अस्थिर प्रवाह के लिए परिमित आयतन विधि: Difference between revisions

From Vigyanwiki
No edit summary
Line 39: Line 39:


== विभिन्न योजनाएँ ==
== विभिन्न योजनाएँ ==
1. स्पष्ट योजना स्पष्ट योजना में स्रोत शब्द को इस प्रकार रैखिक किया गया है <math> b = S_u + {S_P}{T_P}^0 </math>. हम स्थानापन्न करते हैं <math> \theta = 0 </math> स्पष्ट विवेक प्राप्त करने के लिए अर्थात:<ref>An Introduction to Computational Fluid Dynamics H. K. Versteeg and W Malalasekera Chapter 8 page 171</ref>
1.'''स्पष्ट योजना,''' स्पष्ट योजना में स्रोत शब्द को <math> b = S_u + {S_P}{T_P}^0 </math> के रूप में रैखिक बनाया गया है। स्पष्ट असंततकरण प्राप्त करने के लिए हम <math> \theta = 0 </math>को प्रतिस्थापित करते हैं अर्थात:<ref>An Introduction to Computational Fluid Dynamics H. K. Versteeg and W Malalasekera Chapter 8 page 171</ref>  


<math> a_P T_P = a_w {T_w}^0 + a_e {T_e}^0 + \left[ {a_P}^0 - \left( a_w + a_e - S_P \right)\right] {T_P}^0 + S_u </math>
<math> a_P T_P = a_w {T_w}^0 + a_e {T_e}^0 + \left[ {a_P}^0 - \left( a_w + a_e - S_P \right)\right] {T_P}^0 + S_u </math>
कहाँ <math> a_P = {a_P}^0 </math>. ध्यान देने योग्य एक बात यह है कि दाईं ओर पुराने समय के चरण के मान शामिल हैं और इसलिए बाईं ओर की गणना समय में आगे मिलान करके की जा सकती है। यह योजना बैकवर्ड डिफरेंसिंग पर आधारित है और इसकी टेलर श्रृंखला ट्रंकेशन त्रुटि समय के संबंध में पहले क्रम की है। सभी गुणांक सकारात्मक होने चाहिए. निरंतर k और समान ग्रिड रिक्ति के लिए, <math> \delta x_{PE} =  \delta x_{WP} = \Delta x </math> इस शर्त को इस प्रकार लिखा जा सकता है
 
जहाँ <math> a_P = {a_P}^0 </math> ध्यान देने योग्य एक बात यह है कि दाईं ओर पुराने समय के चरण में मान शामिल हैं और इसलिए बाईं ओर समय में आगे मिलान करके गणना की जा सकती है। यह योजना बैकवर्ड डिफरेंसिंग पर आधारित है और इसकी टेलर श्रृंखला ट्रंकेशन त्रुटि समय के संबंध में प्रथम क्रम है। सभी गुणांक सकारात्मक होने चाहिए. स्थिरांक k और एकसमान ग्रिड रिक्ति, <math> \delta x_{PE} =  \delta x_{WP} = \Delta x </math> के लिए इस स्थिति को इस प्रकार लिखा जा सकता है


<math> \rho c \frac { \Delta x } { \Delta t } > \frac {2K} { \Delta x } </math>
<math> \rho c \frac { \Delta x } { \Delta t } > \frac {2K} { \Delta x } </math>
यह असमानता अधिकतम समय कदम पर एक कठोर शर्त निर्धारित करती है जिसका उपयोग किया जा सकता है और योजना पर एक गंभीर सीमा का प्रतिनिधित्व करता है। स्थानिक सटीकता में सुधार करना बहुत महंगा हो जाता है क्योंकि अधिकतम संभव समय चरण को वर्ग के रूप में कम करने की आवश्यकता होती है <math> \Delta x </math> <ref>http://opencourses.emu.edu.tr/mod/resource/view.php?id=489 topic 7</ref>
 
