समसंगति: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
[[गणितीय तर्क]] में, दो [[सिद्धांत (गणितीय तर्क)]] '''समसंगत''' होते हैं यदि सिद्धांत की संगति दूसरे सिद्धांत की संगति को दर्शाती है, और इसके विपरीत इस स्तिथि में, सामान्यतः कहें तो वे -दूसरे के जैसे सुसंगत हैं। | [[गणितीय तर्क]] में, दो [[सिद्धांत (गणितीय तर्क)]] '''समसंगत''' होते हैं यदि सिद्धांत की संगति दूसरे सिद्धांत की संगति को दर्शाती है, और इसके विपरीत इस स्तिथि में, सामान्यतः कहें तो वे -दूसरे के जैसे सुसंगत हैं। | ||
सामान्यतः, किसी सिद्धांत T की पूर्ण स्थिरता को सिद्ध करना संभव नहीं है। इसके अतिरिक्त सामान्यतः सिद्धांत ''S'' लेते हैं, जिसे सुसंगत माना जाता है, और निर्बल कथन को सिद्ध करने का प्रयास करते हैं कि यदि ''S'' सुसंगत है तो T भी सुसंगत होना | सामान्यतः, किसी सिद्धांत T की पूर्ण स्थिरता को सिद्ध करना संभव नहीं है। इसके अतिरिक्त सामान्यतः सिद्धांत ''S'' लेते हैं, जिसे सुसंगत माना जाता है, और निर्बल कथन को सिद्ध करने का प्रयास करते हैं कि यदि ''S'' सुसंगत है तो T भी सुसंगत होना चाहिए- यदि हम ऐसा कर सकते हैं तो हम कहें कि T, S के सापेक्ष सुसंगत है। यदि ''S'' भी ''T'' के सापेक्ष सुसंगत है तो हम कहते हैं कि ''S'' और ''T'' समसंगत हैं। | ||
== संगति == | == संगति == | ||
Line 8: | Line 8: | ||
गणितीय तर्क में, औपचारिक सिद्धांतों का अध्ययन [[गणितीय वस्तु|गणितीय वस्तुओं]] के रूप में किया जाता है। चूँकि कुछ सिद्धांत विभिन्न गणितीय वस्तुओं को मॉडल करने के लिए पर्याप्त शक्तिशाली हैं, इसलिए उनकी अपनी स्थिरता के बारे में आश्चर्य होना स्वाभाविक है। | गणितीय तर्क में, औपचारिक सिद्धांतों का अध्ययन [[गणितीय वस्तु|गणितीय वस्तुओं]] के रूप में किया जाता है। चूँकि कुछ सिद्धांत विभिन्न गणितीय वस्तुओं को मॉडल करने के लिए पर्याप्त शक्तिशाली हैं, इसलिए उनकी अपनी स्थिरता के बारे में आश्चर्य होना स्वाभाविक है। | ||
[[डेविड हिल्बर्ट]] ने 20वीं दशक के प्रारंभ में | [[डेविड हिल्बर्ट]] ने 20वीं दशक के प्रारंभ में हिल्बर्ट कार्यक्रम का प्रस्ताव रखा जिसका अंतिम लक्ष्य गणितीय विधियों का उपयोग करके गणित की स्थिरता को दिखाना था। चूँकि अधिकांश गणितीय विषयों को [[अंकगणित]] में घटाया जा सकता है, कार्यक्रम शीघ्र ही अंकगणित के भीतर औपचारिक विधियों द्वारा अंकगणित की स्थिरता की स्थापना बन गया। | ||
कर्ट गोडेल के अपूर्णता प्रमेय से ज्ञात होता है कि हिल्बर्ट के कार्यक्रम को साकार नहीं किया जा सकता है: यदि सुसंगत [[पुनरावर्ती गणना योग्य सेट|पुनरावर्ती गणना योग्य समुच्चय]] सिद्धांत अपने स्वयं के [[ मेटागणित |मेटागणित]] को औपचारिक रूप देने के लिए पर्याप्त स्थिर है (चाहे कुछ प्रमाण हो या नहीं), अर्थात अंकगणित के निर्बल भाग को मॉडल करने के लिए पर्याप्त स्थिर है ([[रॉबिन्सन अंकगणित]] पर्याप्त है), तो सिद्धांत अपनी स्वयं की स्थिरता सिद्ध नहीं कर सकता है। इस बारे में कुछ तकनीकी उद्देश हैं कि मेटा गणितीय कथन का