स्केलिंग (ज्यामिति): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Geometric transformation}} | {{Short description|Geometric transformation}} | ||
[[File:Sierpinski triangle evolution.svg|thumb|सिएरपिन्स्की त्रिभुज के प्रत्येक पुनरावृत्ति में 1/2 के स्केल कारक द्वारा अगले पुनरावृत्ति से संबंधित त्रिभुज होते हैं]]एफ़िन ज्यामिति में, यूनिफार्म स्केलिंग (या [[समदैशिक]] स्केलिंग<ref>{{cite web|format=PowerPoint|last1=Durand|last2=Cutler|url=http://groups.csail.mit.edu/graphics/classes/6.837/F03/lectures/04_transformations.ppt |title=परिवर्तनों|publisher=Massachusetts Institute of Technology|access-date =12 September 2008}}</ref>) [[रैखिक परिवर्तन]] है जो सभी दिशाओं में समान स्केल कारक द्वारा वस्तुओं को बढ़ाता है या संकुचन कम करता है। समान स्केलिंग का परिणाम मूल के [[समानता (ज्यामिति)]] (ज्यामितीय अर्थ में) है। 1 के मापदंड कारक की सामान्य रूप से अनुमति है, जिससे [[सर्वांगसमता (ज्यामिति)]] आकृतियों को भी समान के रूप में वर्गीकृत किया जा सकता है। समान स्केलिंग होती है, उदाहरण के लिए, जब किसी [[फोटो]]ग्राफ को बड़ा या छोटा किया जाता है, या किसी भवन, कार, हवाई जहाज आदि का [[पैमाना मॉडल|मापदंड मॉडल]] बनाते समय होता है। | [[File:Sierpinski triangle evolution.svg|thumb|सिएरपिन्स्की त्रिभुज के प्रत्येक पुनरावृत्ति में 1/2 के स्केल कारक द्वारा अगले पुनरावृत्ति से संबंधित त्रिभुज होते हैं]]एफ़िन ज्यामिति में, '''यूनिफार्म स्केलिंग (या [[समदैशिक]] स्केलिंग'''<ref>{{cite web|format=PowerPoint|last1=Durand|last2=Cutler|url=http://groups.csail.mit.edu/graphics/classes/6.837/F03/lectures/04_transformations.ppt |title=परिवर्तनों|publisher=Massachusetts Institute of Technology|access-date =12 September 2008}}</ref>) [[रैखिक परिवर्तन]] है जो सभी दिशाओं में समान स्केल कारक द्वारा वस्तुओं को बढ़ाता है या संकुचन कम करता है। समान स्केलिंग का परिणाम मूल के [[समानता (ज्यामिति)]] (ज्यामितीय अर्थ में) है। 1 के मापदंड कारक की सामान्य रूप से अनुमति है, जिससे [[सर्वांगसमता (ज्यामिति)]] आकृतियों को भी समान के रूप में वर्गीकृत किया जा सकता है। समान स्केलिंग होती है, उदाहरण के लिए, जब किसी [[फोटो]]ग्राफ को बड़ा या छोटा किया जाता है, या किसी भवन, कार, हवाई जहाज आदि का [[पैमाना मॉडल|मापदंड मॉडल]] बनाते समय होता है। | ||
प्रत्येक अक्ष दिशा के लिए अलग मापदंड कारक के साथ अधिक सामान्य 'स्केलिंग' है। 'गैर-यूनिफार्म स्केलिंग' ([[एनिस्ट्रोपिक]] स्केलिंग') तब प्राप्त होता है जब स्केलिंग कारकों में से कम से कम अन्य से अलग होता है; विशेष स्थिति 'दिशात्मक स्केलिंग' या 'स्ट्रेचिंग' (एक दिशा में) है। असमान स्केलिंग से वस्तु का [[आकार]] बदल जाता है; उदा. वर्ग आयत में या समांतर चतुर्भुज में बदल सकता है यदि वर्ग की भुजाएँ स्केलिंग अक्षों के समानांतर नहीं हैं (अक्षों के समानांतर रेखाओं के बीच के कोण संरक्षित हैं, किन्तु सभी कोण नहीं हैं)। यह तब होता है, उदाहरण के लिए, जब दूर के बिलबोर्ड को तिरछे कोण से देखा जाता है, या जब सपाट वस्तु की छाया उस सतह पर पड़ती है जो इसके समानांतर नहीं होती है। | प्रत्येक अक्ष दिशा के लिए अलग मापदंड कारक के साथ अधिक सामान्य 'स्केलिंग' है। 