यह असमानता उपयोग किए जा सकने वाले अधिकतम समय कदम पर एक कठोर शर्त निर्धारित करती है और योजना पर एक गंभीर सीमा का प्रतिनिधित्व करती है। स्थानिक सटीकता में सुधार करना बहुत महंगा हो जाता है क्योंकि अधिकतम संभव समय कदम को <math> \Delta x </math> के वर्ग के रूप में कम करना पड़ता है<ref>http://opencourses.emu.edu.tr/mod/resource/view.php?id=489 topic 7</ref>
 
2. क्रैंक-निकोलसन योजना: [[क्रैंक-निकोलसन विधि]] सेटिंग से उत्पन्न होती है <math> \theta = \frac {1}{2}</math>. विवेचित अस्थिर ऊष्मा चालन समीकरण बन जाता है
2. क्रैंक-निकोलसन योजना: [[क्रैंक-निकोलसन विधि]] सेटिंग से उत्पन्न होती है <math> \theta = \frac {1}{2}</math>. विवेचित अस्थिर ऊष्मा चालन समीकरण बन जाता है


<math> a_P T_P = a_E \left[ \frac {T_E + {T_E}^0} {2}\right] + a_W \left[ \frac {T_W + {T_W}^0} {2}\right] + \left[ {a_P}^0 - \frac {a_E} {2} - \frac {a_W} {2}\right] {T_P}^0 + b </math>
<math> a_P T_P = a_E \left[ \frac {T_E + {T_E}^0} {2}\right] + a_W \left[ \frac {T_W + {T_W}^0} {2}\right] + \left[ {a_P}^0 - \frac {a_E} {2} - \frac {a_W} {2}\right] {T_P}^0 + b </math>
कहाँ <math> a_P = \frac {a_W + a_E} {2} + {a_P}^0 - \frac {S_P} {2} </math>
जहाँ <math> a_P = \frac {a_W + a_E} {2} + {a_P}^0 - \frac {S_P} {2} </math>
चूंकि नए समय स्तर पर टी के एक से अधिक अज्ञात मान समीकरण में मौजूद हैं, इसलिए विधि अंतर्निहित है और प्रत्येक समय चरण पर सभी नोड बिंदुओं के लिए एक साथ समीकरणों को हल करने की आवश्यकता है। हालाँकि योजनाओं के साथ <math> \frac {1}{2} < \theta < 1 </math> क्रैंक-निकोलसन योजना सहित, समय चरण के सभी मूल्यों के लिए बिना शर्त स्थिर हैं, यह सुनिश्चित करना अधिक महत्वपूर्ण है कि सभी गुणांक शारीरिक रूप से यथार्थवादी और सीमित परिणामों के लिए सकारात्मक हैं। यह मामला है यदि का गुणांक <math> {T_P}^0</math> निम्नलिखित शर्त को पूरा करता है
चूंकि नए समय स्तर पर टी के एक से अधिक अज्ञात मान समीकरण में मौजूद हैं, इसलिए विधि अंतर्निहित है और प्रत्येक समय चरण पर सभी नोड बिंदुओं के लिए एक साथ समीकरणों को हल करने की आवश्यकता है। हालाँकि योजनाओं के साथ <math> \frac {1}{2} < \theta < 1 </math> क्रैंक-निकोलसन योजना सहित, समय चरण के सभी मूल्यों के लिए बिना शर्त स्थिर हैं, यह सुनिश्चित करना अधिक महत्वपूर्ण है कि सभी गुणांक शारीरिक रूप से यथार्थवादी और सीमित परिणामों के लिए सकारात्मक हैं। यह मामला है यदि का गुणांक <math> {T_P}^0</math> निम्नलिखित शर्त को पूरा करता है



Revision as of 06:11, 24 July 2023

अस्थिर प्रवाह को ऐसे प्रवाह के रूप में जाना जाता है जिसमें तरल पदार्थ के गुण समय पर निर्भर होते हैं। यह समीकरण संचालन में प्रतिबिंबित होता है क्योंकि गुणों का अवकलज समय अनुपस्थित है। अस्थिर प्रवाह के लिए परिमित-मात्रा विधि का अध्ययन करने के लिए कुछ नियामक समीकरण हैं [1]>

