गैर-मापने योग्य समुच्चय: Difference between revisions

From Vigyanwiki
No edit summary
Line 53: Line 53:
{{Measure theory}}
{{Measure theory}}


{{DEFAULTSORT:Non-Measurable Set}}[[Category: माप सिद्धांत]]
{{DEFAULTSORT:Non-Measurable Set}}


 
[[Category:CS1 English-language sources (en)]]
 
[[Category:Collapse templates|Non-Measurable Set]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/05/2023|Non-Measurable Set]]
[[Category:Created On 25/05/2023]]
[[Category:Lua-based templates|Non-Measurable Set]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page|Non-Measurable Set]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Non-Measurable Set]]
[[Category:Pages with script errors|Non-Measurable Set]]
[[Category:Sidebars with styles needing conversion|Non-Measurable Set]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Non-Measurable Set]]
[[Category:Templates generating microformats|Non-Measurable Set]]
[[Category:Templates that add a tracking category|Non-Measurable Set]]
[[Category:Templates that are not mobile friendly|Non-Measurable Set]]
[[Category:Templates that generate short descriptions|Non-Measurable Set]]
[[Category:Templates using TemplateData|Non-Measurable Set]]
[[Category:Wikipedia metatemplates|Non-Measurable Set]]
[[Category:माप सिद्धांत|Non-Measurable Set]]

Revision as of 15:25, 31 July 2023

गणित में, एक गैर-मापने योग्य समुच्चय एक समुच्चय (गणित) है जिसे एक अर्थपूर्ण "आयतन" निर्दिष्ट नहीं किया जा सकता है। ऐसे समुच्चयों के गणितीय अस्तित्व को औपचारिक समुच्चय सिद्धांत में लंबाई, क्षेत्रफल और आयतन की धारणाओं के बारे में सूचना प्रदान करने के लिए लगाया गया है। ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत में, पसंद का स्वयंसिद्ध गैर-मापने योग्य उपसमुच्चय पर जोर देता है विद्यमान हैं।

एक गैर-मापने योग्य समुच्चय की धारणा इसकी प्रारंभ के बाद से बड़े विवाद का स्रोत रही है। ऐतिहासिक रूप से, इसने एमिल बोरेल और कोलोगोरोव को समुच्चय पर संभाव्यता सिद्धांत तैयार करने के लिए प्रेरित किया जो औसत दर्जे का होने के लिए विवश हैं। रेखा पर मापने योग्य समुच्चय पुनरावृत्त गणनीय संघ और अंतराल के चौराहे (बोरेल समुच्चय कहा जाता है) प्लस-माइनस शून्य समुच्चय हैं। मानक गणित में उत्पन्न होने वाले समुच्चय की हर बोधगम्य परिभाषा को शामिल करने के लिए ये समुच्चय काफी समृद्ध हैं, लेकिन उन्हें यह सिद्ध करने के लिए बहुत अधिक औपचारिकता की आवश्यकता होती है कि समुच्चय मापने योग्य हैं।

1970 में, रॉबर्ट एम. सोलोवे ने कोकिला प्रतिरूप का निर्माण किया, जो दर्शाता है कि यह अगणनीय पसंद के बिना मानक समुच्चय सिद्धांत के अनुरूप है, कि वास्तविक के सभी उपसमुच्चय मापने योग्य हैं। हालांकि, सोलोवे का परिणाम एक दुर्गम कार्डिनल के अस्तित्व पर निर्भर करता है, जिसका अस्तित्व और स्थिरता मानक समुच्चय सिद्धांत के भीतर सिद्ध नहीं की जा सकती।

ऐतिहासिक निर्माण

पहला संकेत कि एक मनमाना समुच्चय के लिए लंबाई परिभाषित करने में समस्या हो सकती है, विटाली के प्रमेय से आया है।[1] एक और हालिया संयोजी निर्माण जो रॉबिन थॉमस के निर्माण के समान है, गैर-लेबेस्ग परिमेय का समुच्चय कुछ अतिरिक्त गुणों के साथ अमेरिकन गणितीय मासिक में दिखाई दिया। [2]

