार का होता है।<ref>{{Citation|last1=Halmos|first1=Paul R.|author1-link=Paul R. Halmos|title=Measure Theory|publisher=[[Springer-Verlag]]|location=Berlin, New York|isbn=978-0-387-90088-9|year=1974|url-access=registration|url=https://archive.org/details/measuretheory00halm}}</ref>
 


[[लेब्सग्यू-स्टिल्टजेस समाकलन]] एक सामान्य [[लेब्सग इंटीग्रल|लेब्सग समाकलन]] है जो एक अवकल के संबंध में होता है जिसे लेबेस्ग-स्टील्ट्ज माप के रूप में जाना जाता है, जो वास्तविक रेखा पर [[परिबद्ध भिन्नता]] के किसी भी फलन से जुड़ा हो सकता है। लेब्सग्यू-स्टिल्टजेस माप एक [[नियमित बोरेल माप]] है जो इसके विपरीत वास्तविक रेखा पर प्रत्येक नियमित बोरेल माप इस प्रकार की होती है।<ref>{{Citation|last1=Halmos|first1=Paul R.|author1-link=Paul R. Halmos|title=Measure Theory|publisher=[[Springer-Verlag]]|location=Berlin, New York|isbn=978-0-387-90088-9|year=1974|url-access=registration|url=https://archive.org/details/measuretheory00halm}}</ref>
===लाप्लास परिवर्तन===
===लाप्लास परिवर्तन===
{{Main|लाप्लास परिवर्तन}}
{{Main|लाप्लास परिवर्तन}}

Revision as of 19:27, 17 July 2023

गणित में, विशेष रूप से माप सिद्धांत में, एक सांस्थितिक समष्टि पर एक बोरेल माप एक माप होती है जो सभी विवृत समुच्चयों पर (और इसलिए सभी बोरेल समुच्चयों पर) परिभाषित होती है।[1] कुछ लेखकों को माप पर अतिरिक्त प्रतिबंधों की आवश्यकता होती है, जैसा कि नीचे वर्णित है।

औपचारिक परिभाषा

मान लीजिए कि एक स्थानीय रूप से सघन हॉसडॉर्फ समष्टि है, और सबसे छोटा σ-बीजगणित है जिसमें के विवृत समुच्चय सम्मिलित हैं, तथा इसे बोरेल समुच्चय के σ-बीजगणित के रूप में जाना जाता है। बोरेल माप बोरेल समुच्चय के σ-बीजगणित पर परिभाषित कोई भी माप होती है।[2] कुछ लेखकों को इसकी आवश्यकता होती है स्थानीय रूप से परिमित माप जिसका अर्थ है प्रत्येक संस्थित समूह के लिए . यदि एक बोरेल माप आंतरिक नियमित माप और परिभाषा दोनों हैं तो इसे बोरेल नियमित माप कहा जाता है अगर आंतरिक नियमित और बाहरी नियमित व स्थानीय रूप से परिमित माप दोनों है तो इसे रेडॉन माप कहा जाता है।

वास्तविक रेखा पर

असली पंक्ति अपनी वास्तविक रेखा के साथ एक संस्थितिक रिक्त के रूप में एक स्थानीय रूप से संस्थितिक रिक्त है इसलिए हम इस पर बोरेल माप को परिभाषित कर सकते हैं इस समष्टि में सबसे छोटा σ-बीजगणित है जिसमें संवृत अंतराल होते हैं . जबकि कई बोरेल माप μ हैं, बोरेल माप का विकल्प जो हस्ताक्षर करता है प्रत्येक आधे संवृत अंतराल के लिए कभी-कभी बोरेल माप भी कहा जाता है . यह माप लेब्सेग माप के बोरेल σ-बीजगणित के लिए प्रतिबंध प्रमाणित होता है , जो एक पूर्ण माप है और लेब्सग्यू σ-बीजगणित पर परिभाषित किया गया है लेब्सग्यू σ-बीजगणित वास्तव में बोरेल σ-बीजगणित का समापन है जिसका अर्थ है कि यह सबसे छोटा σ-बीजगणित है जिसमें सभी बोरेल समूह सम्मिलित हैं और इसे पूर्ण माप से सुसज्जित किया जा सकता है इसको छोड़कर बोरेल माप और लेबेस्ग माप बोरेल समूह पर मेल खाते हैं जबकि प्रत्येक बोरेल मापने योग्य समूह के लिए जहां विवृत वर्णित बोरेल माप है।

उत्पाद स्थान

यदि X और Y द्वितीय-गणनीय हैं हॉसडॉर्फ़ संस्थितिक रिक्त तो बोरेल उपसमुच्चय या समुच्चय उनके उत्पाद से तथा समूह के उत्पाद से मेल खाता है X और Y के बोरेल उपसमुच्चय [3] बोरेल चालक हैं

