इलेक्ट्रॉन परिवहन श्रृंखला: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Energy-producing metabolic pathway}}
{{Short description|Energy-producing metabolic pathway}}


[[File:Innerworkings of a thylakoid.png|thumb|[[ माइटोकांड्रिया |माइटोकांड्रिया]] में इलेक्ट्रॉन परिवहन श्रृंखला [[यूकेरियोट|यूकेरियोट्स]] में [[ऑक्सीडेटिव फाृॉस्फॉरिलेशन|ऑक्सीडेटिव फॉस्फोराइलेशन]] की साइट है। यह साइट्रिक एसिड चक्र में उत्पन्न [[एनएडीएच]] या स्यूसिनिक एसिड और ऑक्सीजन के बीच [[एटीपी सिंथेज़]] को शक्ति प्रदान करने के लिए प्रतिक्रिया में मध्यस्थता करता है।]]एक इलेक्ट्रॉन परिवहन श्रृंखला (ईटीसी<ref>{{cite book |doi=10.1016/B978-0-443-10281-3.00013-0 |chapter=Biochemistry |title=प्रसूति और स्त्री रोग में बुनियादी विज्ञान|year=2010 |last1=Lyall |first1=Fiona |pages=143–171 |isbn=978-0-443-10281-3 }}</ref>) प्रोटीन परिसरों और अन्य अणुओं की एक श्रृंखला है जो [[इलेक्ट्रॉन]]ों को [[इलेक्ट्रॉन दाता]]ओं से [[इलेक्ट्रॉन स्वीकर्ता]] को [[ रिडॉक्स ]] प्रतिक्रियाओं (दोनों रेडॉक्स # परिभाषाएं) के माध्यम से स्थानांतरित करते हैं और इस [[इलेक्ट्रॉन स्थानांतरण]] को [[प्रोटॉन]] (एच) के हस्तांतरण के साथ जोड़ते हैं।<sup>+</sup> आयन) एक [[जैविक झिल्ली]] के पार। एनएडीएच और एफएडीएच2 से ईटीसी में स्थानांतरित होने वाले इलेक्ट्रॉनों में चार मल्टी-सबयूनिट बड़े [[एंजाइम]] कॉम्प्लेक्स और दो मोबाइल इलेक्ट्रॉन वाहक शामिल हैं। इलेक्ट्रॉन परिवहन श्रृंखला में कई एंजाइम झिल्ली-बद्ध होते हैं।
[[File:Innerworkings of a thylakoid.png|thumb|[[ माइटोकांड्रिया |माइटोकांड्रिया]] में इलेक्ट्रॉन परिवहन श्रृंखला [[यूकेरियोट|यूकेरियोट्स]] में [[ऑक्सीडेटिव फाृॉस्फॉरिलेशन|ऑक्सीडेटिव फॉस्फोराइलेशन]] की साइट है। यह साइट्रिक एसिड चक्र में उत्पन्न [[एनएडीएच]] या स्यूसिनिक एसिड और ऑक्सीजन के बीच [[एटीपी सिंथेज़]] को शक्ति प्रदान करने के लिए प्रतिक्रिया में मध्यस्थता करता है।]]एक इलेक्ट्रॉन परिवहन श्रृंखला (ईटीसी<ref>{{cite book |doi=10.1016/B978-0-443-10281-3.00013-0 |chapter=Biochemistry |title=प्रसूति और स्त्री रोग में बुनियादी विज्ञान|year=2010 |last1=Lyall |first1=Fiona |pages=143–171 |isbn=978-0-443-10281-3 }}</ref>) प्रोटीन कॉम्प्लेक्स और अन्य अणुओं की एक श्रृंखला है जो [[ रिडॉक्स |रिडॉक्स]] प्रतिक्रियाओं (एक साथ होने वाली कमी और ऑक्सीकरण दोनों) के माध्यम से [[इलेक्ट्रॉन दाता|इलेक्ट्रॉन दाताओं]] से [[इलेक्ट्रॉन स्वीकर्ता]] तक [[इलेक्ट्रॉन|इलेक्ट्रॉनों]] को स्थानांतरित करती है और इस [[इलेक्ट्रॉन स्थानांतरण]] को [[प्रोटॉन]] के हस्तांतरण के साथ जोड़ती है ( H+ आयन) एक [[जैविक झिल्ली]] के पार। एनएडीएच और एफएडीएच2 से ईटीसी में स्थानांतरित होने वाले इलेक्ट्रॉनों में चार मल्टी-सबयूनिट बड़े [[एंजाइम]] कॉम्प्लेक्स और दो मोबाइल इलेक्ट्रॉन वाहक शामिल होते हैं। इलेक्ट्रॉन परिवहन श्रृंखला में कई एंजाइम झिल्ली-बद्ध होते हैं।


इलेक्ट्रॉन परिवहन श्रृंखला के माध्यम से इलेक्ट्रॉनों का प्रवाह एक बाहरी प्रक्रिया है। रेडॉक्स प्रतिक्रियाओं से ऊर्जा एक [[विद्युत रासायनिक ढाल]] बनाती है जो [[एडेनोसाइन ट्रायफ़ोस्फेट]] (एटीपी) के संश्लेषण को चलाती है। सेलुलर श्वसन # एरोबिक श्वसन में, इलेक्ट्रॉनों का प्रवाह आणविक [[ऑक्सीजन]] के साथ अंतिम इलेक्ट्रॉन स्वीकर्ता के रूप में समाप्त होता है। अवायवीय श्वसन में, अन्य इलेक्ट्रॉन स्वीकर्ता का उपयोग किया जाता है, जैसे [[सल्फेट]]।
इलेक्ट्रॉन परिवहन श्रृंखला के माध्यम से इलेक्ट्रॉनों का प्रवाह एक बाह्य प्रक्रिया है। रेडॉक्स प्रतिक्रियाओं से ऊर्जा एक [[विद्युत रासायनिक ढाल]] बनाती है जो [[एडेनोसाइन ट्रायफ़ोस्फेट]] (एटीपी) के संश्लेषण को संचालित करती है। एरोबिक श्वसन में, इलेक्ट्रॉनों का प्रवाह अंतिम इलेक्ट्रॉन स्वीकर्ता के रूप में आणविक [[ऑक्सीजन]] के साथ समाप्त होता है। अवायवीय श्वसन में, अन्य इलेक्ट्रॉन स्वीकर्ता का उपयोग किया जाता है, जैसे [[सल्फेट]]।


एक इलेक्ट्रॉन परिवहन श्रृंखला में, रिडॉक्स प्रतिक्रियाएं अभिकारकों और उत्पादों की [[गिब्स मुक्त ऊर्जा]] में अंतर से संचालित होती हैं। जब एक उच्च-ऊर्जा इलेक्ट्रॉन दाता और स्वीकर्ता निम्न-ऊर्जा उत्पादों में परिवर्तित होते हैं, जबकि इलेक्ट्रॉनों को एक निम्न से उच्च रेडॉक्स क्षमता में स्थानांतरित किया जाता है, तो मुक्त ऊर्जा का उपयोग इलेक्ट्रॉन परिवहन श्रृंखला में परिसरों द्वारा आयनों के विद्युत रासायनिक ढाल बनाने के लिए किया जाता है। . यह विद्युत रासायनिक ढाल है जो एटीपी सिंथेस के साथ ऑक्सीडेटिव फास्फारिलीकरण के साथ युग्मन के माध्यम से एटीपी के संश्लेषण को संचालित करता है। <रेफरी नाम = अनारकु 101-132>{{cite journal | vauthors = Anraku Y | title = बैक्टीरियल इलेक्ट्रॉन परिवहन श्रृंखला| journal = Annual Review of Biochemistry | volume = 57 | issue = 1 | pages = 101–32 | date = June 1988 | pmid = 3052268 | doi = 10.1146/annurev.bi.57.070188.000533 }}</ref>
 
