योजक सफेद गाउसियन रव: Difference between revisions
Line 25: | Line 25: | ||
\frac{1}{k}\sum_{i=1}^k x_i^2 \leq P | \frac{1}{k}\sum_{i=1}^k x_i^2 \leq P | ||
</math> है, | </math> है, | ||
जहां <math>P</math> अधिकतम प्रणाल शक्ति का प्रतिनिधित्व करता है।इसलिए, बिजली-बाधित प्रणाल के लिए [[चैनल क्षमता|प्रणाल क्षमता]] इस प्रकार दी गई है: | |||
:<math> | :<math> | ||
C = \max \left\{ I(X;Y) : f \text{ s.t. } E \left( X^2 \right) \leq P \right\} | C = \max \left\{ I(X;Y) : f \text{ s.t. } E \left( X^2 \right) \leq P \right\} | ||
\,\!</math> | \,\!</math> | ||
जहां <math>f</math> का वितरण है <math>X</math>. बढ़ाना <math>I(X;Y)</math>, इसे [[विभेदक एन्ट्रापी]] के संदर्भ में लिखना: | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Line 60: | Line 60: | ||
I(X;Y) \leq \frac{1}{2}\log(2 \pi e (P+N)) - \frac {1}{2}\log(2 \pi e N) | I(X;Y) \leq \frac{1}{2}\log(2 \pi e (P+N)) - \frac {1}{2}\log(2 \pi e N) | ||
\,\!</math> | \,\!</math> | ||
जहां <math>I(X;Y)</math> अधिकतम तब होता है जब: | |||
:<math> | :<math> | ||
Line 121: | Line 121: | ||
फ़ानो की असमानता का उपयोग करने से मिलता है: | फ़ानो की असमानता का उपयोग करने से मिलता है: | ||
<math>H(W\mid\hat{W}) \leq 1+nRP^{(n)}_e = n \varepsilon_n</math> | <math>H(W\mid\hat{W}) \leq 1+nRP^{(n)}_e = n \varepsilon_n</math> जहां <math>\varepsilon_n \rightarrow 0</math> जैसा <math>P^{(n)}_e \rightarrow 0</math> | ||
होने देना <math>X_i</math> कोडवर्ड इंडेक्स i का एन्कोडेड संदेश हो। तब: | होने देना <math>X_i</math> कोडवर्ड इंडेक्स i का एन्कोडेड संदेश हो। तब: | ||
Line 177: | Line 177: | ||
==समय क्षेत्र में प्रभाव== | ==समय क्षेत्र में प्रभाव== | ||
[[File:Zero crossing.jpg|thumb|300px|रवयुक्त वाले कोज्या का शून्य पारण ]] | [[File:Zero crossing.jpg|thumb|300px|रवयुक्त वाले कोज्या का शून्य पारण ]]क्रमिक डेटा संचार में, एडब्ल्यूजीएन गणितीय प्रतिरूप का उपयोग यादृच्छिक [[ घबराना |कँपन]] (आरजे) के कारण होने वाली कालन त्रुटि को प्रतिरूपित करने के लिए किया जाता है। | ||
दाईं ओर का ग्राफ़ एडब्ल्यूजीएन से जुड़ी | दाईं ओर का ग्राफ़ एडब्ल्यूजीएन से जुड़ी कालन संबंधी त्रुटियों का एक उदाहरण दिखाता है। चर Δt शून्य पारण में अनिश्चितता का निरुपण करता है। जैसे-जैसे एडब्ल्यूजीएन का आयाम बढ़ता है, [[संकेत रव अनुपात]] कम हो जाता है। इसके परिणामस्वरूप अनिश्चितता ''Δt'' बढ़ जाती है।<ref name="rrd"/> | ||
जब एडब्ल्यूजीएन से प्रभावित होता है, तो एक संकीर्ण बैंडपास फिल्टर के आउटपुट पर प्रति सेकंड सकारात्मक या नकारात्मक शून्य क्रॉसिंग की औसत संख्या होती है जब इनपुट साइन तरंग होता है | '''जब एडब्ल्यूजीएन से प्रभावित होता है, तो एक संकीर्ण बैंडपास फिल्टर के आउटपुट पर प्रति सेकंड सकारात्मक या''' नकारात्मक शून्य क्रॉसिंग की औसत संख्या होती है जब इनपुट साइन तरंग होता है | ||
