आव्यूह मानदंड: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 20: Line 20:
{{Main|ऑपरेटर मानदंड}}
{{Main|ऑपरेटर मानदंड}}


सदिश मानदंड मान लीजिए <math>\|\cdot\|_{\alpha}</math> पर <math>K^n</math> एवं सदिश मानदंड <math>\|\cdot\|_{\beta}</math> पर <math>K^m</math> दिया जाता है। कोई <math>m \times n</math> आव्यूह {{mvar|A}} से रैखिक ऑपरेटर प्रेरित करता है <math>K^n</math> को <math>K^m</math> मानक आधार के संबंध में, एवं अंतरिक्ष पर संबंधित प्रेरित मानदंड या [[ऑपरेटर मानदंड]] या अधीनस्थ मानदंड को परिभाषित करता है <math>K^{m \times n}</math> के सभी <math>m \times n</math> आव्यूह इस प्रकार हैं:
मान लीजिए सदिश मानदंड <math>\|\cdot\|_{\alpha}</math> पर <math>K^n</math> एवं सदिश मानदंड <math>\|\cdot\|_{\beta}</math> पर <math>K^m</math> दिया जाता है। कोई <math>m \times n</math> आव्यूह {{mvar|A}} से रैखिक ऑपरेटर <math>K^n</math> को <math>K^m</math> मानक आधार के संबंध में प्रेरित करता है, एवं अंतरिक्ष पर संबंधित प्रेरित मानदंड या [[ऑपरेटर मानदंड]] या अधीनस्थ मानदंड को परिभाषित करता है। <math>K^{m \times n}</math> के सभी <math>m \times n</math> आव्यूह इस प्रकार हैं:
<math display="block"> \begin{align}
<math display="block"> \begin{align}
\|A\|_{\alpha,\beta}  
\|A\|_{\alpha,\beta}  
Line 26: Line 26:
&= \sup\left\{\frac{\|Ax\|_\beta}{\|x\|_\alpha} : x\in K^n \text{ with } x\ne 0\right\}.
&= \sup\left\{\frac{\|Ax\|_\beta}{\|x\|_\alpha} : x\in K^n \text{ with } x\ne 0\right\}.
\end{align} </math>
\end{align} </math>
जहाँ <math> \sup </math> [[सबसे निचला और उच्चतम|सबसे निचला एवं उच्चतम]] को प्रदर्शित करता है। यह मानदंड मापता है कि मैपिंग कितनी प्रेरित है <math>A</math> सदिश को विस्तृत कर सकते हैं। सदिश मानदंडों पर निर्भर करता है <math>\|\cdot\|_{\alpha}</math>, <math>\|\cdot\|_{\beta}</math> उपयोग किया गया, इसके अतिरिक्त अन्य संकेतन <math>\|\cdot\|_{\alpha,\beta}</math> ऑपरेटर मानदंड के लिए उपयोग किया जा सकता है।
जहाँ <math> \sup </math> [[सबसे निचला और उच्चतम|उच्चतम]] को प्रदर्शित करता है। यह मानदंड मापता है कि मैपिंग <math>A</math> द्वारा कितनी प्रेरित है, जो सदिश को विस्तृत कर सकते हैं। सदिश मानदंडों <math>\|\cdot\|_{\alpha}</math>, <math>\|\cdot\|_{\beta}</math> पर निर्भर करता है, इसके अतिरिक्त अन्य संकेतन <math>\|\cdot\|_{\alpha,\beta}</math> ऑपरेटर मानदंड के लिए उपयोग किया जा सकता है।


===सदिश पी-मानदंडों से प्रेरित आव्यूह मानदंड===
===सदिश p-मानदंडों से प्रेरित आव्यूह मानदंड===
यदि सदिश के लिए सदिश मानदंड#p-मानदंड|p-मानदंड (<math>1 \leq p \leq \infty</math>) का उपयोग दोनों समिष्टों के लिए किया जाता है <math>K^n</math> एवं <math>K^m</math>, तो संबंधित ऑपरेटर मानदंड है:<ref name=":1" />
यदि सदिश के लिए p-मानदंड (<math>1 \leq p \leq \infty</math>) का उपयोग दोनों समिष्टों <math>K^n</math> एवं <math>K^m</math> के लिए किया जाता है, तो संबंधित ऑपरेटर मानदंड है:<ref name=":1" />
<math display="block"> \|A\|_p = \sup_{x \ne 0} \frac{\| A x\| _p}{\|x\|_p}. </math>
<math display="block"> \|A\|_p = \sup_{x \ne 0} \frac{\| A x\| _p}{\|x\|_p}. </math>
ये प्रेरित मानदंड #एंट्रीवाइज आव्यूह मानदंडों से भिन्न हैं| प्रविष्टि-वार पी-मानदंड एवं स्कैटन मानदंड|नीचे दिए गए आव्यूह के लिए स्कैटन पी-मानदंड, जिन्हें आमतौर पर इसके द्वारा भी दर्शाया जाता है <math> \|A\|_p .</math>
ये प्रेरित मानदंड एंट्रीवाइज आव्यूह मानदंडों नीचे दिए गए आव्यूह के लिए स्कैटन पी-मानदंड से भिन्न हैं जिन्हें सामान्यतः <math> \|A\|_p </math>द्वारा भी दर्शाया जाता है। विशेष विषयों में <math>p = 1, \infty</math>, प्रेरित आव्यूह मानदंडों की गणना का अनुमान लगाया जा सकता है,
के विशेष विषयों में <math>p = 1, \infty</math>, प्रेरित आव्यूह मानदंडों की गणना या अनुमान लगाया जा सकता है
<math display="block"> \|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m | a_{ij} |, </math>
<math display="block"> \|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m | a_{ij} |, </math>
जो कि आव्यूह का अधिकतम निरपेक्ष स्तंभ योग है;
जो कि आव्यूह का अधिकतम निरपेक्ष स्तंभ योग है;
Line 38: Line 37:
जो कि आव्यूह की अधिकतम पूर्ण पंक्ति राशि है।
जो कि आव्यूह की अधिकतम पूर्ण पंक्ति राशि है।