एक इलेक्ट्रॉन परिवहन श्रृंखला में, रेडॉक्स प्रतिक्रियाएं अभिकारकों और उत्पादों की गिब्स मुक्त ऊर्जा में अंतर से संचालित होती हैं। जब एक उच्च-ऊर्जा इलेक्ट्रॉन दाता और स्वीकर्ता निम्न-ऊर्जा उत्पादों में परिवर्तित हो जाते हैं, जबकि इलेक्ट्रॉनों को निम्न से उच्च रेडॉक्स क्षमता में स्थानांतरित किया जाता है, तो मुक्त ऊर्जा का उपयोग इलेक्ट्रॉन परिवहन श्रृंखला में कॉम्प्लेक्स द्वारा आयनों की विद्युत रासायनिक ढाल बनाने के लिए किया जाता है। यह विद्युत रासायनिक प्रवणता है जो एटीपी सिंथेज़ के साथ ऑक्सीडेटिव फास्फारिलीकरण के साथ युग्मन के माध्यम से एटीपी के संश्लेषण को संचालित करती है। <रेफरी नाम = अनारकु 101-132>{{cite journal | vauthors = अनराकु वाई | title = बैक्टीरियल इलेक्ट्रॉन परिवहन श्रृंखला| journal = जैव रसायन की वार्षिक समीक्षा | volume = 57 | issue = 1 | pages = 101–32 | date = June 1988 | pmid = 3052268 | doi = 10.1146/annurev.bi.57.070188.000533 }}<nowiki></ref></nowiki>
 
 
इलेक्ट्रॉन परिवहन श्रृंखला में, रिडॉक्स प्रतिक्रियाएं अभिकारकों और उत्पादों की [[गिब्स मुक्त ऊर्जा]] में अंतर से संचालित होती हैं। जब एक उच्च-ऊर्जा इलेक्ट्रॉन दाता और स्वीकर्ता निम्न-ऊर्जा उत्पादों में परिवर्तित होते हैं, जबकि इलेक्ट्रॉनों को एक निम्न से उच्च रेडॉक्स क्षमता में स्थानांतरित किया जाता है, तो मुक्त ऊर्जा का उपयोग इलेक्ट्रॉन परिवहन श्रृंखला में परिसरों द्वारा आयनों के विद्युत रासायनिक ढाल बनाने के लिए किया जाता है। . यह विद्युत रासायनिक ढाल है जो एटीपी सिंथेस के साथ ऑक्सीडेटिव फास्फारिलीकरण के साथ युग्मन के माध्यम से एटीपी के संश्लेषण को संचालित करता है। <रेफरी नाम = अनारकु 101-132>{{cite journal | vauthors = Anraku Y | title = बैक्टीरियल इलेक्ट्रॉन परिवहन श्रृंखला| journal = Annual Review of Biochemistry | volume = 57 | issue = 1 | pages = 101–32 | date = June 1988 | pmid = 3052268 | doi = 10.1146/annurev.bi.57.070188.000533 }}<nowiki></ref></nowiki>


[[ यूकैर्योसाइटों ]] में इलेक्ट्रॉन परिवहन श्रृंखला, और ऑक्सीडेटिव फास्फारिलीकरण की साइट, [[आंतरिक माइटोकॉन्ड्रियल झिल्ली]] पर पाई जाती है। ऑक्सीजन और कम यौगिकों जैसे साइटोक्रोम सी और (अप्रत्यक्ष रूप से) एनएडीएच और एफएडीएच2 की प्रतिक्रियाओं द्वारा जारी ऊर्जा का उपयोग इलेक्ट्रॉन ट्रांसपोर्ट चेन द्वारा [[इनतेरमेम्ब्रेन स्पेस]] में प्रोटॉन पंप करने के लिए किया जाता है, जिससे आंतरिक माइटोकॉन्ड्रियल झिल्ली पर विद्युत रासायनिक ढाल उत्पन्न होती है। प्रकाश संश्लेषक यूकेरियोट्स में, थायलाकोइड झिल्ली पर इलेक्ट्रॉन परिवहन श्रृंखला पाई जाती है। यहाँ, प्रकाश ऊर्जा एक प्रोटॉन पंप के माध्यम से इलेक्ट्रॉन परिवहन को चलाती है और परिणामस्वरूप प्रोटॉन प्रवणता एटीपी के बाद के संश्लेषण का कारण बनती है। [[जीवाणु]]ओं में, इलेक्ट्रॉन परिवहन श्रृंखला प्रजातियों के बीच भिन्न हो सकती है लेकिन यह हमेशा रेडॉक्स प्रतिक्रियाओं का एक सेट बनाती है जो एटीपी के संश्लेषण के लिए एटीपी सिंथेस के माध्यम से एक विद्युत रासायनिक ढाल और ऑक्सीडेटिव फास्फारिलीकरण के माध्यम से युग्मित होती है।
[[ यूकैर्योसाइटों ]] में इलेक्ट्रॉन परिवहन श्रृंखला, और ऑक्सीडेटिव फास्फारिलीकरण की साइट, [[आंतरिक माइटोकॉन्ड्रियल झिल्ली]] पर पाई जाती है। ऑक्सीजन और कम यौगिकों जैसे साइटोक्रोम सी और (अप्रत्यक्ष रूप से) एनएडीएच और एफएडीएच2 की प्रतिक्रियाओं द्वारा जारी ऊर्जा का उपयोग इलेक्ट्रॉन ट्रांसपोर्ट चेन द्वारा [[इनतेरमेम्ब्रेन स्पेस]] में प्रोटॉन पंप करने के लिए किया जाता है, जिससे आंतरिक माइटोकॉन्ड्रियल झिल्ली पर विद्युत रासायनिक ढाल उत्पन्न होती है। प्रकाश संश्लेषक यूकेरियोट्स में, थायलाकोइड झिल्ली पर इलेक्ट्रॉन परिवहन श्रृंखला पाई जाती है। यहाँ, प्रकाश ऊर्जा एक प्रोटॉन पंप के माध्यम से इलेक्ट्रॉन परिवहन को चलाती है और परिणामस्वरूप प्रोटॉन प्रवणता एटीपी के बाद के संश्लेषण का कारण बनती है। [[जीवाणु]]ओं में, इलेक्ट्रॉन परिवहन श्रृंखला प्रजातियों के बीच भिन्न हो सकती है लेकिन यह हमेशा रेडॉक्स प्रतिक्रियाओं का एक सेट बनाती है जो एटीपी के संश्लेषण के लिए एटीपी सिंथेस के माध्यम से एक विद्युत रासायनिक ढाल और ऑक्सीडेटिव फास्फारिलीकरण के माध्यम से युग्मित होती है।

Revision as of 11:54, 30 July 2023

माइटोकांड्रिया में इलेक्ट्रॉन परिवहन श्रृंखला यूकेरियोट्स में ऑक्सीडेटिव फॉस्फोराइलेशन की साइट है। यह साइट्रिक एसिड चक्र में उत्पन्न एनएडीएच या स्यूसिनिक एसिड और ऑक्सीजन के बीच एटीपी सिंथेज़ को शक्ति प्रदान करने के लिए प्रतिक्रिया में मध्यस्थता करता है।

एक इलेक्ट्रॉन परिवहन श्रृंखला (ईटीसी[1]) प्रोटीन कॉम्प्लेक्स और अन्य अणुओं की एक श्रृंखला है जो रिडॉक्स प्रतिक्रियाओं (एक साथ होने वाली कमी और ऑक्सीकरण दोनों) के माध्यम से इलेक्ट्रॉन दाताओं से इलेक्ट्रॉन स्वीकर्ता तक इलेक्ट्रॉनों को स्थानांतरित करती है और इस इलेक्ट्रॉन स्थानांतरण को प्रोटॉन के हस्तांतरण के साथ जोड़ती है ( H+ आयन) एक जैविक झिल्ली के पार। एनएडीएच और एफएडीएच2 से ईटीसी में स्थानांतरित होने वाले इलेक्ट्रॉनों में चार मल्टी-सबयूनिट बड़े एंजाइम कॉम्प्लेक्स और दो मोबाइल इलेक्ट्रॉन वाहक शामिल होते हैं। इलेक्ट्रॉन परिवहन श्रृंखला में कई एंजाइम झिल्ली-बद्ध होते हैं।