समीकरण संचालन

अस्थिर प्रवाह में अदिश के परिवहन के लिए संरक्षण समीकरण का सामान्य रूप इस प्रकार है [2]

घनत्व है और सभी द्रव प्रवाह का अपरिवर्तनवादी रूप है,

प्रसार गुणांक है और स्रोत पद है। तरल पदार्थ तत्व (संवहन) से के प्रवाह की परिष्कृत दर है,
की वृद्धि दर है प्रसार के कारण,

स्रोतों के कारण की वृद्धि की दर है।
द्रव तत्व के की वृद्धि की दर (क्षणिक) है,

समीकरण का पहला पद प्रवाह की अस्थिरता को दर्शाता है और स्थिर प्रवाह के मामले में अनुपस्थित है। समीकरण संचालन का परिमित आयतन एकीकरण एक नियंत्रण आयतन और एक सीमित समय चरण ∆t पर भी किया जाता है।

समीकरण के स्थिर भाग का नियंत्रण आयतन एकीकरण स्थिर अवस्था शासी समीकरण के एकीकरण के समान है। हमें समीकरण के अस्थिर घटक के एकीकरण पर ध्यान केंद्रित करने की आवश्यकता है। एकीकरण तकनीक का एहसास पाने के लिए, हम एक-आयामी अस्थिर ताप चालन समीकरण का संदर्भ लेते हैं।[3]

अब, संपूर्ण नियंत्रण आयतन में प्रचलित नोड पर तापमान की धारणा को ध्यान में रखते हुए, समीकरण के बाईं ओर को[4] के रूप में लिखा जा सकता है।

पहले क्रम की पश्चगामी अवकलन योजना का उपयोग करके, हम समीकरण के दाहिने हाथ को इस प्रकार लिख सकते हैं

अब समीकरण के दाहिने पक्ष का मूल्यांकन करने के लिए हम 0 और 1 के बीच एक वेटिंग पैरामीटर का उपयोग करते हैं, और हम का एकीकरण लिखते हैं।

अब, अंतिम पृथक समीकरण का सटीक रूप के मूल्य पर निर्भर करता है। चूंकि का विचरण 0< <1 है, की गणना करने के लिए उपयोग की जाने वाली योजना के मान पर निर्भर करती है।

विभिन्न योजनाएँ

1.स्पष्ट योजना, स्पष्ट योजना में स्रोत शब्द को के रूप में रैखिक बनाया गया है। स्पष्ट असंततकरण प्राप्त करने के लिए हम को प्रतिस्थापित करते हैं अर्थात:[5]

जहाँ ध्यान देने योग्य एक बात यह है कि दाईं ओर पुराने समय के चरण में मान शामिल हैं और इसलिए बाईं ओर समय में आगे मिलान करके गणना की जा सकती है। यह योजना बैकवर्ड डिफरेंसिंग पर आधारित है और इसकी टेलर श्रृंखला ट्रंकेशन त्रुटि समय के संबंध में प्रथम क्रम है। सभी गुणांक सकारात्मक होने चाहिए. स्थिरांक k और एकसमान ग्रिड रिक्ति, के लिए इस स्थिति को इस प्रकार लिखा जा सकता है

यह असमानता उपयोग किए जा सकने वाले अधिकतम समय कदम पर एक कठोर शर्त निर्धारित करती है और योजना पर एक गंभीर सीमा का प्रतिनिधित्व करती है। स्थानिक सटीकता में सुधार करना बहुत महंगा हो जाता है क्योंकि अधिकतम संभव समय कदम को के वर्ग के रूप में कम करना पड़ता है[6]

2. क्रैंक-निकोलसन योजना: क्रैंक-निकोलसन विधि सेटिंग से उत्पन्न होती है . विवेचित अस्थिर ऊष्मा चालन समीकरण बन जाता है

