संशोधित गाऊसी वितरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
संभाव्यता सिद्धांत में, '''संशोधित [[गाऊसी वितरण]]''' गाऊसी वितरण का एक संशोधन है जब इसके ऋणात्मक तत्व 0 पर रीसेट हो जाते हैं (इलेक्ट्रॉनिक [[ सही करनेवाला ]] के अनुरूप)। यह अनिवार्य रूप से एक असतत वितरण (स्थिर 0) और एक सतत वितरण (अंतराल के साथ एक छोटा गाऊसी वितरण) का मिश्रण <math>(0,\infty)</math>) [[सेंसरिंग (सांख्यिकी)]] के परिणामस्वरूप है। | संभाव्यता सिद्धांत में, '''संशोधित [[गाऊसी वितरण]]''' गाऊसी वितरण का एक संशोधन है जब इसके ऋणात्मक तत्व 0 पर रीसेट हो जाते हैं (इलेक्ट्रॉनिक [[ सही करनेवाला ]] के अनुरूप)। यह अनिवार्य रूप से एक असतत वितरण (स्थिर 0) और एक सतत वितरण (अंतराल के साथ एक छोटा गाऊसी वितरण) का मिश्रण <math>(0,\infty)</math>) [[सेंसरिंग (सांख्यिकी)]] के परिणामस्वरूप होता है। | ||
== घनत्व फलन == | == घनत्व फलन == | ||
Line 17: | Line 17: | ||
चूँकि असंशोधित सामान्य वितरण का माध्य है <math>\mu</math> और चूंकि इसे संशोधित वितरण में परिवर्तित करने में कुछ संभाव्यता द्रव्यमान को उच्च मान (ऋणात्मक मान से 0 तक) में स्थानांतरित कर दिया गया है, संशोधित वितरण का माध्य इससे अधिक है <math>\mu.</math> | चूँकि असंशोधित सामान्य वितरण का माध्य है <math>\mu</math> और चूंकि इसे संशोधित वितरण में परिवर्तित करने में कुछ संभाव्यता द्रव्यमान को उच्च मान (ऋणात्मक मान से 0 तक) में स्थानांतरित कर दिया गया है, संशोधित वितरण का माध्य इससे अधिक है <math>\mu.</math> | ||
चूँकि संशोधित वितरण संभाव्यता द्रव्यमान के कुछ भाग को शेष संभाव्यता द्रव्यमान की ओर ले जाकर बनता है, परिशोधन एक [[माध्य-संरक्षण संकुचन]] है जो वितरण के माध्य-परिवर्तनशील | चूँकि संशोधित वितरण संभाव्यता द्रव्यमान के कुछ भाग को शेष संभाव्यता द्रव्यमान की ओर ले जाकर बनता है, परिशोधन एक [[माध्य-संरक्षण संकुचन]] है जो वितरण के माध्य-परिवर्तनशील सख्त बदलाव के साथ संयुक्त होता है, और इस प्रकार विचरण कम हो जाता है; इसलिए संशोधित वितरण का विचरण इससे कम है <math>\sigma^2.</math> | ||
== मान उत्पन्न करना == | == मान उत्पन्न करना == | ||
कम्प्यूटेशनल रूप से मान उत्पन्न करने के लिए, कोई इसका उपयोग कर सकता है | कम्प्यूटेशनल रूप से मान उत्पन्न करने के लिए, कोई इसका उपयोग कर सकता है |
Revision as of 22:23, 20 July 2023
संभाव्यता सिद्धांत में, संशोधित गाऊसी वितरण गाऊसी वितरण का एक संशोधन है जब इसके ऋणात्मक तत्व 0 पर रीसेट हो जाते हैं (इलेक्ट्रॉनिक सही करनेवाला के अनुरूप)। यह अनिवार्य रूप से एक असतत वितरण (स्थिर 0) और एक सतत वितरण (अंतराल के साथ एक छोटा गाऊसी वितरण) का मिश्रण ) सेंसरिंग (सांख्यिकी) के परिणामस्वरूप होता है।
घनत्व फलन
संशोधित गाऊसी वितरण की संभाव्यता घनत्व फलन, जिसके लिए इस वितरण वाले यादृच्छिक चर X, सामान्य वितरण से प्राप्त होते हैं के रूप में प्रदर्शित किये जाते हैं , द्वारा दिया गया है
यहाँ, मानक सामान्य वितरण का संचयी वितरण फलन (सीडीएफ) है:
माध्य और विचरण
चूँकि असंशोधित सामान्य वितरण का माध्य है और चूंकि इसे संशोधित वितरण में परिवर्तित करने में कुछ संभाव्यता द्रव्यमान को उच्च मान (ऋणात्मक मान से 0 तक) में स्थानांतरित कर दिया गया है, संशोधित वितरण का माध्य इससे अधिक है