किसी को अपेक्षा होगी कि दो अलग-अलग समुच्चयों के मिलन का माप दो समुच्चयों के माप का योग होगा। इस प्राकृतिक संपत्ति के साथ एक माप को परिमित रूप से योज्य कहा जाता है। जबकि क्षेत्र के अधिकांश अंतर्ज्ञान के लिए एक सूक्ष्म योगात्मक माप पर्याप्त है, और रीमैन एकीकरण के अनुरूप है, इसे संभाव्यता के लिए अपर्याप्त माना जाता है, क्योंकि घटनाओं के अनुक्रमों के पारंपरिक आधुनिक उपचार या यादृच्छिक चर गणनीय योगात्मकता की मांग करते हैं।

इस संबंध में, तल रेखा के समान है; लेबेस्गु माप का विस्तार करने वाला एक सूक्ष्म योगात्मक उपाय है, जो सभी आइसोमेट्रीज़ के तहत अपरिवर्तनीय है। उच्च आयामों के लिए चित्र खराब हो जाता है। हॉसडॉर्फ विरोधाभास और बानाच-टार्स्की विरोधाभास दिखाते हैं कि त्रिज्या 1 की त्रि-आयामी गेंद (गणित) को 5 भागों में विभाजित किया जा सकता है जिसे त्रिज्या 1 की दो गेंदें बनाई जा सकती हैं।

उदाहरण

विचार करना मात्रक वृत्त में सभी बिंदुओं का समुच्चय, और सामूहिक कार्य (गणित)। एक समूह द्वारा सभी परिमेय घुमावों से मिलकर बनता है (कोणों द्वारा घूर्णन जो परिमेय संख्या के गुणक हैं ). यहाँ गणनीय है (अधिक विशेष रूप से, के लिए समरूप है ) जबकि अगणनीय है। इस तरह के तहत अगणनीय रूप से कई ग्रहपथ (समूह सिद्धांत) में टूट जाता है (कक्षा गणनीय समुच्चय है ). पसंद के स्वयंसिद्ध का उपयोग करते हुए, हम एक अगणनीय उपसमुच्चय प्राप्त करते हुए, प्रत्येक कक्षा से एक बिंदु चुन सकते हैं उस संपत्ति के साथ जो सभी तर्कसंगत अनुवाद करती है (फॉर्म की अनुवादित प्रतियां कुछ तर्कसंगत के लिए )[3] का द्वारा जोड़ो में अलग कर रहे हैं (अर्थात्, से अलग करना और एक दूसरे से)। उन लोगों का समुच्चय एक समुच्चय के विभाजन का अनुवाद करता है, सर्कल को अलग-अलग समुच्चयों के एक गणनीय संग्रह में, जो सभी जोड़ीदार सर्वांगसम (तर्कसंगत घुमावों द्वारा) हैं। समुच्चय पर किसी भी आवर्तन-अचल गणनीय योगात्मक प्रायिकता माप के लिए गैर-मापने योग्य नहीं होगा : अगर शून्य माप है, गणनीय योगात्मकता का अर्थ यह होगा कि पूरे वृत्त का माप शून्य है। अगर धनात्मक माप है, गणनीय योज्यता दर्शाती है कि वृत्त का माप अनंत है।

माप और प्रायिकता की संगत परिभाषाएं

बानाच-तर्स्की विरोधाभास से पता चलता है कि तीन आयामों में मात्रा को परिभाषित करने का कोई तरीका नहीं है, जब तक कि निम्नलिखित पांच छूट में से एक नहीं किया जाता है:

  1. घुमाए जाने पर समुच्चय का आयतन बदल सकता है।
  2. दो अलग-अलग समुच्चयों के मिलन का आयतन उनके आयतन के योग से भिन्न हो सकता है।
  3. कुछ समुच्चयों को "गैर-मापने योग्य" चिह्नित किया जा सकता है, और किसी को इसकी मात्रा के बारे में बात करने से पहले यह जांचना होगा कि कोई समुच्चय "मापने योग्य" है या नहीं।
  4. जेडएफसी के स्वयंसिद्ध (ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत पसंद के स्वयंसिद्ध के साथ) को बदलना पड़ सकता है।
  5. की मात्रा है या .