इलेक्ट्रॉन परिवहन श्रृंखला के माध्यम से इलेक्ट्रॉनों का प्रवाह एक बाह्य प्रक्रिया है। रेडॉक्स प्रतिक्रियाओं से ऊर्जा एक विद्युत रासायनिक ढाल बनाती है जो एडेनोसाइन ट्रायफ़ोस्फेट (एटीपी) के संश्लेषण को संचालित करती है। एरोबिक श्वसन में, इलेक्ट्रॉनों का प्रवाह अंतिम इलेक्ट्रॉन स्वीकर्ता के रूप में आणविक ऑक्सीजन के साथ समाप्त होता है। अवायवीय श्वसन में, अन्य इलेक्ट्रॉन स्वीकर्ता का उपयोग किया जाता है, जैसे सल्फेट


एक इलेक्ट्रॉन परिवहन श्रृंखला में, रेडॉक्स प्रतिक्रियाएं अभिकारकों और उत्पादों की गिब्स मुक्त ऊर्जा में अंतर से संचालित होती हैं। जब एक उच्च-ऊर्जा इलेक्ट्रॉन दाता और स्वीकर्ता निम्न-ऊर्जा उत्पादों में परिवर्तित हो जाते हैं, जबकि इलेक्ट्रॉनों को निम्न से उच्च रेडॉक्स क्षमता में स्थानांतरित किया जाता है, तो मुक्त ऊर्जा का उपयोग इलेक्ट्रॉन परिवहन श्रृंखला में कॉम्प्लेक्स द्वारा आयनों की विद्युत रासायनिक ढाल बनाने के लिए किया जाता है। यह विद्युत रासायनिक प्रवणता है जो एटीपी सिंथेज़ के साथ ऑक्सीडेटिव फास्फारिलीकरण के साथ युग्मन के माध्यम से एटीपी के संश्लेषण को संचालित करती है। <रेफरी नाम = अनारकु 101-132>अनराकु वाई (June 1988). "बैक्टीरियल इलेक्ट्रॉन परिवहन श्रृंखला". जैव रसायन की वार्षिक समीक्षा. 57 (1): 101–32. doi:10.1146/annurev.bi.57.070188.000533. PMID 3052268. {{cite journal}}: Vancouver style error: name in name 1 (help)</ref>


क इलेक्ट्रॉन परिवहन श्रृंखला में, रिडॉक्स प्रतिक्रियाएं अभिकारकों और उत्पादों की गिब्स मुक्त ऊर्जा में अंतर से संचालित होती हैं। जब एक उच्च-ऊर्जा इलेक्ट्रॉन दाता और स्वीकर्ता निम्न-ऊर्जा उत्पादों में परिवर्तित होते हैं, जबकि इलेक्ट्रॉनों को एक निम्न से उच्च रेडॉक्स क्षमता में स्थानांतरित किया जाता है, तो मुक्त ऊर्जा का उपयोग इलेक्ट्रॉन परिवहन श्रृंखला में परिसरों द्वारा आयनों के विद्युत रासायनिक ढाल बनाने के लिए किया जाता है। . यह विद्युत रासायनिक ढाल है जो एटीपी सिंथेस के साथ ऑक्सीडेटिव फास्फारिलीकरण के साथ युग्मन के माध्यम से एटीपी के संश्लेषण को संचालित करता है। <रेफरी नाम = अनारकु 101-132>Anraku Y (June 1988). "बैक्टीरियल इलेक्ट्रॉन परिवहन श्रृंखला". Annual Review of Biochemistry. 57 (1): 101–32. doi:10.1146/annurev.bi.57.070188.000533. PMID 3052268.</ref>

यूकैर्योसाइटों में इलेक्ट्रॉन परिवहन श्रृंखला, और ऑक्सीडेटिव फास्फारिलीकरण की साइट, आंतरिक माइटोकॉन्ड्रियल झिल्ली पर पाई जाती है। ऑक्सीजन और कम यौगिकों जैसे साइटोक्रोम सी और (अप्रत्यक्ष रूप से) एनएडीएच और एफएडीएच2 की प्रतिक्रियाओं द्वारा जारी ऊर्जा का उपयोग इलेक्ट्रॉन ट्रांसपोर्ट चेन द्वारा इनतेरमेम्ब्रेन स्पेस में प्रोटॉन पंप करने के लिए किया जाता है, जिससे आंतरिक माइटोकॉन्ड्रियल झिल्ली पर विद्युत रासायनिक ढाल उत्पन्न होती है। प्रकाश संश्लेषक यूकेरियोट्स में, थायलाकोइड झिल्ली पर इलेक्ट्रॉन परिवहन श्रृंखला पाई जाती है। यहाँ, प्रकाश ऊर्जा एक प्रोटॉन पंप के माध्यम से इलेक्ट्रॉन परिवहन को चलाती है और परिणामस्वरूप प्रोटॉन प्रवणता एटीपी के बाद के संश्लेषण का कारण बनती है। जीवाणुओं में, इलेक्ट्रॉन परिवहन श्रृंखला प्रजातियों के बीच भिन्न हो सकती है लेकिन यह हमेशा रेडॉक्स प्रतिक्रियाओं का एक सेट बनाती है जो एटीपी के संश्लेषण के लिए एटीपी सिंथेस के माध्यम से एक विद्युत रासायनिक ढाल और ऑक्सीडेटिव फास्फारिलीकरण के माध्यम से युग्मित होती है। रेफरी>Kracke F, Vassilev I, Krömer JO (2015). "माइक्रोबियल इलेक्ट्रॉन परिवहन और ऊर्जा संरक्षण - बायोइलेक्ट्रॉनिक सिस्टम के अनुकूलन की नींव". Frontiers in Microbiology (in English). 6: 575. doi:10.3389/fmicb.2015.00575. PMC 4463002. PMID 26124754.</ref>

माइटोकॉन्ड्रियल इलेक्ट्रॉन परिवहन श्रृंखला

अधिकांश यूकेरियोटिक कोशिकाओं में माइटोकॉन्ड्रिया होता है, जो साइट्रिक एसिड चक्र, फैटी एसिड चयापचय और अमीनो एसिड चयापचय के उत्पादों के साथ ऑक्सीजन की प्रतिक्रियाओं से एटीपी का उत्पादन करता है। आंतरिक माइटोकॉन्ड्रियल झिल्ली पर, एनएडीएच और एफएडीएच2|एफएडीएच से इलेक्ट्रॉन2 इलेक्ट्रॉन ट्रांसपोर्ट चेन से होकर ऑक्सीजन तक जाते हैं, जो प्रक्रिया को चलाने वाली ऊर्जा प्रदान करता है क्योंकि यह पानी में कम हो जाती है।[2] इलेक्ट्रॉन परिवहन श्रृंखला में इलेक्ट्रॉन दाताओं और स्वीकारकर्ताओं की एक एंजाइमी श्रृंखला शामिल होती है। प्रत्येक इलेक्ट्रॉन दाता इलेक्ट्रॉनों को उच्च रेडॉक्स क्षमता के एक इलेक्ट्रॉन स्वीकर्ता को पास करेगा, जो बदले में इन इलेक्ट्रॉनों को दूसरे स्वीकर्ता को दान करता है, एक प्रक्रिया जो श्रृंखला में तब तक जारी रहती है जब तक कि इलेक्ट्रॉनों को ऑक्सीजन में पारित नहीं किया जाता है, श्रृंखला में टर्मिनल इलेक्ट्रॉन स्वीकर्ता। प्रत्येक प्रतिक्रिया ऊर्जा जारी करती है क्योंकि एक उच्च-ऊर्जा दाता और स्वीकर्ता निम्न-ऊर्जा उत्पादों में परिवर्तित हो जाते हैं। स्थानांतरित इलेक्ट्रॉनों के माध्यम से, इस ऊर्जा का उपयोग प्रोटॉन पंप द्वारा माइटोकॉन्ड्रियल झिल्ली में प्रोटॉन ढाल उत्पन्न करने के लिए किया जाता है इंटरमेम्ब्रेन स्पेस में प्रोटॉन को पंप करना, उच्च मुक्त ऊर्जा की स्थिति का निर्माण करना जिसमें कार्य करने की क्षमता हो। इस पूरी प्रक्रिया को ऑक्सीडेटिव फॉस्फोराइलेशन कहा जाता है क्योंकि एडीपी को इलेक्ट्रोकेमिकल ग्रेडिएंट का उपयोग करके एटीपी में फॉस्फोराइलेट किया जाता है जो कि इलेक्ट्रॉन परिवहन श्रृंखला की रेडॉक्स प्रतिक्रियाओं ने ऑक्सीजन की ऊर्जा-विमोचन प्रतिक्रियाओं द्वारा संचालित किया है।