प्रतिनिधित्व करने वाले औपचारिक कथन की क्या आवश्यकताएँ हैं, सिद्धांत को निरंतर संतुष्ट करने की आवश्यकता है, किन्तु इसका परिणाम यह है कि यदि कोई (पर्याप्त रूप से स्थिर) सिद्धांत अपनी स्वयं की स्थिरता सिद्ध कर सकता है, तो पहचानने | कर्ट गोडेल के अपूर्णता प्रमेय से ज्ञात होता है कि हिल्बर्ट के कार्यक्रम को साकार नहीं किया जा सकता है: यदि सुसंगत [[पुनरावर्ती गणना योग्य सेट|पुनरावर्ती गणना योग्य समुच्चय]] सिद्धांत अपने स्वयं के [[ मेटागणित |मेटागणित]] को औपचारिक रूप देने के लिए पर्याप्त स्थिर है (चाहे कुछ प्रमाण हो या नहीं), अर्थात अंकगणित के निर्बल भाग को मॉडल करने के लिए पर्याप्त स्थिर है ([[रॉबिन्सन अंकगणित]] पर्याप्त है), तो सिद्धांत अपनी स्वयं की स्थिरता सिद्ध नहीं कर सकता है। इस बारे में कुछ तकनीकी उद्देश हैं कि मेटा गणितीय कथन का प्रतिनिधित्व करने वाले औपचारिक कथन की क्या आवश्यकताएँ हैं, सिद्धांत को निरंतर संतुष्ट करने की आवश्यकता है, किन्तु इसका परिणाम यह है कि यदि कोई (पर्याप्त रूप से स्थिर) सिद्धांत अपनी स्वयं की स्थिरता सिद्ध कर सकता है, तो पहचानने की कोई गणना योग्य विधि नहीं है। क्या कोई कथन सिद्धांत का [[स्वयंसिद्ध]] है या नहीं, या फिर सिद्धांत स्वयं असंगत है (ऐसी स्थिति में यह कुछ भी सिद्ध कर सकता है, जिसमें असत्य कथन जैसे कि इसकी अपनी स्थिरता भी सम्मिलित है)। | ||
इसे देखते हुए, एक बार स्थिरता के अतिरिक्त, सामान्यतः सापेक्ष स्थिरता पर विचार किया जाता है: मान लीजिए कि S और T औपचारिक सिद्धांत हैं। मान लें कि S सुसंगत सिद्धांत है। क्या इसका तात्पर्य यह है कि T सुसंगत है? यदि ऐसा है, तो T, S के सापेक्ष सुसंगत है। दो सिद्धांत समसंगत हैं यदि प्रत्येक एक दूसरे के सापेक्ष सुसंगत है। | इसे देखते हुए, एक बार स्थिरता के अतिरिक्त, सामान्यतः सापेक्ष स्थिरता पर विचार किया जाता है: मान लीजिए कि S और T औपचारिक सिद्धांत हैं। मान लें कि S सुसंगत सिद्धांत है। क्या इसका तात्पर्य यह है कि T सुसंगत है? यदि ऐसा है, तो T, S के सापेक्ष सुसंगत है। दो सिद्धांत समसंगत हैं यदि प्रत्येक एक दूसरे के सापेक्ष सुसंगत है। | ||
Line 21: | Line 21: | ||
अनेक संयोजक कथनों की संगति शक्ति को बड़े कार्डिनल्स द्वारा अंशांकित किया जा सकता है। उदाहरण के लिए: | अनेक संयोजक कथनों की संगति शक्ति को बड़े कार्डिनल्स द्वारा अंशांकित किया जा सकता है। उदाहरण के लिए: | ||
* कुरेपा की परिकल्पना का [[बड़ा कार्डिनल|खंडन दुर्गम कार्डिनल]] | * कुरेपा की परिकल्पना का [[बड़ा कार्डिनल|खंडन दुर्गम कार्डिनल]] के अस्तित्व के अनुरूप है। | ||
*विशेष का अस्तित्व न होना <math>\omega_2</math>-एरोन्सज़जन ट्री महलो [[कार्डिनल आँखें|कार्डिनल]] के अस्तित्व के साथ समरूप है। | *विशेष का अस्तित्व न होना <math>\omega_2</math>-एरोन्सज़जन ट्री महलो [[कार्डिनल आँखें|कार्डिनल]] के अस्तित्व के साथ समरूप है। | ||