उदा प्रत्येकण के लिए, के लिए
उदाहरण के लिए,  
<math display="block">A = \begin{bmatrix} -3 & 5 & 7 \\ 2 & 6 & 4 \\ 0 & 2 & 8 \\ \end{bmatrix},</math>
<math display="block">A = \begin{bmatrix} -3 & 5 & 7 \\ 2 & 6 & 4 \\ 0 & 2 & 8 \\ \end{bmatrix},</math>
हमारे पास वह है
हमारे पास है,
<math display="block">\|A\|_1 = \max(|{-3}|+2+0; 5+6+2; 7+4+8) = \max(5,13,19) = 19,</math>
<math display="block">\|A\|_1 = \max(|{-3}|+2+0; 5+6+2; 7+4+8) = \max(5,13,19) = 19,</math>
<math display="block">\|A\|_\infty = \max(|{-3}|+5+7; 2+6+4;0+2+8) = \max(15,12,10) = 15.</math>
<math display="block">\|A\|_\infty = \max(|{-3}|+5+7; 2+6+4;0+2+8) = \max(15,12,10) = 15.</math>


के विशेष विषय में <math>p = 2</math> ([[यूक्लिडियन मानदंड]] या <math>\ell_2</math>-सदिश के लिए मानदंड), प्रेरित आव्यूह मानदंड वर्णक्रमीय मानदंड है। (दोनों मान अनंत आयामों में मेल नहीं खाते - आगे की चर्चा के लिए [[वर्णक्रमीय त्रिज्या]] देखें।) आव्यूह का वर्णक्रमीय मानदंड <math>A</math> का सबसे बड़ा एकल मान है <math>A</math> (अर्थात्, आव्यूह के सबसे बड़े [[eigenvalue]] का वर्गमूल <math>A^*A</math>, जहाँ <math>A^*</math> के संयुग्म समिष्टान्तरण को प्रदर्शित करता है <math>A</math>):<ref>Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, §5.2, p.281, Society for Industrial & Applied Mathematics, June 2000.</ref>
विशेष विषय में <math>p = 2</math> ([[यूक्लिडियन मानदंड]] या <math>\ell_2</math>-सदिश के लिए मानदंड), प्रेरित आव्यूह मानदंड वर्णक्रमीय मानदंड है। (दोनों मान अनंत आयामों में समान नहीं होते - आगे की चर्चा के लिए [[वर्णक्रमीय त्रिज्या]] देखें।) आव्यूह का वर्णक्रमीय मानदंड <math>A</math> का सबसे बड़ा एकल मान <math>A</math> है, (अर्थात्, आव्यूह के सबसे बड़े [[eigenvalue]] का वर्गमूल <math>A^*A</math>, जहाँ <math>A^*</math><math>A</math> के संयुग्म समिष्टान्तरण को प्रदर्शित करता है):<ref>Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, §5.2, p.281, Society for Industrial & Applied Mathematics, June 2000.</ref>
<math display="block"> \|A\|_2 = \sqrt{\lambda_{\max}\left(A^* A\right)} = \sigma_{\max}(A).</math>
<math display="block"> \|A\|_2 = \sqrt{\lambda_{\max}\left(A^* A\right)} = \sigma_{\max}(A).</math>
जहाँ <math>\sigma_{\max}(A)</math> आव्यूह के सबसे बड़े एकल मान का प्रतिनिधित्व करता है <math>A</math>. भी,
जहाँ <math>\sigma_{\max}(A)</math> आव्यूह <math>A</math> के सबसे बड़े एकल मान का प्रतिनिधित्व करता है।
<math display="block"> \| A^* A\|_2 = \| A A^* \|_2 = \|A\|_2^2</math>
<math display="block"> \| A^* A\|_2 = \| A A^* \|_2 = \|A\|_2^2</math>
तब से <math>\| A^* A\|_2 = \sigma_{\max}(A^*A) = \sigma_{\max}(A)^2 = \|A\|^2_2</math> एवं इसी तरह <math>\|AA^*\|_2 = \|A\|^2_2</math> एकवचन मूल्य अपघटन (एसवीडी) द्वारा। एवं महत्वपूर्ण असमानता है:
तब से <math>\| A^* A\|_2 = \sigma_{\max}(A^*A) = \sigma_{\max}(A)^2 = \|A\|^2_2</math> एवं इसी प्रकार <math>\|AA^*\|_2 = \|A\|^2_2</math> एकवचन मूल्य अपघटन (एसवीडी) द्वारा होता है। एवं महत्वपूर्ण असमानता है:
<math display="block"> \|A\| _2 = \sigma_{\max}(A) \leq \|A\|_{\rm F} = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} = \left(\sum_{k=1}^{\min(m,n)} \sigma_{k}^2\right)^{\frac{1}{2}},</math>
<math display="block"> \|A\| _2 = \sigma_{\max}(A) \leq \|A\|_{\rm F} = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} = \left(\sum_{k=1}^{\min(m,n)} \sigma_{k}^2\right)^{\frac{1}{2}},</math>
जहाँ <math>\|A\|_\textrm{F}</math> #फ्रोबेनियस मानदंड है। समानता यदि एवं केवल यदि आव्यूह रखती है <math>A</math> रैंक-वन आव्यूह या शून्य आव्यूह है। यह असमानता इस तथ्य से प्राप्त की जा सकती है कि आव्यूह का ट्रेस उसके स्वदेशी मानों के योग के समान है।
जहाँ <math>\|A\|_\textrm{F}</math> #फ्रोबेनियस मानदंड है। समानता यदि एवं केवल यदि आव्यूह रखती है <math>A</math> रैंक-वन आव्यूह या शून्य आव्यूह है। यह असमानता इस तथ्य से प्राप्त की जा सकती है कि आव्यूह का ट्रेस उसके स्वदेशी मानों के योग के समान है।
Line 62: Line 61:
के विशेष विषयों में <math>\alpha = 1</math> एवं <math>\beta=2</math>, प्रेरित आव्यूह मानदंडों की गणना की जा सकती है<math display="block"> \|A\|_{1, 2} = \max_{1\le j\le n}\|A_{:j}\|_2, </math>जहाँ <math>A_{:j}</math> आव्यूह का j-वां कॉलम है <math> A </math>.
के विशेष विषयों में <math>\alpha = 1</math> एवं <math>\beta=2</math>, प्रेरित आव्यूह मानदंडों की गणना की जा सकती है<math display="block"> \|A\|_{1, 2} = \max_{1\le j\le n}\|A_{:j}\|_2, </math>जहाँ <math>A_{:j}</math> आव्यूह का j-वां कॉलम है <math> A </math>.