माइटोकॉन्ड्रियल रेडॉक्स वाहक

इलेक्ट्रॉन परिवहन श्रृंखला के नीचे इलेक्ट्रॉनों के हस्तांतरण से जुड़ी ऊर्जा का उपयोग माइटोकॉन्ड्रियल मैट्रिक्स से प्रोटॉन को इंटरमेम्ब्रेन स्पेस में पंप करने के लिए किया जाता है, जिससे आंतरिक माइटोकॉन्ड्रियल झिल्ली में एक इलेक्ट्रोकेमिकल प्रोटॉन ग्रेडिएंट (ऑक्सीडेटिव फॉस्फोरिलेशन#केमियोस्मोसिस|ΔpH) बनता है। यह प्रोटॉन प्रवणता काफी हद तक माइटोकॉन्ड्रियल झिल्ली क्षमता (ΔΨM).[3] यह एटीपी सिंथेज़ को एच के प्रवाह का उपयोग करने की अनुमति देता है+ एडेनोसिन डिपोस्फेट (एडीपी) और अकार्बनिक फॉस्फेट से एटीपी उत्पन्न करने के लिए मैट्रिक्स में वापस एंजाइम के माध्यम से। कॉम्प्लेक्स I (NADH कोएंजाइम Q रिडक्टेस; लेबल I) क्रेब्स चक्र इलेक्ट्रॉन वाहक निकोटिनामाइड एडेनाइन डाईन्यूक्लियोटाइड | निकोटिनामाइड एडेनिन डाइन्यूक्लियोटाइड (एनएडीएच) से इलेक्ट्रॉनों को स्वीकार करता है, और उन्हें कोएंजाइम क्यू (यूबिकिनोन; लेबल क्यू) में भेजता है, जो कॉम्प्लेक्स II से भी इलेक्ट्रॉन प्राप्त करता है। (सक्सिनेट डिहाइड्रोजनेज; लेबल II)। Q इलेक्ट्रॉनों को कॉम्प्लेक्स III (साइटोक्रोम बीसी1 कॉम्प्लेक्स|साइटोक्रोम बीसी1 जटिल; लेबल III), जो उन्हें साइटोक्रोम c (cyt c) में भेजता है। Cyt c इलेक्ट्रॉनों को कॉम्प्लेक्स IV (साइटोक्रोम c ऑक्सीडेज; लेबल IV) में भेजता है।

माइटोकॉन्ड्रिया में चार झिल्ली-बद्ध परिसरों की पहचान की गई है। प्रत्येक एक अत्यंत जटिल ट्रांसमेम्ब्रेन संरचना है जो आंतरिक झिल्ली में सन्निहित है। उनमें से तीन प्रोटॉन पंप हैं। संरचनाएं विद्युत रूप से लिपिड-घुलनशील इलेक्ट्रॉन वाहक और पानी घुलनशील इलेक्ट्रॉन वाहक से जुड़ी होती हैं। समग्र इलेक्ट्रॉन परिवहन श्रृंखला को निम्नानुसार संक्षेपित किया जा सकता है:

'नाध+ह+जटिल मैं → क्यू
  
            ↑
    जटिल द्वितीयसक्सेनेटकॉम्प्लेक्स III → साइटोक्रोम सीकॉम्प्लेक्स IV → एच{{sub|2}ओ
                       ↑
                   जटिल द्वितीयसक्सिनेट

जटिल मैं

श्वसन परिसर I (NADH ubiquinone oxidoreductase, टाइप I NADH डिहाइड्रोजनेज, या माइटोकॉन्ड्रियल कॉम्प्लेक्स I; EC 1.6.5.3), NADH से दो इलेक्ट्रॉनों को हटा दिया जाता है और एक लिपिड-घुलनशील वाहक, ubiquinone (Q) में स्थानांतरित कर दिया जाता है। घटा हुआ उत्पाद, यूबिकिनोल (QH2), स्वतंत्र रूप से झिल्ली के भीतर फैलता है, और कॉम्प्लेक्स I चार प्रोटॉन (एच+) झिल्ली के आर-पार, इस प्रकार एक प्रोटॉन प्रवणता उत्पन्न करता है। कॉम्प्लेक्स I उन मुख्य साइटों में से एक है जहां समय से पहले ऑक्सीजन का इलेक्ट्रॉन रिसाव होता है, इस प्रकार यह सुपरऑक्साइड के उत्पादन के मुख्य स्थलों में से एक है।[4] इलेक्ट्रॉनों का मार्ग इस प्रकार है:

NADH को NAD में ऑक्सीकृत किया जाता है+, FMNH में फ्लेविन मोनोन्यूक्लियोटाइड को कम करके2 एक दो-इलेक्ट्रॉन चरण में। एफएमएनएच2 फिर एक यूबिकिनोन#रासायनिक गुण मध्यवर्ती के माध्यम से दो एक-इलेक्ट्रॉन चरणों में ऑक्सीकृत होता है। प्रत्येक इलेक्ट्रॉन इस प्रकार FMNH से स्थानांतरित होता है2 आयरन-सल्फर क्लस्टर | Fe-S क्लस्टर, Fe-S क्लस्टर से ubiquinone (Q) तक। पहले इलेक्ट्रॉन के स्थानांतरण के परिणामस्वरूप Q का फ्री-रेडिकल (यूबिकिनोन#रासायनिक गुण) रूप बनता है, और दूसरे इलेक्ट्रॉन के स्थानांतरण से सेमीक्विनोन फॉर्म को ubiquinol फॉर्म, QH में कम कर देता है2. इस प्रक्रिया के दौरान, माइटोकॉन्ड्रियल मैट्रिक्स से इंटरमेम्ब्रेन स्पेस में चार प्रोटॉन का अनुवाद किया जाता है।[5] जैसे ही इलेक्ट्रॉन कॉम्प्लेक्स के माध्यम से चलते हैं, झिल्ली के भीतर कॉम्प्लेक्स की 180 एंगस्ट्रॉम चौड़ाई के साथ एक इलेक्ट्रॉन करंट उत्पन्न होता है। यह वर्तमान एनएडीएच से प्रति दो इलेक्ट्रॉनों के इंटरमेम्ब्रेन स्पेस में चार प्रोटॉन के सक्रिय परिवहन को शक्ति प्रदान करता है।[6]


कॉम्प्लेक्स II

श्वसन परिसर II में (सक्सिनेट डिहाइड्रोजनेज या सक्सिनेट-CoQ रिडक्टेस; EC 1.3.5.1) अतिरिक्त इलेक्ट्रॉनों को क्विनोन पूल (Q) में पहुंचाया जाता है, जो सक्सिनेट से उत्पन्न होता है और (फ्लेविन एडेनिन डायन्यूक्लियोटाइड | फ्लेविन एडिनाइन डाइन्यूक्लियोटाइड (एफएडी)) से क्यू तक स्थानांतरित होता है। कॉम्प्लेक्स II में चार प्रोटीन सबयूनिट्स होते हैं: सक्सिनेट डिहाइड्रोजनेज (एसडीएचए); सक्सिनेट डिहाइड्रोजनेज [यूबिकिनोन] आयरन-सल्फर सबयूनिट माइटोकॉन्ड्रियल (एसडीएचबी); सक्सिनेट डिहाइड्रोजनेज कॉम्प्लेक्स सबयूनिट सी (एसडीएचसी) और सक्सिनेट डिहाइड्रोजनेज कॉम्प्लेक्स सबयूनिट डी (एसडीएचडी)। अन्य इलेक्ट्रॉन दाता (जैसे, फैटी एसिड और ग्लिसरॉल 3-फॉस्फेट) भी इलेक्ट्रॉनों को क्यू (एफएडी के माध्यम से) में निर्देशित करते हैं। कॉम्प्लेक्स II जटिल 1 के लिए एक समानांतर इलेक्ट्रॉन परिवहन मार्ग है, लेकिन कॉम्प्लेक्स I के विपरीत, कोई भी प्रोटॉन इस मार्ग में इंटरमेम्ब्रेन स्पेस में नहीं ले जाया जाता है। इसलिए, कॉम्प्लेक्स II के माध्यम से मार्ग समग्र इलेक्ट्रॉन परिवहन श्रृंखला प्रक्रिया में कम ऊर्जा का योगदान देता है।