'गैर-यूनिफार्म स्केलिंग' ([[एनिस्ट्रोपिक]] स्केलिंग') तब प्राप्त होता है जब स्केलिंग कारकों में से कम से कम अन्य से अलग होता है; विशेष स्थिति 'दिशात्मक स्केलिंग' या 'स्ट्रेचिंग' (एक दिशा में) है। असमान स्केलिंग से वस्तु का [[आकार]] बदल जाता है; उदा. वर्ग आयत में या समांतर चतुर्भुज में बदल सकता है यदि वर्ग की भुजाएँ स्केलिंग अक्षों के समानांतर नहीं हैं (अक्षों के समानांतर रेखाओं के बीच के कोण संरक्षित हैं, किन्तु सभी कोण नहीं हैं)। यह तब होता है, उदाहरण के लिए, जब दूर के बिलबोर्ड को तिरछे कोण से देखा जाता है, या जब सपाट वस्तु की छाया उस सतह पर पड़ती है जो इसके समानांतर नहीं होती है। |
Revision as of 17:54, 25 July 2023
एफ़िन ज्यामिति में, यूनिफार्म स्केलिंग (या समदैशिक स्केलिंग[1]) रैखिक परिवर्तन है जो सभी दिशाओं में समान स्केल कारक द्वारा वस्तुओं को बढ़ाता है या संकुचन कम करता है। समान स्केलिंग का परिणाम मूल के समानता (ज्यामिति) (ज्यामितीय अर्थ में) है। 1 के मापदंड कारक की सामान्य रूप से अनुमति है, जिससे सर्वांगसमता (ज्यामिति) आकृतियों को भी समान के रूप में वर्गीकृत किया जा सकता है। समान स्केलिंग होती है, उदाहरण के लिए, जब किसी फोटोग्राफ को बड़ा या छोटा किया जाता है, या किसी भवन, कार, हवाई जहाज आदि का मापदंड मॉडल बनाते समय होता है।
प्रत्येक अक्ष दिशा के लिए अलग मापदंड कारक के साथ अधिक सामान्य 'स्केलिंग' है। 'गैर-यूनिफार्म स्केलिंग' (एनिस्ट्रोपिक स्केलिंग') तब प्राप्त होता है जब स्केलिंग कारकों में से कम से कम अन्य से अलग होता है; विशेष स्थिति 'दिशात्मक स्केलिंग' या 'स्ट्रेचिंग' (एक दिशा में) है। असमान स्केलिंग से वस्तु का आकार बदल जाता है; उदा. वर्ग आयत में या समांतर चतुर्भुज में बदल सकता है यदि वर्ग की भुजाएँ स्केलिंग अक्षों के समानांतर नहीं हैं (अक्षों के समानांतर रेखाओं के बीच के कोण संरक्षित हैं, किन्तु सभी कोण नहीं हैं)। यह तब होता है, उदाहरण के लिए, जब दूर के बिलबोर्ड को तिरछे कोण से देखा जाता है, या जब सपाट वस्तु की छाया उस सतह पर पड़ती है जो इसके समानांतर नहीं होती है।
जब मापदंड कारक 1 से बड़ा होता है, (समान या गैर-यूनिफार्म) स्केलिंग को कभी-कभी 'विस्तार' या 'विस्तार' भी कहा जाता है। जब मापदंड गुणक 1 से छोटी कोई धनात्मक संख्या होती है, तो मापन को कभी-कभी 'संकुचन' या 'कमी' भी कहा जाता है।
सबसे सामान्य अर्थ में, स्केलिंग में वह स्थिति सम्मिलित होता है जिसमें स्केलिंग की दिशा लंबवत नहीं होती है। इसमें वह स्थिति भी सम्मिलित है जिसमें या से अधिक स्केल कारक शून्य के समान होते हैं (प्रोजेक्शन (रैखिक बीजगणित)), और या अधिक ऋणात्मक स्केल कारकों का स्थिति (-1 द्वारा दिशात्मक स्केलिंग प्रतिबिंब (गणित) के समान है) .