: <math> | : <math> | ||
Line 189: | Line 189: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
जहां | |||
:<sub>0</sub> = फ़िल्टर की केंद्र आवृत्ति, | :<sub>0</sub> = फ़िल्टर की केंद्र आवृत्ति, | ||
: बी = फिल्टर बैंडविड्थ, | : बी = फिल्टर बैंडविड्थ, |
Revision as of 11:29, 29 July 2023
This article relies largely or entirely on a single source. (February 2020) |
योजक सफेद गाउसियन रव (एडब्ल्यूजीएन) एक मूल रव प्रतिरूप है जिसका उपयोग प्रकृति में होने वाली कई यादृच्छिक प्रक्रियाओं के प्रभाव की नकल करने के लिए सूचना सिद्धांत में किया जाता है। संशोधक विशिष्ट विशेषताओं को दर्शाते हैं:
- योजक क्योंकि यह किसी भी रव में जोड़ा जाता है जो सूचना पद्धति में अंतर्निहित हो सकता है।
- सफेद इस विचार को संदर्भित करता है कि इसमें सूचना पद्धति के लिए आवृत्ति बैंड में एक समान शक्ति स्पेक्ट्रमी घनत्व है। यह सफेद रंग का एक सादृश्य है जिसे दृश्य स्पेक्ट्रम में सभी आवृत्तियों पर समान उत्सर्जनों द्वारा महसूस किया जा सकता है।
- गाउसियन क्योंकि इसका काल प्रक्षेत्र में औसत काल प्रक्षेत्र मान शून्य (गाउसियन प्रक्रिया) के साथ एक सामान्य वितरण है।
वाइडबैंड रव कई प्राकृतिक रव स्रोतों से आता है, जैसे संवाहकों में परमाणुओं के ऊष्मीय कंपन (ऊष्मीय रव या जॉनसन-नाइक्विस्ट रव के रूप में जाना जाता है), शॉट रव, पृथ्वी और अन्य गर्म वस्तुओं से कृष्णिका विकिरण, और सूर्य जैसे खगोलीय स्रोतों से। प्रायिकता सिद्धांत की केंद्रीय सीमा प्रमेय निर्दिष्ट करती है कि कई यादृच्छिक प्रक्रियाओं के योग में गाऊसी या सामान्य नामक वितरण होगा।
एडब्ल्यूजीएन को अधिकतर एक प्रणाल प्रतिरूप के रूप में उपयोग किया जाता है जिसमें संचार में एकमात्र बाधा नियत वर्णक्रमीय घनत्व (बैंड विड्थ के प्रति हर्ट्ज़ वाट के रूप में व्यक्त) और आयाम के गाऊसी वितरण के साथ वाइडबैंड या सफेद रव का एक रैखिक जोड़ है। प्रतिरूप म्लानन (फडिंग), आवृत्ति चयनात्मकता, हस्तक्षेप, अरैखिकता या परिक्षेपण को ध्यान में नहीं रखता है। हालाँकि, यह सरल और सुव्यवस्थित गणितीय प्रतिरूप तैयार करता है जो इन अन्य परिघटनाओं पर विचार करने से पहले किसी पद्धति के अंतर्निहित व्यवहार में अंतर्दृष्टि प्राप्त करने के लिए उपयोगी होते हैं।
एडब्ल्यूजीएन प्रणाल कई उपग्रहों और गहन अंतरिक्ष संचार कड़ियों के लिए एक अच्छा प्रतिरूप है। बहुपथ, भूभाग अवरोधन, हस्तक्षेप आदि के कारण अधिकांश स्थलीय कड़ियों के लिए यह एक अच्छा प्रतिरूप नहीं है। हालाँकि, स्थलीय पथ प्रतिरूपण के लिए, एडब्ल्यूजीएन का उपयोग आमतौर पर अध्ययन के अंतर्गत प्रणाल के पृष्ठभूमि रव का अनुकरण करने के लिए किया जाता है, इसके अतिरिक्त बहुपथ, भू भाग अवरोधन, हस्तक्षेप, भू अपचित्र और स्वयं हस्तक्षेप का उपयोग आधुनिक रेडियो प्रणाली स्थलीय संचालन में करते हैं।
प्रणाल क्षमता
