तार्किक स्थिरांक: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 72: | Line 72: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 08/07/2023]] | [[Category:Created On 08/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 15:15, 31 July 2023
`तर्क में, किसी भाषा का एक तार्किक स्थिरांक या स्थिर प्रतीक एक ऐसा प्रतीक है जिसका की प्रत्येक व्याख्या के तहत समान अर्थपूर्ण मूल्य होता है। दो महत्वपूर्ण प्रकार के तार्किक स्थिरांक तार्किक संयोजक और परिमाणक हैं। समानता विधेय (समान्यत:'=' लिखा जाता है) को तर्क की कई प्रणालियों में तार्किक स्थिरांक के रूप में भी माना जाता है।
तर्क के दर्शन में मूलभूत प्रश्नों में से एक यह है कि तार्किक स्थिरांक क्या है?;[1] अर्थात्, कुछ स्थिरांकों की कौन सी विशेष विशेषता उन्हें प्रकृति में तार्किक बनाती है?[2]
कुछ प्रतीक जिन्हें समान्यत:तार्किक स्थिरांक के रूप में माना जाता है वे हैं:
प्रतीक | अंग्रेजी में अर्थ |
---|---|
T | "true" |
F, ⊥ | "false" |
¬ | "not" |
∧ | "and" |
∨ | "or" |
→ | "implies", "if...then" |
∀ | "for all" |
∃ | "there exists", "for some" |
= | "equals" |
"necessarily" | |
"possibly" |
इनमें से कई तार्किक स्थिरांकों को कभी-कभी वैकल्पिक प्रतीकों द्वारा दर्शाया जाता है (उदाहरण के लिए, तार्किक और को दर्शाने के लिए ∧ के अतिरिक्त & प्रतीक का उपयोग)।
तार्किक स्थिरांक को परिभाषित करना गोटलोब फ्रीज और बर्ट्रेंड रसेल के काम का एक प्रमुख भाग है। रसेल गणित के सिद्धांत के दूसरे संस्करण (1937) की प्रस्तावना में तार्किक स्थिरांक के विषय पर लौटे और कहा कि तर्क भाषाई बन जाता है: यदि हमें उनके बारे में कुछ भी निश्चित कहना है, तो [उन्हें] भाषा के भाग के रूप में माना जाना चाहिए , भाषा जिस बारे में बात करती है उसके भाग के रूप में नहीं है।[3] इस पुस्तक का पाठ संबंध (गणित) एस आर, उनके विपरीत संबंध और पूरक (सेट सिद्धांत) या पूरक संबंधों को प्राचीन धारणाओं के रूप में उपयोग करता है, जिन्हें एआरबी के रूप में तार्किक स्थिरांक के रूप में भी लिया जाता है।
यह भी देखें
- तार्किक संयोजक
- तार्किक मूल्य
- अतार्किक प्रतीक
संदर्भ
- ↑ Peacocke, Christopher (May 6, 1976). "What is a Logical Constant?". The Journal of Philosophy. 73 (9): 221–240. doi:10.2307/2025420. Retrieved Jan 12, 2022.
- ↑ Carnap, Rudolf (1958). Introduction to symbolic logic and its applications. New York: Dover.
- ↑ Bertrand Russell (1937) Preface to The Principles of Mathematics, pages ix to xi