भास्कर द्वितीय
भास्कर द्वितीय(सी. 1114-1185) [1] एक भारतीय गणितज्ञ और खगोलशास्त्री थे ,जिन्हे भास्कराचार्य के रूप में भी जाना जाता है और भास्कर प्रथम के साथ विभ्रान्ति से बचने के लिए भास्कर द्वितीय के रूप में भी जाना जाता है। उनका मुख्य कार्य सिद्धांत-शिरोमणि, ("क्राउन ऑफ ट्रीटिस" के लिए संस्कृत) को चार भागों में विभाजित किया गया है, जिन्हें लीलावती, बीजगणित (एलजेब्रा), ग्रहगणिता और गोलाध्याय कहा जाता है, जिन्हें कभी-कभी चार स्वतंत्र कार्य भी माना जाता है।ये चार खंड क्रमशः अंकगणित, बीजगणित, ग्रहों के गणित और गोला/गोलक से संबंधित हैं। उन्होंने एक अन्य ग्रंथ भी लिखा, जिसका नाम करण कुतूहल था।
भास्कर द्वितीय | |
---|---|
जन्म | सी 1114 ईस्वी |
मर गया | सी 1185 ईस्वी |
युग | शक संवत/युग |
उल्लेखनीय कार्य | सिद्धांत-शिरोमणि(लीलावती, बीजगणित, ग्रहगणिता, गोलाध्याय), करण कुतूहल |
गणित में भास्कर के कुछ योगदानों में निम्नलिखित सम्मिलित हैं:
- पाइथागोरस प्रमेय का प्रमाण, एक ही क्षेत्र को दो अलग-अलग विधियों से गणना करके और फिर a2 + b2 = c2 प्राप्त करने के लिए शर्तों को रद्द करके।
लीलावती में द्विघात, घन और अनिश्चित द्विघात समीकरणों के हल बताए गए हैं। लीलावती (अर्थात् एक सुंदर महिला) अंकगणित[2] पर आधारित है। ऐसा माना जाता है कि भास्कर ने इस पुस्तक का नाम अपनी पुत्री लीलावती के नाम पर रखा था। इस पुस्तक में कई समस्याओं को उनकी बेटी को संबोधित किया गया है। उदाहरण के लिए "ओह लीलावती, बुद्धिमान लड़की, यदि आप जोड़ और घटाव को समझते हैं, तो मुझे 2, 5, 32, 193, 18, 10 और 100 की राशि के साथ-साथ 10000 से घटाए जाने पर [शेष] राशि बताएं।" पुस्तक में तेरह अध्याय हैं, मुख्य रूप से परिभाषाएं, अंकगणितीय शब्द, ब्याज गणना, अंकगणितीय और ज्यामितीय प्रगति। संख्याओं की गणना के लिए पुस्तक में कई विधियाँ जैसे गुणा, वर्ग और श्रेढ़ी , राजा और हाथियों जैसी सामान्य वस्तुओं पर आधारित थीं, जिन्हें एक आम आदमी समझ सकता था।
- अनिश्चित द्विघात समीकरणों के समाधान (प्रकार ax2 + b = y2)[3]
- समस्या x2 - ny2 = 1 (तथाकथित "पेल्स समीकरण") के समाधान खोजने के लिए पहली सामान्य विधि भास्कर द्वितीय द्वारा दी गई थी।
- गणितीय विश्लेषण की प्रारंभिक अवधारणा।
- अन्तर्निहित कलन की प्रारंभिक अवधारणा, साथ ही अभिन्न कलन की दिशा में उल्लेखनीय योगदान।
- त्रिकोणमितीय कार्यों और सूत्रों के डेरिवेटिव/व्युत्पन्न की गणना।
- सिद्धांत-शिरोमणि में, भास्कर ने कई अन्य त्रिकोणमितीय परिणामों के साथ गोलाकार त्रिकोणमिति भी विकसित की।[4]
सिद्धांत शिरोमणि (1150 में लिखित) भास्कर के त्रिकोणमिति के ज्ञान को प्रदर्शित करता है, जिसमें साइन टेबल और विभिन्न त्रिकोणमितीय कार्यों के बीच संबंध शामिल हैं। उन्होंने अन्य दिलचस्प त्रिकोणमितीय परिणामों के साथ-साथ गोलाकार त्रिकोणमिति भी विकसित की। विशेष रूप से, भास्कर अपने पूर्ववर्तियों की तुलना में अपने स्वयं के लिए त्रिकोणमिति में अधिक रुचि रखते थे, जिन्होंने इसे केवल गणना के लिए एक उपकरण के रूप में देखा था। भास्कर द्वारा दिए गए कई दिलचस्प परिणामों में, उनके कार्यों में पाए गए परिणामों में 18 और 36 डिग्री के कोणों की साइन की गणना, और sin(a+b) और sin(a-b) के लिए अब प्रसिद्ध सूत्र शामिल हैं।
बाहरी संपर्क
यह भी देखें
संदर्भ
- ↑ "भास्कर_द्वितीय"("Bhāskara_II)
- ↑ "भास्कर द्वितीय"("Bhāskara II")
- ↑ "भास्कर द्वितीय"(Bhāskara II)
- ↑ "भास्कर का त्रिकोणमिति का ज्ञान"("Bhaskara's knowledge of trigonometry")