स्केलिंग रैखिक परिवर्तन है, और समरूप परिवर्तन का विशेष स्थिति (एक बिंदु के बारे में स्केलिंग)। अधिकतर स्थितियों में, होमोथेटिक परिवर्तन गैर-रैखिक परिवर्तन होते हैं।
यूनिफ़ॉर्म स्केलिंग
एक स्केल फ़ैक्टर सामान्यतः दशमलव होता है जो कुछ मात्रा को मापता या गुणा करता है। समीकरण में y = Cx, C x का मापदंड कारक है। C भी x का गुणांक है, और इसे y से x के आनुपातिकता का स्थिरांक कहा जा सकता है। उदाहरण के लिए, दोहरीकरण दूरी दूरी के लिए दो के मापदंड कारक से मेल खाती है, जबकि केक को आधे में काटने से आधे की मात्रा के लिए मापदंड कारक के साथ टुकड़े हो जाते हैं। इसके लिए मूल समीकरण इमेज ओवर प्रीइमेज है।
मापन के क्षेत्र में, किसी उपकरण के मापदंड कारक को कभी-कभी संवेदनशीलता कहा जाता है। दो समान ज्यामितीय आकृतियों में किन्हीं दो संगत लंबाई के अनुपात को भी मापदंड कहा जाता है।
आव्यूह प्रतिनिधित्व
स्केलिंग आव्यूह (गणित) द्वारा स्केलिंग का प्रतिनिधित्व किया जा सकता है। सदिश (ज्यामितीय) v = (vx, vy, vz) द्वारा किसी ऑब्जेक्ट को स्केल करने के लिए), प्रत्येक बिंदु p = (px, py, pz) को इस स्केलिंग आव्यूह से गुणा करना होगा:
जैसा कि नीचे दिखाया गया है, गुणन अपेक्षित परिणाम देगा:
इस तरह की स्केलिंग किसी वस्तु के व्यास को स्केल कारकों के बीच कारक द्वारा, दो स्केल कारकों के सबसे छोटे और सबसे बड़े उत्पाद के बीच कारक द्वारा और तीनों के उत्पाद द्वारा आयतन को बदल देती है।
स्केलिंग समान है यदि और केवल यदि स्केलिंग कारक (vx = vy = vz). समान हैं यदि स्केल कारकों में से को छोड़कर सभी 1 के समान हैं, तो हमारे पास दिशात्मक स्केलिंग है।
ऐसे स्थिति में जहां vx = vy = vz = k, स्केलिंग से किसी भी सतह का क्षेत्रफल k2 गुना और किसी ठोस वस्तु का आयतन k3 गुना बढ़ जाता है।
स्वैच्छिक आयामों में स्केलिंग
-आयामी समिष्ट में, कारक द्वारा समान स्केलिंग के साथ स्केलर गुणन द्वारा पूरा किया जाता है , अर्थात्, प्रत्येक बिंदु के प्रत्येक निर्देशांक को गुणा करके रैखिक परिवर्तन के विशेष स्थिति के रूप में, यह प्रत्येक बिंदु को विकर्ण आव्यूह के साथ गुणा करके भी प्राप्त किया जा सकता है (स्तंभ सदिश के रूप में देखा जाता है) जिसकी विकर्ण पर प्रविष्टियाँ सभी के समान हैं , अर्थात् .