मानक माप सिद्धांत तीसरा विकल्प लेता है। एक औसत दर्जे के समुच्चय के परिवार को परिभाषित करता है, जो बहुत समृद्ध है, और गणित की अधिकांश शाखाओं में स्पष्ट रूप से परिभाषित लगभग कोई भी समुच्चय इस परिवार में होगा। आमतौर पर यह सिद्ध करना बहुत आसान होता है कि ज्यामितीय तल का एक विशिष्ट उपसमुच्चय मापने योग्य है। मौलिक धारणा यह है कि असम्बद्ध समुच्चय का एक अनगिनत अनंत अनुक्रम योग सूत्र को संतुष्ट करता है, एक संपत्ति जिसे σ-संयोजकता कहा जाता है।

1970 में, रॉबर्ट एम. सोलोवे ने प्रदर्शित किया कि लेबेस्ग उपाय के लिए एक गैर-मापने योग्य समुच्चय का अस्तित्व ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के ढांचे के भीतर एक अतिरिक्त स्वयंसिद्ध (जैसे कि पसंद का स्वयंसिद्ध) के अभाव में सिद्ध नहीं होता है। यह दिखा कर (एक दुर्गम कार्डिनल की स्थिरता को मानते हुए) जेडएफ का एक प्रतिरूप है, जिसे सोलोवे का प्रतिरूप कहा जाता है, जिसमें गणनीय विकल्प होता है, हर समुच्चय लेबेसेग औसत दर्जे का होता है और जिसमें पसंद का पूर्ण स्वयंसिद्ध विफल हो जाता है।

पसंद का स्वयंसिद्ध बिंदु-समुच्चय सांस्थिति, टायकोनॉफ़ प्रमेय के एक मौलिक परिणाम के बराबर है, और कार्यात्मक विश्लेषण के दो मौलिक परिणामों के संयोजन के लिए, बानाच-अलाग्लु प्रमेय और केरीन-मिलमैन प्रमेय। यह काफी हद तक अनंत समूहों के अध्ययन को भी प्रभावित करता है, साथ ही अंगूठी सिद्धांत और आदेश सिद्धांत (बूलियन प्रधान आदर्श प्रमेय देखें)। हालांकि, अधिकांश ज्यामितीय माप सिद्धांत, संभावित सिद्धांत, फूरियर श्रृंखला और फूरियर रूपांतरण के लिए निर्धारण और निर्भर पसंद के सिद्धांत एक साथ पर्याप्त हैं, जबकि वास्तविक रेखा लेबेसेग-मापने योग्य के सभी उपसमुच्चय बनाते हैं।

यह भी देखें

संदर्भ

टिप्पणियाँ

  1. Moore, Gregory H., Zermelo's Axiom of Choice, Springer-Verlag, 1982, pp. 100–101
  2. Sadhukhan, A. (December 2022). "A Combinatorial Proof of the Existence of Dense Subsets in without the "Steinhaus" like Property". Am. Math. Mon. (in English). 130 (2): 175. doi:10.1080/00029890.2022.2144665.
  3. Ábrego, Bernardo M.; Fernández-Merchant, Silvia; Llano, Bernardo (January 2010). "पॉइंट सेट में ट्रांसलेशन की अधिकतम संख्या पर". Discrete & Computational Geometry (in English). 43 (1): 1–20. doi:10.1007/s00454-008-9111-9. ISSN 0179-5376.


ग्रन्थसूची