इस तरह, <math> \|A\|_{2,\infty} </math> एवं <math> \|A\|_{1, 2} </math> क्रमशः आव्यूह की अधिकतम पंक्ति एवं स्तंभ 2-मानदंड हैं।
इस प्रकार, <math> \|A\|_{2,\infty} </math> एवं <math> \|A\|_{1, 2} </math> क्रमशः आव्यूह की अधिकतम पंक्ति एवं स्तंभ 2-मानदंड हैं।


===गुण===
===गुण===
Line 90: Line 89:


==प्रवेश-वार आव्यूह मानदंड==
==प्रवेश-वार आव्यूह मानदंड==
ये मानदंड का इलाज करते हैं <math> m \times n </math> आकार के सदिश के रूप में आव्यूह <math> m \cdot n </math>, एवं परिचित सदिश मानदंडों में से का उपयोग करें। उदा प्रत्येकण के लिए, सदिश के लिए पी-मानदंड का उपयोग करते हुए, {{nowrap|''p'' ≥ 1}}, हम पाते हैं:
ये मानदंड का इलाज करते हैं <math> m \times n </math> आकार के सदिश के रूप में आव्यूह <math> m \cdot n </math>, एवं परिचित सदिश मानदंडों में से का उपयोग करें। उदाहरण के लिए, सदिश के लिए पी-मानदंड का उपयोग करते हुए, {{nowrap|''p'' ≥ 1}}, हम पाते हैं:


:<math>\| A \|_{p,p} = \| \mathrm{vec}(A) \|_p = \left( \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p \right)^{1/p}</math>
:<math>\| A \|_{p,p} = \| \mathrm{vec}(A) \|_p = \left( \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p \right)^{1/p}</math>
Line 196: Line 195:
ग्रोथेंडिक मानदंड को परिभाषित करने के लिए, पहले ध्यान दें कि रैखिक ऑपरेटर {{Math|''K''<sup>1</sup> → ''K''<sup>1</sup>}} केवल अदिश राशि है, एवं इस प्रकार किसी भी पर रैखिक संचालिका तक विस्तारित होती है {{Math|''K<sup>k</sup>'' → ''K<sup>k</sup>''}}. इसके अतिरिक्त, आधार का कोई भी विकल्प दिया गया है {{Math|''K<sup>n</sup>''}} एवं {{Math|''K<sup>m</sup>''}}, कोई भी रैखिक ऑपरेटर {{Math|''K<sup>n</sup>'' → ''K<sup>m</sup>''}} रैखिक ऑपरेटर तक विस्तारित है {{Math|(''K''<sup>''k''</sup>)<sup>''n''</sup> → (''K''<sup>''k''</sup>)<sup>''m''</sup>}}, प्रत्येक आव्यूह तत्व को तत्वों पर रखकर {{Math|''K<sup>k</sup>''}} अदिश गुणन के माध्यम से। ग्रोथेंडिक मानदंड उस विस्तारित ऑपरेटर का मानक है; प्रतीकों में:<ref name="AN" />
ग्रोथेंडिक मानदंड को परिभाषित करने के लिए, पहले ध्यान दें कि रैखिक ऑपरेटर {{Math|''K''<sup>1</sup> → ''K''<sup>1</sup>}} केवल अदिश राशि है, एवं इस प्रकार किसी भी पर रैखिक संचालिका तक विस्तारित होती है {{Math|''K<sup>k</sup>'' → ''K<sup>k</sup>''}}. इसके अतिरिक्त, आधार का कोई भी विकल्प दिया गया है {{Math|''K<sup>n</sup>''}} एवं {{Math|''K<sup>m</sup>''}}, कोई भी रैखिक ऑपरेटर {{Math|''K<sup>n</sup>'' → ''K<sup>m</sup>''}} रैखिक ऑपरेटर तक विस्तारित है {{Math|(''K''<sup>''k''</sup>)<sup>''n''</sup> → (''K''<sup>''k''</sup>)<sup>''m''</sup>}}, प्रत्येक आव्यूह तत्व को तत्वों पर रखकर {{Math|''K<sup>k</sup>''}} अदिश गुणन के माध्यम से। ग्रोथेंडिक मानदंड उस विस्तारित ऑपरेटर का मानक है; प्रतीकों में:<ref name="AN" />
<math display="block">\|A\|_{G,k}=\sup_{\text{each } u_j, v_j\in K^k; \|u_j\| = \|v_j\| = 1}{\sum_{j \in [n], l \in [m]}{(u_j\cdot v_j)A_{l,j}}}</math>
<math display="block">\|A\|_{G,k}=\sup_{\text{each } u_j, v_j\in K^k; \|u_j\| = \|v_j\| = 1}{\sum_{j \in [n], l \in [m]}{(u_j\cdot v_j)A_{l,j}}}</math>
ग्रोथेंडिक मानदंड आधार की पसंद पर निर्भर करता है (आमतौर पर इसे [[मानक आधार]] माना जाता है) एवं {{mvar|k}}.
ग्रोथेंडिक मानदंड आधार की पसंद पर निर्भर करता है (सामान्यतः इसे [[मानक आधार]] माना जाता है) एवं {{mvar|k}}.


==मानदंडों की समतुल्यता==
==मानदंडों की समतुल्यता==

Revision as of 10:53, 23 July 2023

गणित में, आव्यूह मानदंड सदिश समिष्ट में सदिश मानदंड है जिसके तत्व (सदिश) आव्यूह (दिए गए आयामों के) हैं।

प्रारंभिक

क्षेत्र या तो वास्तविक संख्या या समिष्ट संख्या है, आव्यूहों का K- सदिश समष्टि है, जिसमें पंक्तियाँ एवं फ़ील्ड में कॉलम एवं प्रविष्टियाँ हैं। आव्यूह मानदंड आदर्श है।

यह लेख सदैव दो प्रत्येकी ऊर्ध्वाधर पट्टी (जैसे: ) वाले ऐसे मानदंड लिखेगा, इस प्रकार, आव्यूह मानदंड फलन है जो निम्नलिखित गुणों को पूर्ण करता है:[1][2]सभी अदिश एवं आव्यूह के लिए,

  • (धनात्मक-मूल्यवान)
  • (निश्चित)
  • (बिल्कुल सजातीय)
  • (उप-योगात्मक या त्रिभुज असमानता को संतुष्ट करना)

आव्यूह को पुनर्व्यवस्थित सदिश से भिन्न करने वाली एकमात्र विशेषता आव्यूह गुणन है। आव्यूह मानदंड विशेष रूप से उपयोगी होते हैं यदि वे 'उप-गुणक' भी हों:[1][2][3]

  • [Note 1]

Kn×n पर प्रत्येक मानक को उप-गुणक होने के लिए पुन: स्केल किया जा सकता है; कुछ पुस्तकों में, शब्दावली आव्यूह मानदंड उप-गुणक मानदंडों के लिए आरक्षित है।[4]

सदिश मानदंडों से प्रेरित आव्यूह मानदंड

मान लीजिए सदिश मानदंड पर एवं सदिश मानदंड पर दिया जाता है। कोई आव्यूह A से रैखिक ऑपरेटर को मानक आधार के संबंध में प्रेरित करता है, एवं अंतरिक्ष पर संबंधित प्रेरित मानदंड या ऑपरेटर मानदंड या अधीनस्थ मानदंड को परिभाषित करता है। के सभी आव्यूह इस प्रकार हैं:

जहाँ उच्चतम को प्रदर्शित करता है। यह मानदंड मापता है कि मैपिंग द्वारा कितनी प्रेरित है, जो सदिश को विस्तृत कर सकते हैं। सदिश मानदंडों , पर निर्भर करता है, इसके अतिरिक्त अन्य संकेतन ऑपरेटर मानदंड के लिए उपयोग किया जा सकता है।

सदिश p-मानदंडों से प्रेरित आव्यूह मानदंड

यदि सदिश के लिए p-मानदंड () का उपयोग दोनों समिष्टों एवं के लिए किया जाता है, तो संबंधित ऑपरेटर मानदंड है:[2]

ये प्रेरित मानदंड एंट्रीवाइज आव्यूह मानदंडों नीचे दिए गए आव्यूह के लिए स्कैटन पी-मानदंड से भिन्न हैं जिन्हें सामान्यतः द्वारा भी दर्शाया जाता है। विशेष विषयों में , प्रेरित आव्यूह मानदंडों की गणना का अनुमान लगाया जा सकता है,
जो कि आव्यूह का अधिकतम निरपेक्ष स्तंभ योग है;
जो कि आव्यूह की अधिकतम पूर्ण पंक्ति राशि है।

उदाहरण के लिए,

हमारे पास है,

विशेष विषय में (यूक्लिडियन मानदंड या -सदिश के लिए मानदंड), प्रेरित आव्यूह मानदंड वर्णक्रमीय मानदंड है। (दोनों मान अनंत आयामों में समान नहीं होते - आगे की चर्चा के लिए वर्णक्रमीय त्रिज्या देखें।) आव्यूह का वर्णक्रमीय मानदंड का सबसे बड़ा एकल मान है, (अर्थात्, आव्यूह के सबसे बड़े eigenvalue का वर्गमूल , जहाँ , के संयुग्म समिष्टान्तरण को प्रदर्शित करता है):[5]

जहाँ आव्यूह के सबसे बड़े एकल मान का प्रतिनिधित्व करता है।
तब से एवं इसी प्रकार एकवचन मूल्य अपघटन (एसवीडी) द्वारा होता है। एवं महत्वपूर्ण असमानता है:
जहाँ #फ्रोबेनियस मानदंड है। समानता यदि एवं केवल यदि आव्यूह रखती है रैंक-वन आव्यूह या शून्य आव्यूह है। यह असमानता इस तथ्य से प्राप्त की जा सकती है कि आव्यूह का ट्रेस उसके स्वदेशी मानों के योग के समान है।

कब हमारे पास इसकी समतुल्य परिभाषा है जैसा . इसे कॉची-श्वार्ज़ असमानता का उपयोग करके उपरोक्त परिभाषाओं के समकक्ष प्रदर्शित किया जा सकता है।

===सदिश α- एवं β- मानदंड=== द्वारा प्रेरित आव्यूह मानदंड मान लीजिए सदिश मानदंड एवं रिक्त समिष्ट के लिए उपयोग किया जाता है एवं क्रमशः, संबंधित ऑपरेटर मानदंड है:

के विशेष विषयों में एवं , प्रेरित आव्यूह मानदंडों की गणना की जा सकती है
जहाँ आव्यूह की i-वीं पंक्ति है .

के विशेष विषयों में एवं , प्रेरित आव्यूह मानदंडों की गणना की जा सकती है

जहाँ आव्यूह का j-वां कॉलम है .

इस प्रकार, एवं क्रमशः आव्यूह की अधिकतम पंक्ति एवं स्तंभ 2-मानदंड हैं।

गुण

कोई भी ऑपरेटर मानदंड सदिश मानदंडों के साथ #सुसंगत एवं संगत मानदंड है जो इसे प्रेरित करता है, देता है

कल्पना करना ; ; एवं सदिश मानदंडों के संबंधित जोड़े द्वारा प्रेरित ऑपरेटर मानदंड हैं ; ; एवं . तब,

यह इस प्रकार है

एवं
वर्ग आव्यूह कल्पना करना वर्ग आव्यूहों के समिष्ट पर संचालिका मानदंड है सदिश मानदंडों से प्रेरित एवं .फिर, ऑपरेटर मानदंड उप-गुणक आव्यूह मानदंड है:
इसके अतिरिक्त, ऐसा कोई भी मानदंड असमानता को संतुष्ट करता है

 

 

 

 

(1)

सभी धनात्मक पूर्णांकों के लिए r, जहाँ ρ(A) का वर्णक्रमीय त्रिज्या है A. सममित आव्यूह या प्रत्येक्मिटियन आव्यूह के लिए A, हमारे पास समानता है (1) 2-मानदंड के लिए, क्योंकि इस विषय में 2-मानदंड वर्णक्रमीय त्रिज्या है A. मनमाना आव्यूह के लिए, हमारे पास किसी भी मानदंड के लिए समानता नहीं हो सकती है; प्रति उदा प्रत्येकण होगा

जिसकी वर्णक्रमीय त्रिज्या लुप्त हो रही है। किसी भी स्थिति में, किसी भी आव्यूह मानदंड के लिए, हमारे पास स्पेक्ट्रल त्रिज्या#गेलफैंड का सूत्र है:

सुसंगत एवं सुसंगत मानदंड

आव्यूह मानदंड पर सदिश मानदंड के अनुरूप कहा जाता है पर एवं सदिश मानदंड पर , अगर:

सभी के लिए एवं सभी . के विशेष विषय में m = n एवं , के साथ संगत भी कहा जाता है .