द्वितीय-गणनीय हॉसडॉर्फ रिक्त समष्टि की श्रेणी गणित से मापने योग्य समष्टि की श्रेणी तक परिमित उत्पाद श्रेणी सिद्धांत को संरक्षित करता है।

अनुप्रयोग

लेब्सग्यू-स्टिल्टजेस समाकलन

लेब्सग्यू-स्टिल्टजेस समाकलन एक सामान्य लेब्सग समाकलन है जो एक अवकल के संबंध में होता है जिसे लेबेस्ग-स्टील्ट्ज माप के रूप में जाना जाता है, जो वास्तविक रेखा पर परिबद्ध भिन्नता के किसी भी फलन से जुड़ा हो सकता है। लेब्सग्यू-स्टिल्टजेस माप एक नियमित बोरेल माप है जो इसके विपरीत वास्तविक रेखा पर प्रत्येक नियमित बोरेल माप इस प्रकार की होती है।[4]

लाप्लास परिवर्तन

एक परिमित बोरेल माप μ के लाप्लास परिवर्तन को वास्तविक रेखा पर लेबेस्ग अवकल[5]

के द्वारा परिभाषित किया जा सकता है। एक महत्वपूर्ण विशेष स्थिति वह है जहां μ एक प्रायिकता माप है और अधिक विशेष रूप से, डिराक डेल्टा फलन है। परिचालन कलन में किसी माप के लाप्लास परिवर्तन को ऐसे माना जाता है जैसे मानो माप किसी वितरण फलन f से आया हो। उस स्थिति में संभावित भ्रम से बचने के लिए व्यक्ति प्राय:

लिखता है जहां 0− की निचली सीमा

के लिए आशुलिपि (शॉर्टहैंड) अंकन है। यह सीमा बताती है कि 0 पर स्थित कोई भी बिंदु द्रव्यमान पूर्ण प्रकार से लाप्लास रूपांतरण द्वारा अधिकृत किया जाता है। हालाँकि लेबेस्ग समाकलन के साथ ऐसी सीमा आवश्यक नहीं है कि यह लाप्लास-स्टिल्टजेस परिवर्तन के संबंध में अधिक स्वाभाविक रूप से प्रकट होता है।

हॉसडॉर्फ आयाम और फ्रॉस्टमैन्स लेम्मा

एक बोरेल माप μ को एक मापीय समष्टि X पर इस प्रकार दिया गया है कि μ(X) > 0 और μ(B(x, r)) ≤ rs कुछ स्थिरांक s > 0 के लिए और X में प्रत्येक बॉल B(x, r) के लिए धारण करते हैं, जिससे हॉसडॉर्फ आयाम डिमहॉस(X) ≥ s प्राप्त होता है। फ्रॉस्टमैन लेम्मा द्वारा एक आंशिक प्रतिक्रिया प्रदान की गई है,[6]

लेम्मा, मान लीजिए A Rn का एक बोरेल उपसमुच्चय है और मान लीजिए s > 0 है। तो निम्नलिखित समतुल्य हैं-

  • Hs(A) > 0, जहां Hs,s-आयामी हॉसडॉर्फ माप को दर्शाता है
  • एक (अहस्ताक्षरित) बोरेल माप μ है जो μ(A) > 0 को संतुष्ट करता है और इस प्रकार
सभी x ∈ Rn और r > 0 के लिए मान्य है।

क्रैमर-वॉल्ड प्रमेय

माप सिद्धांत में क्रैमर-वॉल्ड प्रमेय का कथन है कि पर एक बोरेल प्रायिकता माप विशिष्ट रूप से इसके एक-आयामी अनुमानों की समग्रता से निर्धारित होता है। [7] इसका उपयोग संयुक्त अभिसरण परिणामों को सिद्ध करने की एक विधि के रूप में किया जाता है। प्रमेय का नाम हेराल्ड क्रैमर और हरमन ओले एंड्रियास वोल्ड के नाम पर रखा गया है।

संदर्भ

  1. D. H. Fremlin, 2000. Measure Theory Archived 2010-11-01 at the Wayback Machine. Torres Fremlin.
  2. Alan J. Weir (1974). सामान्य एकीकरण और माप. Cambridge University Press. pp. 158–184. ISBN 0-521-29715-X.
  3. Vladimir I. Bogachev. Measure Theory, Volume 1. Springer Science & Business Media, Jan 15, 2007
  4. Halmos, Paul R. (1974), Measure Theory, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90088-9
  5. Feller 1971, §XIII.1
  6. Rogers, C. A. (1998). Hausdorff measures. Cambridge Mathematical Library (Third ed.). Cambridge: Cambridge University Press. pp. xxx+195. ISBN 0-521-62491-6.
  7. K. Stromberg, 1994. Probability Theory for Analysts. Chapman and Hall.


अग्रिम पठन


बाहरी संबंध