एडब्ल्यूजीएन प्रणाल को असतत समय घटना सूचकांक पर आउटपुट की एक श्रृंखला द्वारा दर्शाया गया है। इनपुट और रव, का योग है, जहां स्वतंत्र है और विचरण N (रव) के साथ शून्य-माध्य सामान्य वितरण से समान रूप से वितरित और खींचा गया है। यह भी माना जाता है कि का के साथ कोई संबंध नहीं है।
प्रणाल की क्षमता अनंत है जब तक कि रव शून्येतर है, और पर्याप्त रूप से प्रतिबंधित हैं| इनपुट पर सबसे साधारण व्यवरोध तथाकथित "शक्ति" व्यवरोध है, जिसके लिए आवश्यक है कि प्रणाल के माध्यम से प्रसारित संकेत-शब्द के लिए, हमारे पास
- है,
जहां अधिकतम प्रणाल शक्ति का प्रतिनिधित्व करता है।इसलिए, बिजली-बाधित प्रणाल के लिए प्रणाल क्षमता इस प्रकार दी गई है:
जहां का वितरण है . बढ़ाना , इसे विभेदक एन्ट्रापी के संदर्भ में लिखना:
लेकिन और स्वतंत्र हैं, इसलिए:
गाऊसी की विभेदक एन्ट्रापी का मूल्यांकन करने पर यह मिलता है:
क्योंकि और स्वतंत्र हैं और उनका योग देता है :
इस सीमा से, हम अंतर एन्ट्रापी की एक संपत्ति से अनुमान लगाते हैं
इसलिए, प्रणाल क्षमता पारस्परिक जानकारी पर उच्चतम प्राप्य सीमा द्वारा दी गई है:
जहां अधिकतम तब होता है जब:
इस प्रकार प्रणाल क्षमता एडब्ल्यूजीएन प्रणाल के लिए यह दिया गया है:
प्रणाल क्षमता और क्षेत्र पैकिंग
मान लीजिए कि हम सूचकांक वाले प्रणाल के माध्यम से संदेश भेज रहे हैं को , अलग-अलग संभावित संदेशों की संख्या। यदि हम एन्कोड करते हैं को संदेश बिट्स, फिर हम दर को परिभाषित करते हैं जैसा:
एक दर को प्राप्त करने योग्य कहा जाता है यदि कोड का अनुक्रम हो ताकि त्रुटि की अधिकतम संभावना शून्य हो जाए अनंत तक पहुंचता है. क्षमता उच्चतम प्राप्य दर है.
लंबाई के एक कोडवर्ड पर विचार करें रव स्तर के साथ एडब्ल्यूजीएन प्रणाल के माध्यम से भेजा गया . प्राप्त होने पर, कोडवर्ड वेक्टर विचरण अब है , और इसका माध्य भेजा गया कोडवर्ड है। वेक्टर के त्रिज्या के एक गोले में समाहित होने की बहुत संभावना है चारों ओर कोडवर्ड भेजा गया। यदि हम प्राप्त प्रत्येक संदेश को इस क्षेत्र के केंद्र में कोडवर्ड पर मैप करके डिकोड करते हैं, तो त्रुटि तभी होती है जब प्राप्त वेक्टर इस क्षेत्र के बाहर होता है, जो बहुत ही असंभव है।
प्रत्येक कोडवर्ड वेक्टर में प्राप्त कोडवर्ड वैक्टर का एक संबद्ध क्षेत्र होता है जिसे इसमें डिकोड किया जाता है और ऐसे प्रत्येक क्षेत्र को एक कोडवर्ड पर विशिष्ट रूप से मैप किया जाना चाहिए। चूँकि इन गोले को एक दूसरे को नहीं काटना चाहिए, इसलिए हमें गोला पैकिंग की समस्या का सामना करना पड़ता है। हम अपने में कितने अलग-अलग कोडवर्ड पैक कर सकते हैं -बिट कोडवर्ड वेक्टर? प्राप्त वैक्टर में अधिकतम ऊर्जा होती है और इसलिए उसे त्रिज्या का एक क्षेत्र घेरना चाहिए . प्रत्येक कोडवर्ड गोले की त्रिज्या होती है . एक n-आयामी गोले का आयतन सीधे आनुपातिक होता है , इसलिए ट्रांसमिशन पावर पी के साथ हमारे क्षेत्र में पैक किए जा सकने वाले विशिष्ट डिकोडेबल क्षेत्रों की अधिकतम संख्या है:
इस तर्क से, दर R से अधिक नहीं हो सकती .