* <math>\omega_2</math> का अस्तित्व न होना, एरोन्सज़जन ट्री [[कमजोर रूप से कॉम्पैक्ट कार्डिनल|निर्बल रूप से कॉम्पैक्ट कार्डिनल]] के अस्तित्व के साथ समरूप हैं।<ref>*{{citation | last=Kunen | first=Kenneth | authorlink=Kenneth Kunen | title=Set theory | zbl=1262.03001 | series=Studies in Logic | volume=34 | location=London | publisher=College Publications | isbn=978-1-84890-050-9 | year=2011 | page=225 }}</ref> | * <math>\omega_2</math> का अस्तित्व न होना, एरोन्सज़जन ट्री [[कमजोर रूप से कॉम्पैक्ट कार्डिनल|निर्बल रूप से कॉम्पैक्ट कार्डिनल]] के अस्तित्व के साथ समरूप हैं।<ref>*{{citation | last=Kunen | first=Kenneth | authorlink=Kenneth Kunen | title=Set theory | zbl=1262.03001 | series=Studies in Logic | volume=34 | location=London | publisher=College Publications | isbn=978-1-84890-050-9 | year=2011 | page=225 }}</ref> |
Revision as of 20:33, 19 July 2023
गणितीय तर्क में, दो सिद्धांत (गणितीय तर्क) समसंगत होते हैं यदि सिद्धांत की संगति दूसरे सिद्धांत की संगति को दर्शाती है, और इसके विपरीत इस स्तिथि में, सामान्यतः कहें तो वे -दूसरे के जैसे सुसंगत हैं।
सामान्यतः, किसी सिद्धांत T की पूर्ण स्थिरता को सिद्ध करना संभव नहीं है। इसके अतिरिक्त सामान्यतः सिद्धांत S लेते हैं, जिसे सुसंगत माना जाता है, और निर्बल कथन को सिद्ध करने का प्रयास करते हैं कि यदि S सुसंगत है तो T भी सुसंगत होना चाहिए- यदि हम ऐसा कर सकते हैं तो हम कहें कि T, S के सापेक्ष सुसंगत है। यदि S भी T के सापेक्ष सुसंगत है तो हम कहते हैं कि S और T समसंगत हैं।
संगति
गणितीय तर्क में, औपचारिक सिद्धांतों का अध्ययन गणितीय वस्तुओं के रूप में किया जाता है। चूँकि कुछ सिद्धांत विभिन्न गणितीय वस्तुओं को मॉडल करने के लिए पर्याप्त शक्तिशाली हैं, इसलिए उनकी अपनी स्थिरता के बारे में आश्चर्य होना स्वाभाविक है।
डेविड हिल्बर्ट ने 20वीं दशक के प्रारंभ में हिल्बर्ट कार्यक्रम का प्रस्ताव रखा जिसका अंतिम लक्ष्य गणितीय विधियों का उपयोग करके गणित की स्थिरता को दिखाना था। चूँकि अधिकांश गणितीय विषयों को अंकगणित में घटाया जा सकता है, कार्यक्रम शीघ्र ही अंकगणित के भीतर औपचारिक विधियों द्वारा अंकगणित की स्थिरता की स्थापना बन गया।
कर्ट गोडेल के अपूर्णता प्रमेय से ज्ञात होता है कि हिल्बर्ट के कार्यक्रम को साकार नहीं किया जा सकता है: यदि सुसंगत पुनरावर्ती गणना योग्य समुच्चय सिद्धांत अपने स्वयं के मेटागणित को औपचारिक रूप देने के लिए पर्याप्त स्थिर है (चाहे कुछ प्रमाण हो या नहीं), अर्थात अंकगणित के निर्बल भाग को मॉडल करने के लिए पर्याप्त स्थिर है (रॉबिन्सन अंकगणित पर्याप्त है), तो सिद्धांत अपनी स्वयं की स्थिरता सिद्ध नहीं कर सकता है। इस बारे में कुछ तकनीकी उद्देश हैं कि मेटा गणितीय कथन का प्रतिनिधित्व करने वाले औपचारिक कथन की क्या आवश्यकताएँ हैं, सिद्धांत को निरंतर संतुष्ट करने की आवश्यकता है, किन्तु इसका परिणाम यह है कि यदि कोई (पर्याप्त रूप से स्थिर) सिद्धांत अपनी स्वयं की स्थिरता सिद्ध कर सकता है, तो पहचानने की कोई गणना योग्य विधि नहीं है। क्या कोई कथन सिद्धांत का स्वयंसिद्ध है या नहीं, या फिर सिद्धांत स्वयं असंगत है (ऐसी स्थिति में यह कुछ भी सिद्ध कर सकता है, जिसमें असत्य कथन जैसे कि इसकी अपनी स्थिरता भी सम्मिलित है)।