कॉम्प्लेक्स III

कॉम्प्लेक्स III में (साइटोक्रोम बीसी1 कॉम्प्लेक्स|साइटोक्रोम बीसी1जटिल या CoQH2-साइटोक्रोम सी रिडक्टेस; EC 1.10.2.2), क्यू चक्र | क्यू-चक्र प्रोटॉन के एक असममित अवशोषण / रिलीज द्वारा प्रोटॉन ग्रेडिएंट में योगदान देता है। QH से दो इलेक्ट्रॉन निकाले जाते हैं{{sub|2}क्यू परO साइट और क्रमिक रूप से साइटोक्रोम सी के दो अणुओं में स्थानांतरित किया जाता है, जो एक पानी में घुलनशील इलेक्ट्रॉन वाहक है जो इंटरमैंब्रेनर स्पेस के भीतर स्थित होता है। दो अन्य इलेक्ट्रॉन क्रमिक रूप से प्रोटीन से Q तक जाते हैंi साइट जहां यूबिकिनोन का क्विनोन हिस्सा क्विनोल में कम हो जाता है। एक क्विनोल द्वारा एक प्रोटॉन ग्रेडिएंट बनता है () क्यू पर ऑक्सीकरणo साइट एक क्विनोन बनाने के लिए () Q परi साइट। (कुल मिलाकर, चार प्रोटॉन स्थानांतरित होते हैं: दो प्रोटॉन क्विनोन को क्विनोल में कम करते हैं और दो प्रोटॉन दो यूबिकिनोल अणुओं से मुक्त होते हैं।)

जब इलेक्ट्रॉन स्थानांतरण कम हो जाता है (एक उच्च झिल्ली क्षमता या श्वसन अवरोधक जैसे एंटीमाइसीन ए), कॉम्प्लेक्स III आणविक ऑक्सीजन में इलेक्ट्रॉनों को रिसाव कर सकता है, जिसके परिणामस्वरूप सुपरऑक्साइड गठन होता है।

यह कॉम्प्लेक्स Dimercaprol (ब्रिटिश एंटीलेविसाइट, बीएएल), नैप्थोक्विनोन और एंटीमाइसिन द्वारा बाधित है।

कॉम्प्लेक्स चतुर्थ

कॉम्प्लेक्स IV में (साइटोक्रोम सी ऑक्सीडेज; EC 1.9.3.1), जिसे कभी-कभी साइटोक्रोम AA3 कहा जाता है, चार इलेक्ट्रॉनों को साइटोक्रोम c के चार अणुओं से निकाल दिया जाता है और आणविक ऑक्सीजन (O) में स्थानांतरित कर दिया जाता है।2) और चार प्रोटॉन, पानी के दो अणु पैदा करते हैं। परिसर में समन्वित तांबे के आयन और कई हीम समूह होते हैं। उसी समय, माइटोकॉन्ड्रियल मैट्रिक्स से आठ प्रोटॉन हटा दिए जाते हैं (हालांकि झिल्ली में केवल चार का अनुवाद किया जाता है), प्रोटॉन ग्रेडिएंट में योगदान करते हैं। कॉम्प्लेक्स IV में प्रोटॉन पम्पिंग का सटीक विवरण अभी भी अध्ययन के अधीन है।[7] साइनाइड कॉम्प्लेक्स IV का अवरोधक है।

=== ऑक्सीडेटिव फास्फारिलीकरण === के साथ युग्मन

एटीपी सिंथेज़ का चित्रण, एटीपी उत्पन्न करने के लिए ऑक्सीडेटिव फास्फारिलीकरण की साइट।

रसायनपरासरण के अनुसार, रसायन विज्ञान विजेता पीटर डी. मिशेल में नोबेल पुरस्कार द्वारा प्रस्तावित, इलेक्ट्रॉन परिवहन श्रृंखला और ऑक्सीडेटिव फास्फारिलीकरण आंतरिक माइटोकॉन्ड्रियल झिल्ली में एक प्रोटॉन ढाल द्वारा युग्मित हैं। माइटोकॉन्ड्रियल मैट्रिक्स से प्रोटॉन का प्रवाह एक इलेक्ट्रोकेमिकल ग्रेडिएंट (प्रोटॉन ग्रेडिएंट) बनाता है। इस ग्रेडिएंट का उपयोग F द्वारा किया जाता हैOएफ1 एटीपी सिंथेज़ कॉम्प्लेक्स ऑक्सीडेटिव फास्फारिलीकरण के माध्यम से एटीपी बनाने के लिए। एटीपी सिंथेज़ को कभी-कभी इलेक्ट्रॉन ट्रांसपोर्ट चेन के कॉम्प्लेक्स वी के रूप में वर्णित किया जाता है।[8] एफ{{sub|O}एटीपी सिंथेज़ का घटक आयन चैनल के रूप में कार्य करता है जो माइटोकॉन्ड्रियल मैट्रिक्स में एक प्रोटॉन प्रवाह वापस प्रदान करता है। यह ए, बी और सी सबयूनिट्स से बना है। माइटोकॉन्ड्रिया के अंतर-झिल्ली स्थान में प्रोटॉन पहले एक सबयूनिट चैनल के माध्यम से एटीपी सिंथेज़ कॉम्प्लेक्स में प्रवेश करते हैं। फिर प्रोटॉन सी उपइकाइयों में चले जाते हैं।[9] सी उपइकाइयों की संख्या निर्धारित करती है कि एफ बनाने के लिए कितने प्रोटॉन की आवश्यकता होती हैO एक पूर्ण क्रांति करें। उदाहरण के लिए, मनुष्यों में 8 c सबयूनिट होते हैं, इसलिए 8 प्रोटॉन की आवश्यकता होती है।[10] सी सबयूनिट्स के बाद, प्रोटॉन अंत में एक सबयूनिट चैनल के माध्यम से मैट्रिक्स में प्रवेश करते हैं जो माइटोकॉन्ड्रियल मैट्रिक्स में खुलता है।[9]यह भाटा इलेक्ट्रॉन वाहकों (NAD) के ऑक्सीकृत रूपों के निर्माण के दौरान उत्पादित गिब की मुक्त ऊर्जा को मुक्त करता है।+ और Q) O द्वारा प्रदान की गई ऊर्जा के साथ2. मुक्त ऊर्जा का उपयोग एफ द्वारा उत्प्रेरित एटीपी संश्लेषण को चलाने के लिए किया जाता है1 परिसर का घटक।[11]


एटीपी उत्पादन के लिए ऑक्सीडेटिव फास्फारिलीकरण के साथ युग्मन एक महत्वपूर्ण कदम है। हालाँकि, विशिष्ट मामलों में, दो प्रक्रियाओं को खोलना जैविक रूप से उपयोगी हो सकता है। भूरा वसा ऊतक के आंतरिक माइटोकॉन्ड्रियल झिल्ली में मौजूद अनकप्लिंग प्रोटीन, थर्मोजेनिन- प्रोटॉन के वैकल्पिक प्रवाह को आंतरिक माइटोकॉन्ड्रियल मैट्रिक्स में वापस प्रदान करता है। थाइरॉक्सिन भी एक प्राकृतिक अनयुग्मक है। इस वैकल्पिक प्रवाह के परिणामस्वरूप एटीपी उत्पादन के बजाय thermogenesis होता है।[12]