साध्यता
इस खंड में, हम अंतिम खंड से दर पर ऊपरी सीमा की प्राप्ति दर्शाते हैं।
एनकोडर और डिकोडर दोनों के लिए ज्ञात एक कोडबुक, लंबाई n, i.i.d. के कोडवर्ड का चयन करके तैयार की जाती है। विचरण के साथ गाऊसी और मतलब शून्य. बड़े n के लिए, कोडबुक का अनुभवजन्य विचरण इसके वितरण के विचरण के बहुत करीब होगा, जिससे संभावित रूप से शक्ति बाधा के उल्लंघन से बचा जा सकेगा।
प्राप्त संदेशों को कोडबुक में एक संदेश में डिकोड किया जाता है जो विशिष्ट रूप से संयुक्त रूप से विशिष्ट है। यदि ऐसा कोई संदेश नहीं है या यदि बिजली की कमी का उल्लंघन किया गया है, तो डिकोडिंग त्रुटि घोषित की जाती है।
होने देना संदेश के लिए कोडवर्ड बताएं , जबकि प्राप्त वेक्टर से पहले की तरह है। निम्नलिखित तीन घटनाओं को परिभाषित करें:
- आयोजन :प्राप्त संदेश की शक्ति इससे बड़ी है .
- आयोजन : प्रेषित और प्राप्त कोडवर्ड संयुक्त रूप से विशिष्ट नहीं हैं।
- आयोजन : में है , विशिष्ट सेट जहां , जिसका अर्थ यह है कि गलत कोडवर्ड प्राप्त वेक्टर के साथ संयुक्त रूप से विशिष्ट है।
इसलिए एक त्रुटि उत्पन्न होती है यदि , या इनमें से कोई भी घटित होना। बड़ी संख्या के नियम से, जैसे-जैसे n अनंत के करीब पहुंचता है, शून्य हो जाता है और संयुक्त स्पर्शोन्मुख समविभाजन संपत्ति द्वारा भी यही बात लागू होती है . इसलिए, पर्याप्त रूप से बड़े के लिए , दोनों और प्रत्येक से कम हैं . तब से और के लिए स्वतंत्र हैं , हमारे पास वह है और स्वतंत्र भी हैं. इसलिए, संयुक्त एईपी द्वारा, . यह हमें गणना करने की अनुमति देता है , त्रुटि की संभावना इस प्रकार है:
इसलिए, जैसे-जैसे n अनंत की ओर बढ़ता है, शून्य पर चला जाता है और . इसलिए, दर आर का एक कोड मनमाने ढंग से पहले प्राप्त क्षमता के करीब है।
कोडिंग प्रमेय का व्युत्क्रम
यहां हम दिखाते हैं कि दरें क्षमता से अधिक हैं प्राप्य नहीं हैं.