सभी प्रेरित मानदंड परिभाषा के अनुरूप हैं। इसके अतिरिक्त, किसी भी उप-गुणक आव्यूह मानदंड पर संगत सदिश मानदंड प्रेरित करता है परिभाषित करके .

प्रवेश-वार आव्यूह मानदंड

ये मानदंड का इलाज करते हैं आकार के सदिश के रूप में आव्यूह , एवं परिचित सदिश मानदंडों में से का उपयोग करें। उदाहरण के लिए, सदिश के लिए पी-मानदंड का उपयोग करते हुए, p ≥ 1, हम पाते हैं:

यह प्रेरित पी-मानदंड (ऊपर देखें) एवं स्कैटन पी-मानदंड (नीचे देखें) से भिन्न मानदंड है, लेकिन अंकन समान है।

विशेष विषय पी = 2 फ्रोबेनियस मानदंड है, एवं पी = ∞ अधिकतम मानदंड उत्पन्न करता है।

L2,1 एवं Lp,qमानदंड

होने देना आव्यूह के कॉलम बनें . मूल परिभाषा से, आव्यूह एम-आयामी अंतरिक्ष में एन डेटा बिंदु प्रस्तुत करता है। एच> मानक[6] आव्यूह के स्तंभों के यूक्लिडियन मानदंडों का योग है:

 h> त्रुटि फलन के रूप में मानदंड अधिक मजबूत है, क्योंकि प्रत्येक डेटा बिंदु (एक कॉलम) के लिए त्रुटि का वर्ग नहीं किया गया है। इसका उपयोग मजबूत डेटा विश्लेषण एवं विरल कोडिंग में किया जाता है।

के लिए p, q ≥ 1, द मानदंड को सामान्यीकृत किया जा सकता है मानदंड इस प्रकार है:

फ्रोबेनियस मानदंड

कब p = q = 2 के लिए मानदंड, इसे फ्रोबेनियस मानदंड या हिल्बर्ट-श्मिट मानदंड कहा जाता है, चूँकि पश्चात वाला शब्द (संभवतः अनंत-आयामी) हिल्बर्ट समिष्ट पर ऑपरेटरों के संदर्भ में अधिक बार उपयोग किया जाता है। इस मानदंड को विभिन्न तरीकों से परिभाषित किया जा सकता है:

जहाँ के विलक्षण मूल्य हैं . याद रखें कि ट्रेस (आव्यूह) वर्ग आव्यूह की विकर्ण प्रविष्टियों का योग लौटाता है।

फ्रोबेनियस मानदंड यूक्लिडियन मानदंड का विस्तार है एवं सभी आव्यूहों के समिष्ट पर फ्रोबेनियस आंतरिक उत्पाद से आता है।

फ्रोबेनियस मानदंड उप-गुणक है एवं संख्यात्मक रैखिक बीजगणित के लिए बहुत उपयोगी है। कॉची-श्वार्ज़ असमानता का उपयोग करके फ्रोबेनियस मानदंड की उप-गुणात्मकता को सिद्ध किया जा सकता है।

प्रेरित मानदंडों की अपेक्षा में फ्रोबेनियस मानदंड की गणना करना प्रायः सरल होता है, एवं इसमें रोटेशन आव्यूह (एवं सामान्य रूप से एकात्मक ऑपरेटर संचालन) के अंतर्गत अपरिवर्तनीय होने की उपयोगी संपत्ति होती है। वह है, किसी भी एकात्मक आव्यूह के लिए . यह गुण ट्रेस की चक्रीय प्रकृति से अनुसरण करता है ():

एवं अनुरूप रूप से:

जहां हमने एकात्मक प्रकृति का उपयोग किया है (वह है, ).

इससे संतुष्टि भी मिलती है

एवं

जहाँ फ्रोबेनियस आंतरिक उत्पाद है, एवं रे समिष्ट संख्या का वास्तविक हिस्सा है (वास्तविक आव्यूह के लिए अप्रासंगिक)

अधिकतम मानदंड

अधिकतम मानदंड, सीमा में तत्ववार मानदंड है p = q अनंत तक जाता है:

यह मानदंड आव्यूह मानदंड#परिभाषा|उप-गुणक नहीं है।

ध्यान दें कि कुछ साहित्य में (जैसे संचार समिष्टता), अधिकतम-मानदंड की वैकल्पिक परिभाषा, जिसे द भी कहा जाता है -मानदंड, गुणनखंडन मानदंड को संदर्भित करता है:

छाया मानदंड

आव्यूह के एकवचन मान अपघटन के सदिश पर पी-मानदंड प्रस्तावित करते समय स्कैटन पी-मानदंड उत्पन्न होते हैं।[2]यदि के एकवचन मान आव्यूह σ द्वारा निरूपित किया जाता हैi, तो स्कैटन पी-मानदंड द्वारा परिभाषित किया गया है

ये मानदंड फिर से प्रेरित एवं प्रवेश-वार पी-मानदंडों के साथ संकेतन साझा करते हैं, लेकिन वे भिन्न हैं।

सभी स्कैटन मानदंड उप-गुणक हैं। वे इकाई रूप से अपरिवर्तनीय भी हैं, जिसका अर्थ है सभी आव्यूह के लिए एवं सभी एकात्मक आव्यूह एवं .

सबसे परिचित विषय p = 1, 2, ∞ हैं। विषय पी = 2 फ्रोबेनियस मानदंड उत्पन्न करता है, जो पहले पेश किया गया था। विषय पी = ∞ वर्णक्रमीय मानदंड उत्पन्न करता है, जो सदिश 2-मानदंड (ऊपर देखें) द्वारा प्रेरित ऑपरेटर मानदंड है। अंत में, पी = 1 'परमाणु मानदंड' उत्पन्न करता है (जिसे ट्रेस मानदंड, या एकवचन मूल्य अपघटन # क्यू फैन मानदंड 'एन'-मानदंड के रूप में भी जाना जाता है)[7]), के रूप में परिभाषित:

जहाँ धनात्मक अर्धनिश्चित आव्यूह को प्रदर्शित करता है ऐसा है कि . अधिक सटीक रूप से, तब से धनात्मक अर्धनिश्चित आव्यूह है, इसके आव्यूह का वर्गमूल उचित रूप से परिभाषित है। परमाणु मानदंड रैंक फलन का उत्तल लिफाफा है , इसलिए इसका उपयोग प्रायः निम्न-रैंक आव्यूह की शोध के लिए गणितीय अनुकूलन में किया जाता है।

वॉन न्यूमैन की ट्रेस असमानता का संयोजन यूक्लिडियन समिष्ट के लिए होल्डर की असमानता के साथ होल्डर की असमानता का संस्करण उत्पन्न करता है स्कैटन मानदंडों के लिए के लिए :

विशेष रूप से, इसका तात्पर्य स्कैटन मानक असमानता से है

मोनोटोन मानदंड

आव्यूह मानदंड इसे मोनोटोन कहा जाता है यदि यह लोवेनर आदेश के संबंध में मोनोटोनिक है। इस प्रकार, आव्यूह मानदंड बढ़ रहा है यदि

फ्रोबेनियस मानदंड एवं वर्णक्रमीय मानदंड मोनोटोन मानदंडों के उदा प्रत्येकण हैं।[8]

मानदंडों में कटौती

आव्यूह मानदंडों के लिए प्रेरणा का अन्य स्रोत आव्यूह को भारित ग्राफ, निर्देशित ग्राफ के आसन्न आव्यूह के रूप में मानने से उत्पन्न होता है।[9] तथाकथित कट मानदंड मापता है कि संबंधित ग्राफ द्विदलीय ग्राफ के कितना करीब है:

जहाँ AKm×n.[9][10][11] समतुल्य परिभाषाएँ (एक स्थिर कारक तक) शर्तें लगाती हैं 2|S| > n & 2|T| > m; S = T; या ST = ∅.[10]

कट-मानदंड प्रेरित ऑपरेटर मानदंड के समान है ‖·‖∞→1, जो स्वयं अन्य मानदंड के समतुल्य है, जिसे ग्रोथेंडिक असमानता मानदंड कहा जाता है।[11]

ग्रोथेंडिक मानदंड को परिभाषित करने के लिए, पहले ध्यान दें कि रैखिक ऑपरेटर K1K1 केवल अदिश राशि है, एवं इस प्रकार किसी भी पर रैखिक संचालिका तक विस्तारित होती है KkKk. इसके अतिरिक्त, आधार का कोई भी विकल्प दिया गया है Kn एवं Km, कोई भी रैखिक ऑपरेटर KnKm रैखिक ऑपरेटर तक विस्तारित है (Kk)n → (Kk)m, प्रत्येक आव्यूह तत्व को तत्वों पर रखकर Kk अदिश गुणन के माध्यम से। ग्रोथेंडिक मानदंड उस विस्तारित ऑपरेटर का मानक है; प्रतीकों में:[11]

ग्रोथेंडिक मानदंड आधार की पसंद पर निर्भर करता है (सामान्यतः इसे मानक आधार माना जाता है) एवं k.

मानदंडों की समतुल्यता

किन्हीं दो आव्यूह मानदंडों के लिए एवं , हमारे पास वह है:

कुछ धनात्मक संख्याओं r एवं s के लिए, सभी आव्यूहों के लिए . दूसरे शब्दों में, सभी मानदंड चालू हैं समतुल्य हैं; वे उसी टोपोलॉजी (संरचना) को प्रेरित करते हैं . यह सत्य है क्योंकि सदिश समष्टि इसका सीमित आयाम है (गणित) .