गैर-यूनिफार्म स्केलिंग किसी सममित आव्यूह के साथ गुणन द्वारा पूरा किया जाता है। आव्यूह के इजेनवैल्यू स्केल कारक हैं, और संबंधित इजेनवेक्टर हैं जिनके साथ प्रत्येक स्केल कारक प्रयुक्त होता है। विशेष स्थिति विकर्ण आव्यूह है, संख्या के साथ विकर्ण के साथ: स्केलिंग के अक्ष तब समन्वय अक्ष होते हैं, और प्रत्येक अक्ष के साथ परिवर्तन स्केल कारक द्वारा होते हैं.
गैर-शून्य स्केल कारक के साथ समान स्केलिंग में, सभी गैर-शून्य सदिश स्केलिंग कारक के संकेत के आधार पर अपनी दिशा (जैसा मूल से देखा जाता है) बनाए रखते हैं, या सभी की दिशा विपरीत हो जाती है। गैर-यूनिफार्म स्केलिंग में केवल ईजेनस्पेस से संबंधित सदिश ही अपनी दिशा बनाए रखेंगे। सदिश जो दो या दो से अधिक गैर-शून्य सदिशो का योग है जो अलग-अलग ईजेनस्पेस से संबंधित है, सबसे बड़े आइगेनवैल्यू के साथ ईजेनस्पेस की ओर आवरण हो जाता है।
सजातीय निर्देशांक का उपयोग करना
प्रक्षेप्य ज्यामिति में, जिसे अधिकांशतः कंप्यूटर ग्राफिक्स में उपयोग किया जाता है, बिंदुओं को सजातीय निर्देशांक का उपयोग करके दर्शाया जाता है। किसी वस्तु को सदिश v = (vx, vy, vz) द्वारा स्केल करने के लिए, प्रत्येक सजातीय समन्वय सदिश p = (px, py, pz, 1) को इस प्रक्षेप्य परिवर्तन आव्यूह से गुणा करने की आवश्यकता होती है:
जैसा कि नीचे दिखाया गया है, गुणन अपेक्षित परिणाम देगा:
चूंकि सजातीय समन्वय के अंतिम घटक को अन्य तीन घटकों के भाजक के रूप में देखा जा सकता है, इस स्केलिंग आव्यूह का उपयोग करके सामान्य कारक (समान स्केलिंग) द्वारा समान स्केलिंग को पूरा किया जा सकता है:
प्रत्येक सदिश के लिए p = (px, py, pz, 1) हमारे पास होगा
जो समान होगा
फलन विस्तार और संकुचन
एक बिंदु को देखते हुए, विस्तार इसे समीकरणों के माध्यम से बिंदु से जोड़ता है
- के लिए .
इसलिए, एक फलन दिया गया है, विस्तारित फलन का समीकरण है
विशेष स्थिति
यदि , परिवर्तन क्षैतिज है; जब , यह संकुचन है।
यदि , परिवर्तन लंबवत है; जब , तब यह संकुचन है।
यदि या , परिवर्तन एक चाप मैपिंग है।
यह भी देखें
- विस्तार (मीट्रिक समिष्ट)
- सजातीय फलन
- होमोथेटिक परिवर्तन
- ऑर्थोगोनल निर्देशांक
- स्केलर (गणित)
- मापदंड (रुपरेखा) बहुविकल्पी)
- स्केल (अनुपात)
- स्केल (रुपरेखा)
- स्केल फैक्टर (कंप्यूटर साइंस)
- स्केल फैक्टर (ब्रह्मांड विज्ञान)
- स्केल मॉडल
- स्केल मापदंड
- गुरुत्वाकर्षण में स्केलिंग
- छवि मैपिंग
- परिवर्तन आव्यूह
फुटनोट्स
- ↑ Durand; Cutler. "परिवर्तनों" (PowerPoint). Massachusetts Institute of Technology. Retrieved 12 September 2008.
बाहरी सम्बन्ध
- Understanding 2D Scaling and Understanding 3D Scaling by Roger Germundsson, The Wolfram Demonstrations Project.