मान लीजिए कि कोडबुक के लिए बिजली की कमी पूरी हो गई है, और आगे यह भी मान लें कि संदेश एक समान वितरण का पालन करते हैं। होने देना इनपुट संदेश हो और आउटपुट संदेश. इस प्रकार जानकारी इस प्रकार प्रवाहित होती है:
फ़ानो की असमानता का उपयोग करने से मिलता है:
जहां जैसा होने देना कोडवर्ड इंडेक्स i का एन्कोडेड संदेश हो। तब:
होने देना सूचकांक i के कोडवर्ड की औसत शक्ति हो:
जहां योग सभी इनपुट संदेशों से अधिक है . और स्वतंत्र हैं, अत: की शक्ति की अपेक्षा रखते हैं रव के स्तर के लिए है :
और अगर सामान्य रूप से वितरित किया जाता है, हमारे पास वह है
इसलिए,
हम जेन्सेन की समानता को लागू कर सकते हैं , x का एक अवतल (नीचे की ओर) फ़ंक्शन, प्राप्त करने के लिए:
चूँकि प्रत्येक कोडवर्ड व्यक्तिगत रूप से शक्ति बाधा को संतुष्ट करता है, औसत भी शक्ति बाधा को संतुष्ट करता है। इसलिए,
जिसे हम उपरोक्त असमानता को सरल बनाने के लिए लागू कर सकते हैं और प्राप्त कर सकते हैं:
इसलिए, ऐसा होना ही चाहिए . इसलिए, आर को मनमाने ढंग से पहले प्राप्त क्षमता के करीब एक मूल्य से कम होना चाहिए .
समय क्षेत्र में प्रभाव
क्रमिक डेटा संचार में, एडब्ल्यूजीएन गणितीय प्रतिरूप का उपयोग यादृच्छिक कँपन (आरजे) के कारण होने वाली कालन त्रुटि को प्रतिरूपित करने के लिए किया जाता है।
दाईं ओर का ग्राफ़ एडब्ल्यूजीएन से जुड़ी कालन संबंधी त्रुटियों का एक उदाहरण दिखाता है। चर Δt शून्य पारण में अनिश्चितता का निरुपण करता है। जैसे-जैसे एडब्ल्यूजीएन का आयाम बढ़ता है, संकेत रव अनुपात कम हो जाता है। इसके परिणामस्वरूप अनिश्चितता Δt बढ़ जाती है।[1]
जब एडब्ल्यूजीएन से प्रभावित होता है, तो एक संकीर्ण बैंडपास फिल्टर के आउटपुट पर प्रति सेकंड सकारात्मक या नकारात्मक शून्य क्रॉसिंग की औसत संख्या होती है जब इनपुट साइन तरंग होता है
जहां
- 0 = फ़िल्टर की केंद्र आवृत्ति,
- बी = फिल्टर बैंडविड्थ,
- एसएनआर = रैखिक शब्दों में सिग्नल-टू-रव शक्ति अनुपात।
फ़ेसर प्रक्षेत्र में प्रभाव
आधुनिक संचार प्रणालियों में, बैंड सीमित एडब्ल्यूजीएन को नजरअंदाज नहीं किया जा सकता है। जब फेज़र प्रक्षेत्र में बैंड सीमित एडब्ल्यूजीएन का प्रतिरूपण किया जाता है, तो सांख्यिकीय विश्लेषण से पता चलता है कि वास्तविक और काल्पनिक योगदान के आयाम स्वतंत्र चर हैं जो गाउसीय वितरण प्रतिरूप का पालन करते हैं। संयुक्त होने पर, परिणामी चरण का परिमाण एक रेले वितरण होता है| संयुक्त होने पर, परिणामी फ़ेजर का परिमाण एक रैले-वितरित यादृच्छिक चर होता है, जबकि फेज समान रूप से 0 से 2π तक वितरित होता है।
दाईं ओर का ग्राफ़ एक उदाहरण दिखाता है कि बैंड सीमित एडब्ल्यूजीएन एक संसक्त वाहक संकेत को कैसे प्रभावित कर सकता है। रव सदिश की तात्क्षणिक अनुक्रिया का सटीक अनुमान नहीं लगाया जा सकता है, हालांकि, इसकी समय-औसत अनुक्रिया का सांख्यिकीय रूप से अनुमान लगाया जा सकता है। जैसा कि ग्राफ में दिखाया गया है, हम विश्वासपूर्वक अनुमान लगाते हैं कि रव फ़ेजर 1σ वृत्त के भीतर लगभग 38% समय, 2σ वृत्त के भीतर लगभग 86% समय और 3σ वृत्त के भीतर लगभग 98% समय रहेगा।[1]