अस्थिर प्रवाह के लिए परिमित आयतन विधि

From Vigyanwiki

अस्थिर प्रवाह को ऐसे प्रवाह के रूप में जाना जाता है जिसमें तरल पदार्थ के गुण समय पर निर्भर होते हैं। यह समीकरण संचालन में प्रतिबिंबित होता है क्योंकि गुणों का अवकलज समय अनुपस्थित है। अस्थिर प्रवाह के लिए परिमित-मात्रा विधि का अध्ययन करने के लिए कुछ नियामक समीकरण हैं [1]>

समीकरण संचालन

अस्थिर प्रवाह में अदिश के परिवहन के लिए संरक्षण समीकरण का सामान्य रूप इस प्रकार है [2]

घनत्व है और सभी द्रव प्रवाह का अपरिवर्तनवादी रूप है,

प्रसार गुणांक है और स्रोत पद है। तरल पदार्थ अवयव (संवहन) से के प्रवाह की परिष्कृत दर है,
की वृद्धि दर है प्रसार के कारण,

स्रोतों के कारण की वृद्धि की दर है।
द्रव अवयव के की वृद्धि की दर (क्षणिक) है,

समीकरण का पहला पद प्रवाह की अस्थिरता को दर्शाता है और स्थिर प्रवाह के स्तिथि में अनुपस्थित है। समीकरण संचालन का परिमित आयतन एकीकरण नियंत्रण आयतन और सीमित समय चरण ∆t पर भी किया जाता है।

समीकरण के स्थिर भाग का नियंत्रण आयतन एकीकरण स्थिर अवस्था शासी समीकरण के एकीकरण के समान है। हमें समीकरण के अस्थिर घटक के एकीकरण पर ध्यान केंद्रित करने की आवश्यकता है। एकीकरण तकनीक का एहसास पाने के लिए, हम एक-आयामी अस्थिर ताप चालन समीकरण का संदर्भ लेते हैं।[3]

अब, संपूर्ण नियंत्रण आयतन में प्रचलित नोड पर तापमान की धारणा को ध्यान में रखते हुए, समीकरण के बाईं ओर को[4] के रूप में लिखा जा सकता है।

पहले क्रम की पश्चगामी अवकलन योजना का उपयोग करके, हम समीकरण के दाहिने हाथ को इस प्रकार लिख सकते हैं

अब समीकरण के दाहिने पक्ष का मूल्यांकन करने के लिए हम 0 और 1 के बीच वेटिंग पैरामीटर का उपयोग करते हैं, और हम का एकीकरण लिखते हैं।

अब, अंतिम पृथक समीकरण का सटीक रूप के मूल्य पर निर्भर करता है। चूंकि का विचरण 0< <1 है, की गणना करने के लिए उपयोग की जाने वाली योजना के मान पर निर्भर करती है।

विभिन्न योजनाएँ

1.स्पष्ट योजना, स्पष्ट योजना में स्रोत शब्द को के रूप में रैखिक बनाया गया है। स्पष्ट असंततकरण प्राप्त करने के लिए हम को प्रतिस्थापित करते हैं अर्थात:[5]

जहाँ ध्यान देने योग्य एक बात यह है कि दाईं ओर पुराने समय के चरण में मान सम्मिलित हैं और इसलिए बाईं ओर समय में आगे मिलान करके गणना की जा सकती है। यह योजना बैकवर्ड डिफरेंसिंग पर आधारित है और इसकी टेलर श्रृंखला ट्रंकेशन त्रुटि समय के संबंध में प्रथम क्रम है। सभी गुणांक घनात्मक होने चाहिए. स्थिरांक k और एकसमान ग्रिड रिक्ति, के लिए इस स्थिति को इस प्रकार लिखा जा सकता है

यह असमानता उपयोग किए जा सकने वाले अधिकतम समय कदम पर एक कठिन शर्त निर्धारित करती है और योजना पर एक गंभीर सीमा का प्रतिनिधित्व करती है। स्थानिक सटीकता में सुधार करना बहुत महंगा हो जाता है क्योंकि अधिकतम संभव समय कदम को के वर्ग के रूप में कम करना पड़ता है[6]