रिवर्स इलेक्ट्रॉन प्रवाह

रिवर्स इलेक्ट्रॉन प्रवाह रिवर्स रेडॉक्स प्रतिक्रियाओं के माध्यम से इलेक्ट्रॉन परिवहन श्रृंखला के माध्यम से इलेक्ट्रॉनों का स्थानांतरण है। आमतौर पर ऊर्जा की एक महत्वपूर्ण मात्रा का उपयोग करने की आवश्यकता होती है, यह इलेक्ट्रॉन दाताओं के ऑक्सीकृत रूपों को कम कर सकता है। उदाहरण के लिए, एनएडी+ को कॉम्प्लेक्स I द्वारा NADH में घटाया जा सकता है।[13] रिवर्स इलेक्ट्रॉन प्रवाह को प्रेरित करने के लिए कई कारक दिखाए गए हैं। हालांकि, इसकी पुष्टि के लिए और काम किए जाने की जरूरत है। एक उदाहरण एटीपी सिंथेज़ की रुकावट है, जिसके परिणामस्वरूप प्रोटॉन का निर्माण होता है और इसलिए एक उच्च प्रोटॉन-प्रेरक बल होता है, जो रिवर्स इलेक्ट्रॉन प्रवाह को प्रेरित करता है।[14]


बैक्टीरियल इलेक्ट्रॉन ट्रांसपोर्ट चेन

यूकेरियोट्स में, एनएडीएच सबसे महत्वपूर्ण इलेक्ट्रॉन दाता है। संबद्ध इलेक्ट्रॉन परिवहन श्रृंखला NADH → कॉम्प्लेक्स I → Q → कॉम्प्लेक्स III → साइटोक्रोम cकॉम्प्लेक्स IV → O है2 जहां कॉम्प्लेक्स I, III और IV प्रोटॉन पंप हैं, जबकि Q और साइटोक्रोम c मोबाइल इलेक्ट्रॉन वाहक हैं। इस प्रक्रिया के लिए इलेक्ट्रॉन स्वीकर्ता आणविक ऑक्सीजन है।

प्रोकैर्योसाइटों (बैक्टीरिया और आर्किया) में स्थिति अधिक जटिल है, क्योंकि कई अलग-अलग इलेक्ट्रॉन दाता और कई अलग-अलग इलेक्ट्रॉन स्वीकारकर्ता हैं। बैक्टीरिया में सामान्यीकृत इलेक्ट्रॉन परिवहन श्रृंखला है:

                     दाता दाता दाता
                       ↓ ↓ ↓
                 डिहाइड्रोजनेज → क्विनोन → बीसी1 ' → 'साइटोक्रोम'
                                        ↓ ↓
                                'ऑक्सीडेज (रिडक्टेज)' 'ऑक्सीडेज (रिडक्टेज)'
                                        ↓ ↓
                                     'स्वीकारकर्ता' 'स्वीकारकर्ता'

इलेक्ट्रॉन तीन स्तरों पर श्रृंखला में प्रवेश कर सकते हैं: डिहाइड्रोजनेज के स्तर पर, क्विनोन पूल के स्तर पर, या एक मोबाइल साइटोक्रोम इलेक्ट्रॉन वाहक के स्तर पर। ये स्तर क्रमिक रूप से अधिक सकारात्मक रेडॉक्स क्षमता के अनुरूप हैं, या टर्मिनल इलेक्ट्रॉन स्वीकर्ता के सापेक्ष क्रमिक रूप से कम संभावित अंतर हैं। दूसरे शब्दों में, वे समग्र रेडॉक्स प्रतिक्रिया के लिए क्रमिक रूप से छोटे गिब्स मुक्त ऊर्जा परिवर्तनों के अनुरूप हैं।

अलग-अलग बैक्टीरिया अक्सर एक साथ कई इलेक्ट्रॉन परिवहन श्रृंखलाओं का उपयोग करते हैं। बैक्टीरिया कई अलग-अलग इलेक्ट्रॉन दाताओं, कई अलग-अलग डिहाइड्रोजनेज, कई अलग-अलग ऑक्सीडेज और रिडक्टेस और कई अलग-अलग इलेक्ट्रॉन स्वीकर्ता का उपयोग कर सकते हैं। उदाहरण के लिए, ई. कोलाई (ऊर्जा स्रोत के रूप में ग्लूकोज और ऑक्सीजन का उपयोग करके एरोबिक रूप से बढ़ रहा है) दो अलग-अलग एनएडीएच डिहाइड्रोजनेज और दो अलग-अलग क्विनोल ऑक्सीडेज का उपयोग करता है, कुल चार अलग-अलग इलेक्ट्रॉन ट्रांसपोर्ट चेन एक साथ काम कर रहे हैं।

सभी इलेक्ट्रॉन परिवहन श्रृंखलाओं की एक सामान्य विशेषता एक झिल्ली पर विद्युत रासायनिक ढाल बनाने के लिए एक प्रोटॉन पंप की उपस्थिति है। बैक्टीरियल इलेक्ट्रॉन ट्रांसपोर्ट चेन में माइटोकॉन्ड्रिया जैसे तीन प्रोटॉन पंप हो सकते हैं, या उनमें दो या कम से कम एक हो सकता है।

इलेक्ट्रॉन दाता

वर्तमान जीवमंडल में, सबसे आम इलेक्ट्रॉन दाता कार्बनिक अणु हैं। जीव जो एक इलेक्ट्रॉन स्रोत के रूप में कार्बनिक अणुओं का उपयोग करते हैं, उन्हें ऑर्गोट्रोफ़्स कहा जाता है। केमोरोगोनोट्रॉफ़्स (जानवरों, कवक, प्रोटिस्ट) और phototrophs (पौधे और शैवाल) सभी परिचित जीवन रूपों के विशाल बहुमत का गठन करते हैं।

कुछ प्रोकैरियोट्स अकार्बनिक पदार्थ को इलेक्ट्रॉन स्रोत के रूप में उपयोग कर सकते हैं। इस तरह के जीव को लिथोट्रॉफ़ कहा जाता है|(केमो) लिथोट्रोफ़ (रॉक-ईटर)। अकार्बनिक इलेक्ट्रॉन दाताओं में हाइड्रोजन, कार्बन मोनोऑक्साइड, अमोनिया, नाइट्राइट, सल्फर, सल्फाइड, मैंगनीज ऑक्साइड और फेरस आयरन शामिल हैं। पृथ्वी की सतह से हजारों मीटर नीचे रॉक संरचनाओं में लिथोट्रॉफ़ बढ़ते पाए गए हैं। उनके वितरण की मात्रा के कारण, लिथोट्रॉफ़ वास्तव में हमारे जीवमंडल में ऑर्गनोट्रॉफ़ ़ और फोटोट्रॉफ़ से अधिक हो सकते हैं।

मेथनोजेनेसिस जैसे अकार्बनिक इलेक्ट्रॉन दाताओं का उपयोग विकास के अध्ययन में विशेष रुचि रखता है। इस प्रकार के चयापचय को तार्किक रूप से ऊर्जा स्रोत के रूप में कार्बनिक अणुओं और ऑक्सीजन के उपयोग से पहले होना चाहिए।