चूँकि संशोधित वितरण संभाव्यता द्रव्यमान के कुछ भाग को शेष संभाव्यता द्रव्यमान की ओर ले जाकर बनता है, परिशोधन एक माध्य-संरक्षण संकुचन है जो वितरण के माध्य-परिवर्तनशील सख्त बदलाव के साथ संयुक्त होता है, और इस प्रकार विचरण कम हो जाता है; इसलिए संशोधित वितरण का विचरण इससे कम है
मान उत्पन्न करना
कम्प्यूटेशनल रूप से मान उत्पन्न करने के लिए, कोई इसका उपयोग कर सकता है
और तब
आवेदन
एक संशोधित गाऊसी वितरण गाऊसी संभावना के साथ अर्ध-संयुग्मित है, और इसे हाल ही में कारक विश्लेषण, या विशेष रूप से, (गैर-ऋणात्मक) सुधारित कारक विश्लेषण पर लागू किया गया है। हरवा[1] सुधारित कारक मॉडल के लिए एक वैरिएशनल बायेसियन तरीकों का एल्गोरिदम प्रस्तावित किया गया, जहां कारक संशोधित गाऊसी के मिश्रण का पालन करते हैं; और बाद में मेंग[2] अपने गिब्स सैंपलिंग समाधान के साथ मिलकर एक अनंत सुधारित कारक मॉडल का प्रस्ताव रखा, जहां कारक संशोधित गाऊसी वितरण के डिरिचलेट प्रक्रिया मिश्रण का पालन करते हैं, और इसे जीन नियामक नेटवर्क के पुनर्निर्माण के लिए कम्प्यूटेशनल जीवविज्ञान में लागू किया जाता है।
सामान्य सीमा तक विस्तार
पामर एट अल द्वारा संशोधित गाऊसी वितरण का विस्तार प्रस्तावित किया गया था।[3] स्वेच्छाचारी से निचली और ऊपरी सीमाओं के बीच सुधार की अनुमति देना है। निचली और ऊपरी सीमा के लिए और क्रमशः सीडीएफ, द्वारा दिया गया है:
जहाँ माध्य के साथ सामान्य वितरण का सीडीएफ है और विचरण . संशोधित वितरण के माध्य और विचरण की गणना पहले मानक सामान्य वितरण पर कार्य करने वाली बाधाओं को परिवर्तित करके की जाती है:
रूपांतरित बाधाओं, माध्य और विचरण का उपयोग करते हुए, और क्रमशः फिर द्वारा दिए गए हैं:
जहाँ erf त्रुटि फलन है. इस वितरण का उपयोग पामर एट अल द्वारा किया गया था। भौतिक संसाधन स्तरों के मॉडलिंग के लिए, जैसे किसी बर्तन में तरल की मात्रा, जो 0 और जहाज की क्षमता दोनों से बंधी होती है।
यह भी देखें
- वलित सामान्य वितरण
- अर्ध-सामान्य वितरण
- अर्ध-टी वितरण (हाफ -t डिस्ट्रीब्यूशन)
- संशोधित अर्ध-सामान्य वितरण[4]
- छिन्न सामान्य वितरण
संदर्भ
- ↑ Harva, M.; Kaban, A. (2007). "Variational learning for rectified factor analysis☆". Signal Processing. 87 (3): 509. doi:10.1016/j.sigpro.2006.06.006.
- ↑ Meng, Jia; Zhang, Jianqiu (Michelle); Chen, Yidong; Huang, Yufei (2011). "प्रतिलेखन कारक मध्यस्थता नियामक नेटवर्क के पुनर्निर्माण के लिए बायेसियन गैर-नकारात्मक कारक विश्लेषण". Proteome Science. 9 (Suppl 1): S9. doi:10.1186/1477-5956-9-S1-S9. ISSN 1477-5956. PMC 3289087. PMID 22166063.
- ↑ Palmer, Andrew W.; Hill, Andrew J.; Scheding, Steven J. (2017). "लगातार स्वायत्तता के लिए स्टोकेस्टिक संग्रह और पुनःपूर्ति (एससीएआर) अनुकूलन के तरीके". Robotics and Autonomous Systems. 87: 51–65. doi:10.1016/j.robot.2016.09.011.
- ↑ Sun, Jingchao; Kong, Maiying; Pal, Subhadip (22 June 2021). "The Modified-Half-Normal distribution: Properties and an efficient sampling scheme". Communications in Statistics - Theory and Methods. 52 (5): 1591–1613. doi:10.1080/03610926.2021.1934700. ISSN 0361-0926. S2CID 237919587.