भास्कर द्वितीय: Difference between revisions
(Content Modified) |
(added Category) |
||
Line 20: | Line 20: | ||
[[Category:भारतीय गणितज्ञ]] | [[Category:भारतीय गणितज्ञ]] | ||
[[Category:गणित]] |
Revision as of 09:43, 8 February 2022
भास्कर द्वितीय दो प्रसिद्ध गणितीय कार्यों लीलावती और बीजगणित के लेखक थे। उनका जन्म 1114 ई. में सह्याद्रि क्षेत्र के विज्जादविडा (आधुनिक कर्नाटक में बीजापुर) में हुआ था। उनकी महानता गणित को काव्यात्मक और आकर्षक बनाने में है। अपने काम लीलावती में, जो अंकगणित और ज्यामिति से संबंधित है, वह बहुत सारे दिलचस्प उदाहरण देते हैं । जल्द ही, यह पूरे भारत में गणित की विहित पाठ्य पुस्तक बन गई। इस पर अनेक टिप्पणियां हैं। उनकी बीजगणित, बीजगणित(एलजेब्रा) पर एक विस्तृत कार्य है। लीलावती और बीजगणित के अलावा, भास्कर ने सिद्धांत-शिरोमणि लिखी, जो खगोल विज्ञान पर एक काम है। यह दो भागों में है - ग्रहगणिताध्याय और गोलाध्याय । उन्होंने 36 वर्ष (1150 सीई) की उम्र में इस काम की रचना की।उनका मुख्य कार्य सिद्धांत-शिरोमणि, ("क्राउन ऑफ ट्रीट्स" के लिए संस्कृत) को चार भागों में विभाजित किया गया है, जिन्हें लीलावती, बीजगणित, ग्रहगणिता और गोलाध्याय कहा जाता है, जिन्हें कभी-कभी चार स्वतंत्र कार्य भी माना जाता है। ये चार खंड क्रमशः अंकगणित, बीजगणित, ग्रहों के गणित और गोले से संबंधित हैं। उन्होंने एक अन्य ग्रंथ भी लिखा, जिसका नाम करण कुतूहल था।
गणित में भास्कर के कुछ योगदानों में निम्नलिखित शामिल हैं:
- एक ही क्षेत्र को दो अलग-अलग तरीकों से गणना करके और फिर a2 + b2 = c2 प्राप्त करने के लिए शर्तों को रद्द करके, पाइथागोरस प्रमेय का प्रमाण।
- लीलावती में द्विघात, घन और चतुर्थक अनिश्चित समीकरणों के हल बताए गए हैं।
- अनिश्चित द्विघात समीकरणों के समाधान (प्रकार ax2 + b = y2)
- समस्या x2 - ny2 = 1 (तथाकथित "पेल्स समीकरण") के समाधान खोजने के लिए पहली सामान्य विधि भास्कर द्वितीय द्वारा दी गई थी।
- गणितीय विश्लेषण की प्रारंभिक अवधारणा।
- अन्तर्निहित कलन की प्रारंभिक अवधारणा, साथ ही अभिन्न कलन की दिशा में उल्लेखनीय योगदान।
- त्रिकोणमितीय कार्यों और सूत्रों के डेरिवेटिव/व्युत्पन्न की गणना।
- सिद्धांत-शिरोमणि में, भास्कर ने कई अन्य त्रिकोणमितीय परिणामों के साथ गोलाकार त्रिकोणमिति विकसित की।