जहाँ चूंकि नए समय स्तर पर टी के एक से अधिक अज्ञात मान समीकरण में मौजूद हैं, इसलिए विधि अंतर्निहित है और प्रत्येक समय चरण पर सभी नोड बिंदुओं के लिए एक साथ समीकरणों को हल करने की आवश्यकता है। हालाँकि योजनाओं के साथ क्रैंक-निकोलसन योजना सहित, समय चरण के सभी मूल्यों के लिए बिना शर्त स्थिर हैं, यह सुनिश्चित करना अधिक महत्वपूर्ण है कि सभी गुणांक शारीरिक रूप से यथार्थवादी और सीमित परिणामों के लिए सकारात्मक हैं। यह मामला है यदि का गुणांक निम्नलिखित शर्त को पूरा करता है

जिससे होता है

क्रैंक-निकोलसन केंद्रीय भिन्नता पर आधारित है और इसलिए समय में दूसरा क्रम सटीक है। गणना की समग्र सटीकता स्थानिक भिन्नता अभ्यास पर भी निर्भर करती है, इसलिए क्रैंक-निकोलसन योजना का उपयोग आम तौर पर स्थानिक केंद्रीय भिन्नता के साथ संयोजन में किया जाता है

3. पूरी तरह से अंतर्निहित योजना जब Ѳ का मान 1 पर सेट किया जाता है तो हमें पूरी तरह से अंतर्निहित योजना मिलती है। विच्छेदित समीकरण है: [7]

समीकरण के दोनों पक्षों में नए समय चरण पर तापमान होता है, और प्रत्येक समय स्तर पर बीजगणितीय समीकरणों की एक प्रणाली को हल किया जाना चाहिए। टाइम मार्चिंग प्रक्रिया तापमान के दिए गए प्रारंभिक क्षेत्र से शुरू होती है . समय चरण का चयन करने के बाद समीकरणों की प्रणाली को हल किया जाता है . अगला समाधान को सौंपा गया है और समाधान को एक और समय चरण तक आगे बढ़ाने के लिए प्रक्रिया को दोहराया जाता है। यह देखा जा सकता है कि सभी गुणांक सकारात्मक हैं, जो समय के किसी भी आकार के लिए अंतर्निहित योजना को बिना शर्त स्थिर बनाता है। चूंकि योजना की सटीकता समय में केवल प्रथम-क्रम है, इसलिए परिणामों की सटीकता सुनिश्चित करने के लिए छोटे समय के कदमों की आवश्यकता होती है। इसकी मजबूती और बिना शर्त स्थिरता के कारण सामान्य प्रयोजन क्षणिक गणना के लिए अंतर्निहित विधि की सिफारिश की जाती है

संदर्भ

  1. https://books.google.com/books+finite+volume+method+for+unsteady+flows. Retrieved November 10, 2013. {{cite web}}: Missing or empty |title= (help)[dead link]
  2. An Introduction to Computational Fluid Dynamics H. K. Versteeg and W Malalasekra Chapter 8 page 168
  3. An Introduction to Computational Fluid Dynamics H. K. Versteeg and W Malalasekera Chapter 8 page 169
  4. Kim, Dongjoo; Choi, Haecheon (2000-08-10). "हाइब्रिड असंरचित ग्रिड पर अस्थिर असंपीड्य प्रवाह के लिए दूसरे क्रम की समय-सटीक परिमित मात्रा विधि". Journal of Computational Physics. 162 (2): 411–428. Bibcode:2000JCoPh.162..411K. doi:10.1006/jcph.2000.6546.
  5. An Introduction to Computational Fluid Dynamics H. K. Versteeg and W Malalasekera Chapter 8 page 171
  6. http://opencourses.emu.edu.tr/mod/resource/view.php?id=489 topic 7
  7. http://opencourses.emu.edu.tr/course/view.php?id=27&lang=en topic 7