कॉम्प्लेक्स I और II

बैक्टीरिया कई अलग-अलग इलेक्ट्रॉन दाताओं का उपयोग कर सकते हैं। जब कार्बनिक पदार्थ इलेक्ट्रॉन स्रोत होता है, तो दाता एनएडीएच या उत्तराधिकारी हो सकता है, इस मामले में इलेक्ट्रॉन एनएडीएच डिहाइड्रोजनेज (माइटोकॉन्ड्रिया में कॉम्प्लेक्स I के समान) या सक्सेनेट डिहाइड्रोजनेज (कॉम्प्लेक्स II के समान) के माध्यम से इलेक्ट्रॉन परिवहन श्रृंखला में प्रवेश करते हैं। अन्य डिहाइड्रोजनेज का उपयोग विभिन्न ऊर्जा स्रोतों को संसाधित करने के लिए किया जा सकता है: फॉर्मेट डिहाइड्रोजनेज, लैक्टेट डिहाइड्रोजनेज, ग्लिसराल्डिहाइड-3-फॉस्फेट डिहाइड्रोजनेज, एच2 डिहाइड्रोजनेस (हाइड्रोजनेज), इलेक्ट्रॉन परिवहन श्रृंखला। कुछ डिहाइड्रोजनेज प्रोटॉन पंप भी होते हैं, जबकि अन्य क्विनोन पूल में इलेक्ट्रॉनों को फ़नल करते हैं। अधिकांश डिहाइड्रोजनेज जीवाणु कोशिका में प्रेरित अभिव्यक्ति दिखाते हैं, जो उस वातावरण से उपापचयी जरूरतों के जवाब में होता है जिसमें कोशिकाएं बढ़ती हैं। ई. कोलाई में लैक्टेट डिहाइड्रोजनेज के मामले में, एंजाइम का उपयोग एरोबिक रूप से और अन्य डिहाइड्रोजनेज के साथ संयोजन में किया जाता है। यह inducible है और सेल में डीएल-लैक्टेट की एकाग्रता अधिक होने पर व्यक्त किया जाता है।[citation needed]

क्विनोन वाहक

क्विनोन मोबाइल, लिपिड-घुलनशील वाहक हैं जो झिल्ली में एम्बेडेड बड़े, अपेक्षाकृत स्थिर मैक्रोमोलेक्यूलर कॉम्प्लेक्स के बीच शटल इलेक्ट्रॉन (और प्रोटॉन) हैं। बैक्टीरिया ubiquinone (कोएंजाइम क्यू, वही क्विनोन जो माइटोकॉन्ड्रिया उपयोग करते हैं) और संबंधित क्विनोन जैसे मेनाक्विनोन (विटामिन के) का उपयोग करते हैं2). जीनस सल्फोलोबस में आर्किया कैल्डारीलाक्विनोन का उपयोग करते हैं।[15] विभिन्न क्विनोन का उपयोग संरचना में परिवर्तन के कारण होने वाले रेडॉक्स क्षमता में मामूली बदलाव के कारण होता है। इन क्विनोनों की रेडॉक्स क्षमता में परिवर्तन इलेक्ट्रॉन स्वीकर्ता में परिवर्तन या जीवाणु परिसरों में रेडॉक्स क्षमता के बदलाव के अनुकूल हो सकता है।[16]


प्रोटॉन पंप

एक प्रोटॉन पंप कोई भी प्रक्रिया है जो एक झिल्ली में एक प्रोटॉन ढाल बनाता है। प्रोटॉन भौतिक रूप से एक झिल्ली के आर-पार ले जाए जा सकते हैं, जैसा कि माइटोकॉन्ड्रियल कॉम्प्लेक्स I और IV में देखा गया है। इलेक्ट्रॉनों को विपरीत दिशा में ले जाकर समान प्रभाव उत्पन्न किया जा सकता है। परिणाम साइटोप्लाज्म से एक प्रोटॉन का गायब होना और पेरिप्लासम में एक प्रोटॉन का दिखना है। माइटोकॉन्ड्रियल कॉम्प्लेक्स III इस दूसरे प्रकार के प्रोटॉन पंप का उपयोग करता है, जिसकी मध्यस्थता एक क्विनोन (क्यू चक्र) द्वारा की जाती है।

कुछ डिहाइड्रोजनेज प्रोटॉन पंप हैं, जबकि अन्य नहीं हैं। अधिकांश ऑक्सीडेज और रिडक्टेस प्रोटॉन पंप हैं, लेकिन कुछ नहीं हैं। साइटोक्रोम ई.पू1एक प्रोटॉन पंप है जो बहुत से बैक्टीरिया में पाया जाता है, लेकिन सभी बैक्टीरिया में नहीं (ई. कोलाई में नहीं)। जैसा कि नाम से ही स्पष्ट है, जीवाणु ई.पू1माइटोकॉन्ड्रियल बीसी के समान है1(कॉम्प्लेक्स III)।

साइटोक्रोमेस इलेक्ट्रॉन वाहक

साइटोक्रोम प्रोटीन होते हैं जिनमें लोहा होता है। वे दो बहुत अलग वातावरण में पाए जाते हैं।

कुछ साइटोक्रोम पानी में घुलनशील वाहक होते हैं जो झिल्ली में एम्बेडेड बड़े, स्थिर मैक्रोमोलेक्यूलर संरचनाओं से इलेक्ट्रॉनों को शटल करते हैं। माइटोकॉन्ड्रिया में मोबाइल साइटोक्रोम इलेक्ट्रॉन वाहक साइटोक्रोम सी है। बैक्टीरिया कई अलग-अलग मोबाइल साइटोक्रोम इलेक्ट्रॉन वाहकों का उपयोग करते हैं।

अन्य साइटोक्रोम मैक्रोमोलेक्यूल्स जैसे कॉम्प्लेक्स III और कॉम्प्लेक्स IV में पाए जाते हैं। वे इलेक्ट्रॉन वाहक के रूप में भी कार्य करते हैं, लेकिन एक बहुत ही अलग, इंट्रामोल्युलर, ठोस-अवस्था वाले वातावरण में।

इलेक्ट्रॉन एक मोबाइल साइटोक्रोम या क्विनोन वाहक के स्तर पर एक इलेक्ट्रॉन परिवहन श्रृंखला में प्रवेश कर सकते हैं। उदाहरण के लिए, अकार्बनिक इलेक्ट्रॉन दाताओं (नाइट्राइट, लौह लोहा, इलेक्ट्रॉन परिवहन श्रृंखला) से इलेक्ट्रॉन साइटोक्रोम स्तर पर इलेक्ट्रॉन परिवहन श्रृंखला में प्रवेश करते हैं। जब इलेक्ट्रॉन एनएडीएच से अधिक रेडॉक्स स्तर पर प्रवेश करते हैं, तो इलेक्ट्रॉन परिवहन श्रृंखला को इस आवश्यक, उच्च-ऊर्जा अणु का उत्पादन करने के लिए रिवर्स में काम करना चाहिए।

टर्मिनल ऑक्सीडेज और रिडक्टेस

जब बैक्टीरिया कोशिकीय श्वसन # एरोबिक श्वसन वातावरण में बढ़ते हैं, तो टर्मिनल इलेक्ट्रॉन स्वीकर्ता (O2) एक ऑक्सीडेज नामक एंजाइम द्वारा पानी में कम हो जाता है। जब बैक्टीरिया हाइपोक्सिया (पर्यावरणीय) वातावरण में बढ़ते हैं, तो टर्मिनल इलेक्ट्रॉन स्वीकर्ता को रिडक्टेस नामक एंजाइम द्वारा कम किया जाता है। माइटोकॉन्ड्रिया में टर्मिनल मेम्ब्रेन कॉम्प्लेक्स (कॉम्प्लेक्स IV) साइटोक्रोम ऑक्सीडेज है। सेलुलर श्वसन # एरोबिक श्वसन बैक्टीरिया कई अलग-अलग टर्मिनल ऑक्सीडेज का उपयोग करते हैं। उदाहरण के लिए, ई. कोलाई (वैकल्पिक अवायवीय) में साइटोक्रोम ऑक्सीडेज या बीसी नहीं होता है।1जटिल। एरोबिक स्थितियों के तहत, यह पानी में ऑक्सीजन को कम करने के लिए दो अलग-अलग टर्मिनल क्विनोल ऑक्सीडेज (दोनों प्रोटॉन पंप) का उपयोग करता है।

बैक्टीरियल कॉम्प्लेक्स IV को टर्मिनल इलेक्ट्रॉन स्वीकर्ता के रूप में कार्य करने वाले अणुओं के अनुसार वर्गों में विभाजित किया जा सकता है। क्लास I ऑक्सीडेज साइटोक्रोम ऑक्सीडेज हैं और टर्मिनल इलेक्ट्रॉन स्वीकर्ता के रूप में ऑक्सीजन का उपयोग करते हैं। कक्षा II ऑक्सीडेज क्विनोल ऑक्सीडेज हैं और विभिन्न प्रकार के टर्मिनल इलेक्ट्रॉन स्वीकर्ता का उपयोग कर सकते हैं। इन दोनों वर्गों को उनके रेडॉक्स-सक्रिय घटकों के आधार पर श्रेणियों में विभाजित किया जा सकता है। उदा. हीम एए3 क्लास 1 टर्मिनल ऑक्सीडेज क्लास 2 टर्मिनल ऑक्सीडेज की तुलना में बहुत अधिक कुशल हैं <रेफरी नाम = अनारकु 101–132 />