2. क्रैंक-निकोलसन योजना: क्रैंक-निकोलसन विधि का परिणाम सेट करने से होता है। विवेकाधीन अस्थिर ताप चालन समीकरण बन जाता है

जहाँ चूंकि नए समय स्तर पर टी के एक से अधिक अज्ञात मान समीकरण में उपस्थित हैं, इसलिए विधि अंतर्निहित है और प्रत्येक समय चरण पर सभी नोड बिंदुओं के लिए एक साथ समीकरणों को हल करने की आवश्यकता है। हालाँकि योजनाओं के साथ क्रैंक-निकोलसन योजना सहित, समय चरण के सभी मूल्यों के लिए बिना शर्त स्थिर हैं, यह सुनिश्चित करना अधिक महत्वपूर्ण है कि सभी गुणांक शारीरिक रूप से यथार्थवादी और सीमित परिणामों के लिए घनात्मक हैं। यह मामला है यदि का गुणांक निम्नलिखित शर्त को पूरा करता है

जिससे होता है

क्रैंक-निकोलसन केंद्रीय विभेदन पर आधारित है और इसलिए समय में दूसरे क्रम पर सटीक है। गणना की समग्र सटीकता स्थानिक विभेदन अभ्यास पर भी निर्भर करती है, इसलिए क्रैंक-निकोलसन योजना का उपयोग सामान्यतः स्थानिक केंद्रीय विभेदन के संयोजन में किया जाता है।

3.पूर्णतः अन्तर्निहित योजना जब Ѳ का मान 1 पर सेट किया जाता है तो हमें पूर्णतः अन्तर्निहित योजना प्राप्त होती है। विच्छेदित समीकरण है:[7]

समीकरण के दोनों पक्षों में नए समय चरण पर तापमान होता है, और बीजीय समीकरणों की एक प्रणाली को प्रत्येक समय स्तर पर हल किया जाना चाहिए। टाइम मार्चिंग प्रक्रिया तापमान के दिए गए प्रारंभिक क्षेत्र से प्रारम्भ होती है। समीकरणों की प्रणाली समय चरण का चयन करने के बाद हल की जाती है। इसके बाद, समाधान को को नियत किया गया है और समाधान को एक और समय चरण तक आगे बढ़ाने के लिए प्रक्रिया दोहराई जाती है। यह देखा जा सकता है कि सभी गुणांक घनात्मक हैं, जो अंतर्निहित योजना को समय के किसी भी आकार के लिए बिना शर्त स्थिर बनाता है। चूँकि योजना की सटीकता समय के स्तिथि में केवल प्रथम-क्रम है, इसलिए परिणामों की सटीकता सुनिश्चित करने के लिए छोटे समय के कदमों की आवश्यकता होती है। इसकी प्रबलता और बिना शर्त स्थिरता के कारण सामान्य-प्रयोजन क्षणिक गणना के लिए अंतर्निहित विधि की सिफारिश की जाती है

संदर्भ

  1. https://books.google.com/books+finite+volume+method+for+unsteady+flows. Retrieved November 10, 2013. {{cite web}}: Missing or empty |title= (help)[dead link]
  2. An Introduction to Computational Fluid Dynamics H. K. Versteeg and W Malalasekra Chapter 8 page 168
  3. An Introduction to Computational Fluid Dynamics H. K. Versteeg and W Malalasekera Chapter 8 page 169
  4. Kim, Dongjoo; Choi, Haecheon (2000-08-10). "हाइब्रिड असंरचित ग्रिड पर अस्थिर असंपीड्य प्रवाह के लिए दूसरे क्रम की समय-सटीक परिमित मात्रा विधि". Journal of Computational Physics. 162 (2): 411–428. Bibcode:2000JCoPh.162..411K. doi:10.1006/jcph.2000.6546.
  5. An Introduction to Computational Fluid Dynamics H. K. Versteeg and W Malalasekera Chapter 8 page 171
  6. http://opencourses.emu.edu.tr/mod/resource/view.php?id=489 topic 7
  7. http://opencourses.emu.edu.tr/course/view.php?id=27&lang=en topic 7