इसके अतिरिक्त, प्रत्येक सदिश मानदंड के लिए पर , अद्वितीय धनात्मक वास्तविक संख्या मौजूद है ऐसा है कि प्रत्येक के लिए उप-गुणक आव्यूह मानदंड है .

उप-गुणक आव्यूह मानदंड न्यूनतम कहा जाता है, यदि कोई अन्य उप-गुणक आव्यूह मानदंड मौजूद नहीं है संतुष्टि देने वाला .

मानदंड तुल्यता के उदा प्रत्येकण

होने देना बार फिर सदिश पी-नॉर्म द्वारा प्रेरित मानदंड को देखें (जैसा कि ऊपर प्रेरित नॉर्म अनुभाग में है)।

आव्यूह के लिए रैंक का (रैखिक बीजगणित) , निम्नलिखित असमानताएँ कायम हैं:[12][13]

यह भी देखें

टिप्पणियाँ

  1. The condition only applies when the product is defined, such as the case of square matrices (m = n).


संदर्भ

  1. 1.0 1.1 Weisstein, Eric W. "मैट्रिक्स नॉर्म". mathworld.wolfram.com (in English). Retrieved 2020-08-24.
  2. 2.0 2.1 2.2 2.3 "मैट्रिक्स मानदंड". fourier.eng.hmc.edu. Retrieved 2020-08-24.
  3. Malek-Shahmirzadi, Massoud (1983). "मैट्रिक्स मानदंडों के कुछ वर्गों का लक्षण वर्णन". Linear and Multilinear Algebra (in English). 13 (2): 97–99. doi:10.1080/03081088308817508. ISSN 0308-1087.
  4. Horn, Roger A. (2012). मैट्रिक्स विश्लेषण. Johnson, Charles R. (2nd ed.). Cambridge: Cambridge University Press. pp. 340–341. ISBN 978-1-139-77600-4. OCLC 817236655.
  5. Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, §5.2, p.281, Society for Industrial & Applied Mathematics, June 2000.
  6. Ding, Chris; Zhou, Ding; He, Xiaofeng; Zha, Hongyuan (June 2006). "R1-PCA: Rotational Invariant L1-norm Principal Component Analysis for Robust Subspace Factorization". Proceedings of the 23rd International Conference on Machine Learning. ICML '06. Pittsburgh, Pennsylvania, USA: ACM. pp. 281–288. doi:10.1145/1143844.1143880. ISBN 1-59593-383-2.
  7. Fan, Ky. (1951). "पूरी तरह से निरंतर ऑपरेटरों के eigenvalues ​​​​के लिए अधिकतम गुण और असमानताएं". Proceedings of the National Academy of Sciences of the United States of America. 37 (11): 760–766. Bibcode:1951PNAS...37..760F. doi:10.1073/pnas.37.11.760. PMC 1063464. PMID 16578416. {{cite journal}}: zero width space character in |title= at position 44 (help)
  8. Ciarlet, Philippe G. (1989). संख्यात्मक रैखिक बीजगणित और अनुकूलन का परिचय. Cambridge, England: Cambridge University Press. p. 57. ISBN 0521327881.
  9. 9.0 9.1 Frieze, Alan; Kannan, Ravi (1999-02-01). "मैट्रिक्स और अनुप्रयोगों का त्वरित अनुमोदन". Combinatorica (in English). 19 (2): 175–220. doi:10.1007/s004930050052. ISSN 1439-6912. S2CID 15231198.
  10. 10.0 10.1 Lovász László (2012). "The cut distance". बड़े नेटवर्क और ग्राफ़ सीमाएँ. AMS Colloquium Publications. Vol. 60. Providence, RI: American Mathematical Society. pp. 127–131. ISBN 978-0-8218-9085-1. Note that Lovász rescales A to lie in [0, 1].
  11. 11.0 11.1 11.2 Alon, Noga; Naor, Assaf (2004-06-13). "ग्रोथेंडिक की असमानता के माध्यम से कट-मानदंड का अनुमान लगाना". Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing. STOC '04. Chicago, IL, USA: Association for Computing Machinery: 72–80. doi:10.1145/1007352.1007371. ISBN 978-1-58113-852-8. S2CID 1667427.
  12. Golub, Gene; Charles F. Van Loan (1996). Matrix Computations – Third Edition. Baltimore: The Johns Hopkins University Press, 56–57. ISBN 0-8018-5413-X.
  13. Roger Horn and Charles Johnson. Matrix Analysis, Chapter 5, Cambridge University Press, 1985. ISBN 0-521-38632-2.


ग्रन्थसूची

  • James W. Demmel, Applied Numerical Linear Algebra, section 1.7, published by SIAM, 1997.
  • Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, published by SIAM, 2000. [1]
  • John Watrous, Theory of Quantum Information, 2.3 Norms of operators, lecture notes, University of Waterloo, 2011.
  • Kendall Atkinson, An Introduction to Numerical Analysis, published by John Wiley & Sons, Inc 1989