अवायवीय जीव, जो टर्मिनल इलेक्ट्रॉन स्वीकर्ता के रूप में ऑक्सीजन का उपयोग नहीं करते हैं, उनके टर्मिनल रिडक्टेस व्यक्तिगत रूप से उनके टर्मिनल स्वीकर्ता के लिए होते हैं। उदाहरण के लिए, ई. कोलाई वातावरण में इन स्वीकर्ता की उपलब्धता के आधार पर फ्युमरेट रिडक्टेस, नाइट्रेट रिडक्टेस, नाइट्राइट रिडक्टेस, डीएमएसओ रिडक्टेस, या ट्राइमिथाइलमाइन-एन-ऑक्साइड रिडक्टेस का उपयोग कर सकते हैं।

अधिकांश टर्मिनल ऑक्सीडेज और रिडक्टेस इंड्यूसिबल हैं। विशिष्ट पर्यावरणीय परिस्थितियों के जवाब में, उन्हें आवश्यकतानुसार जीव द्वारा संश्लेषित किया जाता है।

इलेक्ट्रॉन स्वीकारकर्ता

जिस तरह कई अलग-अलग इलेक्ट्रॉन दाता हैं (ऑर्गेनोट्रॉफ़्स में कार्बनिक पदार्थ, लिथोट्रोफ़्स में अकार्बनिक पदार्थ), कार्बनिक और अकार्बनिक दोनों तरह के विभिन्न इलेक्ट्रॉन स्वीकर्ता हैं। यदि ऑक्सीजन उपलब्ध है, तो इसे अक्सर एरोबिक बैक्टीरिया और ऐच्छिक एनारोब में टर्मिनल इलेक्ट्रॉन स्वीकर्ता के रूप में उपयोग किया जाता है।

ज्यादातर अवायवीय वातावरण में विभिन्न इलेक्ट्रॉन स्वीकर्ता का उपयोग किया जाता है, जिसमें नाइट्रेट, नाइट्राइट, फेरिक आयरन, सल्फेट, कार्बन डाइऑक्साइड और छोटे कार्बनिक अणु जैसे फ्यूमरेट शामिल हैं।

प्रकाश संश्लेषक

ऑक्सीडेटिव फास्फारिलीकरण में, इलेक्ट्रॉनों को इलेक्ट्रॉन दाता जैसे एनएडीएच से एक स्वीकर्ता जैसे ओ में स्थानांतरित किया जाता है2 एक इलेक्ट्रॉन परिवहन श्रृंखला के माध्यम से, ऊर्जा जारी करना। Photophosphorylation में, सूर्य के प्रकाश की ऊर्जा का उपयोग एक उच्च-ऊर्जा इलेक्ट्रॉन दाता बनाने के लिए किया जाता है जो बाद में ऑक्सीडित घटकों को कम कर सकता है और इलेक्ट्रॉन परिवहन श्रृंखला द्वारा प्रोटॉन ट्रांसलोकेशन के माध्यम से एटीपी संश्लेषण को जोड़ा जा सकता है।[7]

प्रकाश संश्लेषक इलेक्ट्रॉन परिवहन श्रृंखला, माइटोकॉन्ड्रियल श्रृंखला की तरह, जीवाणु प्रणालियों के एक विशेष मामले के रूप में माना जा सकता है। वे मोबाइल, लिपिड-घुलनशील क्विनोन वाहक (फाइलोक्विनोन और प्लास्टोक्विनोन) और मोबाइल, पानी में घुलनशील वाहक (साइटोक्रोमेस) का उपयोग करते हैं। इनमें एक प्रोटॉन पंप भी होता है। सभी प्रकाश संश्लेषक श्रृंखलाओं में प्रोटॉन पंप माइटोकॉन्ड्रियल कॉम्प्लेक्स III जैसा दिखता है। सहजीवीजनन के सामान्य रूप से स्वीकृत सिद्धांत का प्रस्ताव है कि दोनों अंग बैक्टीरिया से उतरे हैं।

यह भी देखें

संदर्भ

  1. Lyall, Fiona (2010). "Biochemistry". प्रसूति और स्त्री रोग में बुनियादी विज्ञान. pp. 143–171. doi:10.1016/B978-0-443-10281-3.00013-0. ISBN 978-0-443-10281-3.
  2. Waldenström JG (2009-04-24). "जैव रसायन। लुबर्ट स्ट्रायर द्वारा". Acta Medica Scandinavica. 198 (1–6): 436. doi:10.1111/j.0954-6820.1975.tb19571.x. ISSN 0001-6101.
  3. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. (July 2018). "माइटोकॉन्ड्रियल झिल्ली क्षमता". Analytical Biochemistry. 552: 50–59. doi:10.1016/j.ab.2017.07.009. PMC 5792320. PMID 28711444.
  4. Lauren, Biochemistry, Johnson/Cole, 2010, pp 598-611
  5. Garrett & Grisham, Biochemistry, Brooks/Cole, 2010, pp 598-611
  6. Garrett R, Grisham CM (2016). जीव रसायन. Boston: Cengage. p. 687. ISBN 978-1-305-57720-6.
  7. 7.0 7.1 Stryer. जीव रसायन. toppan. OCLC 785100491.
  8. Jonckheere AI, Smeitink JA, Rodenburg RJ (March 2012). "Mitochondrial ATP synthase: architecture, function and pathology". Journal of Inherited Metabolic Disease. 35 (2): 211–25. doi:10.1007/s10545-011-9382-9. PMC 3278611. PMID 21874297.
  9. 9.0 9.1 Garrett RH, Grisham CM (2012). जीव रसायन (5th ed.). Cengage learning. p. 664. ISBN 978-1-133-10629-6.
  10. Fillingame RH, Angevine CM, Dmitriev OY (November 2003). "एटीपी सिंथेज़ में सी-रिंग रोटेशन के लिए प्रोटॉन आंदोलनों के युग्मन के यांत्रिकी". FEBS Letters. 555 (1): 29–34. doi:10.1016/S0014-5793(03)01101-3. PMID 14630314. S2CID 38896804.
  11. Berg JM, Tymoczko JL, Stryer L (2002-01-01). "एक प्रोटॉन ग्रेडिएंट एटीपी के संश्लेषण को शक्ति प्रदान करता है" (in English). {{cite journal}}: Cite journal requires |journal= (help)
  12. Cannon B, Nedergaard J (January 2004). "Brown adipose tissue: function and physiological significance". Physiological Reviews. 84 (1): 277–359. doi:10.1152/physrev.00015.2003. PMID 14715917.
  13. Kim BH, Gadd GM (2008). "Introduction to bacterial physiology and metabolism". बैक्टीरियल फिजियोलॉजी और मेटाबॉलिज्म. Cambridge University Press. pp. 1–6. doi:10.1017/cbo9780511790461.002. ISBN 978-0-511-79046-1.
  14. Mills EL, Kelly B, Logan A, Costa AS, Varma M, Bryant CE, et al. (October 2016). "सक्सिनेट डिहाइड्रोजनेज ड्राइव इन्फ्लेमेटरी मैक्रोफेज के लिए माइटोकॉन्ड्रिया के मेटाबोलिक पुनरुत्पादन का समर्थन करता है". Cell. 167 (2): 457–470.e13. doi:10.1016/j.cell.2016.08.064. PMC 5863951. PMID 27667687.
  15. EC 1.3.5.1
  16. Ingledew WJ, Poole RK (September 1984). "एस्चेरिचिया कोलाई की श्वसन श्रृंखला". Microbiological Reviews. 48 (3): 222–71. doi:10.1128/mmbr.48.3.222-271.1984. PMC 373010. PMID 6387427.

अग्रिम पठन


बाहरी संबंध