इसे देखते हुए, एक बार स्थिरता के अतिरिक्त, सामान्यतः सापेक्ष स्थिरता पर विचार किया जाता है: मान लीजिए कि S और T औपचारिक सिद्धांत हैं। मान लें कि S सुसंगत सिद्धांत है। क्या इसका तात्पर्य यह है कि T सुसंगत है? यदि ऐसा है, तो T, S के सापेक्ष सुसंगत है। दो सिद्धांत समसंगत हैं यदि प्रत्येक एक दूसरे के सापेक्ष सुसंगत है।
संगति शक्ति
यदि T, S के सापेक्ष सुसंगत है, किन्तु S को T के सापेक्ष सुसंगत नहीं माना जाता है, तो हम कहते हैं कि S में T की तुलना में अधिक 'स्थिरता शक्ति' है। स्थिरता शक्ति के इन विचारों पर वर्णन करते समय समुच्चय सिद्धान्त में वर्णन होता है, उसकी आवश्यकता होती है ध्यान से संबोधित किया जाना चाहिए। दूसरे क्रम के अंकगणित के स्तर पर सिद्धांतों के लिए, रिवर्स गणित कार्यक्रम के पास कहने के लिए अधिक कुछ है। संगति शक्ति के विचार समुच्चय सिद्धांत का सामान्य भाग हैं, क्योंकि यह पुनरावर्ती सिद्धांत है जो निश्चित रूप से अधिकांश गणित को मॉडल कर सकता है। समुच्चय सिद्धांत के स्वयंसिद्धों के सबसे व्यापक रूप से उपयोग किए जाने वाले समुच्चय को जेडएफसी कहा जाता है। जब समुच्चय-सैद्धांतिक कथन A को दूसरे के समसंगत कहा जाता है B, वास्तव में जो आशय किया जा रहा है वह यह है कि मेटा सिद्धांत (इस स्तिथि में पीनो अंकगणित) में यह सिद्ध किया जा सकता है कि सिद्धांत ZFC+A और ZFC+B समसंगत हैं। सामान्यतः, सर्वप्रथम पुनरावर्ती अंकगणित को प्रश्न में रूपक के रूप में अपनाया जा सकता है, किन्तु भले ही रूपक ZFC या इसका विस्तार हो, धारणा सार्थक है। विवश करने की विधि (गणित) किसी को यह दिखाने की अनुमति देती है कि सिद्धांत ZFC, ZFC+CH और ZFC+¬CH सभी समसंगत हैं (जहाँ CH सातत्य परिकल्पना को दर्शाता है)।
ZFC के भागों या उनके विस्तारों (उदाहरण के लिए, ZF, पसंद के सिद्धांत के बिना समुच्चय सिद्धांत, या ZF+AD, निर्धारण के सिद्धांत के साथ समुच्चय सिद्धांत) पर वर्णन करते समय, ऊपर वर्णित धारणाओं को तदनुसार अनुकूलित किया जाता है। इस प्रकार, ZF, ZFC के समानर है, जैसा कि गोडेल द्वारा दिखाया गया है।
अनेक संयोजक कथनों की संगति शक्ति को बड़े कार्डिनल्स द्वारा अंशांकित किया जा सकता है। उदाहरण के लिए:
- कुरेपा की परिकल्पना का खंडन दुर्गम कार्डिनल के अस्तित्व के अनुरूप है।
- विशेष का अस्तित्व न होना -एरोन्सज़जन ट्री महलो कार्डिनल के अस्तित्व के साथ समरूप है।
- का अस्तित्व न होना, एरोन्सज़जन ट्री निर्बल रूप से कॉम्पैक्ट कार्डिनल के अस्तित्व के साथ समरूप हैं।[1]
यह भी देखें
संदर्भ
- ↑ *Kunen, Kenneth (2011), Set theory, Studies in Logic, vol. 34, London: College Publications, p. 225, ISBN 978-1-84890-050-9, Zbl 1262.03001
- Akihiro Kanamori (2003). The Higher Infinite. Springer. ISBN 3-540-00384-3