रिग्रेट (निर्णय सिद्धांत): Difference between revisions
(Created page with "{{Short description|Measure of value difference between best possible decision and made decision}} निर्णय सिद्धांत में, अनिश्...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Measure of value difference between best possible decision and made decision}} | {{Short description|Measure of value difference between best possible decision and made decision}} | ||
'''निर्णय सिद्धांत में''', अनिश्चितता के तहत निर्णय लेने पर सर्वोत्तम कार्रवाई के बारे में जानकारी निश्चित निर्णय के बाद आए मानवीय भावनात्मक प्रतिक्रिया का अनुभव किया जा सकता है, और इसे लिए गए निर्णय और इष्टतम निर्णय के बीच अंतर के मूल्य के रूप में मापा जा सकता है।। | |||
' | 'रिग्रेट एवर्शन' या 'प्रत्याशित रिग्रेट' के सिद्धांत का अर्थ है कि जब व्यक्ति निर्णय के सामने होते हैं, तो वे रिग्रेट की पूर्वानुमान कर सकते हैं और इसलिए अपने चयन में रिग्रेट को नष्ट करने या कम करने की इच्छा को सम्मिलित करते हैं। रिग्रेट एक नकारात्मक भावना है जिसमें एक शक्तिशाली सामाजिक और प्रतिष्ठा संबंध होता है, और इसे मानव अनुभव से सीखने और जोखिम से बचने के मानवीय मनोविज्ञान में केंद्रीय बनाया गया है। रिग्रेट की सचेत अपेक्षा ने एक प्रतिक्रिया गति उत्पन्न की है जो रिग्रेट को भावनात्मक क्षेत्र से पार कर देती है जिसे प्रायः केवल मानव व्यवहार के रूप में देखा जाता है और जो निर्णय सिद्धांत में प्रारूप किए गए तथ्यों के क्षेत्र में तार्किक चयन व्यवहार मे किया जाता है। | ||
==विवरण== | ==विवरण== | ||
रिग्रेट थ्योरी [[सैद्धांतिक अर्थशास्त्र]] में एक | रिग्रेट थ्योरी [[सैद्धांतिक अर्थशास्त्र]] में एक प्रारूप है जिसे 1982 में [[ग्राहम लूम्स]] और [[रॉबर्ट सुगडेन (अर्थशास्त्री)|रॉबर्ट सुगडेन]] द्वारा एक साथ विकसित किया गया था।<ref>{{cite journal |last1=Loomes |first1=G. |last2=Sugden |first2=R. |year=1982 |title=Regret theory: An alternative theory of rational choice under uncertainty |journal=Economic Journal |volume=92 |issue=4 |pages=805–824 |doi=10.2307/2232669 |jstor=2232669 }}</ref> डेविड ई. बेल,<ref>{{cite journal |last=Bell |first=D. E. |year=1982 |title=अनिश्चितता की स्थिति में निर्णय लेने में पछतावा|journal=Operations Research |volume=30 |issue=5 |pages=961–981 |doi=10.1287/opre.30.5.961 }}</ref> और पीटर सी. फिशबर्न।<ref>{{cite book |last=Fishburn |first=P. C. |year=1982 |title=अपेक्षित उपयोगिता की नींव|series=Theory & Decision Library |isbn=90-277-1420-7 }}</ref> रिग्रेट सिद्धांत प्रत्याशित रिग्रेट के प्रभाव को ध्यान में रखते हुए अनिश्चितता के अंतर्गत चुनाव का प्रारूप तैयार करता है। इसके बाद, कई अन्य लेखकों ने इसमें सुधार किया।<ref name="Diecidue, E. 2017">{{cite journal |last1=Diecidue |first1=E. |last2=Somasundaram |first2=J. |year=2017 |title=Regret Theory: A New Foundation |journal=[[Journal of Economic Theory]] |volume=172 |pages=88–119 |doi=10.1016/j.jet.2017.08.006 }}</ref>यह उपयोगिता फलन में एक रिग्रेट शब्द को सम्मिलित करता है जो नकारात्मक रूप से वास्तविक परिणाम पर निर्भर करता है और सकारात्मक रूप से अनिश्चितता समाधान को देखते हुए सर्वोत्तम वैकल्पिक परिणाम पर निर्भर करता है। यह रिग्रेट शब्द सामान्यतः पारंपरिक उपयोगिता सूचकांक में घटाया गया एक बढ़ता हुआ, निरंतर और गैर-नकारात्मक कार्य है। इस प्रकार की प्राथमिकताएँ सदैव पारंपरिक अर्थों में [[सकर्मक संबंध]] का उल्लंघन करती हैं,<ref>{{cite journal |last1=Bikhchandani |first1=S. |last2=Segal |first2=U. |year=2011 |title=सकर्मक खेद|journal=Theoretical Economics |volume=6 |issue=1 |pages=95–108 |doi=10.3982/TE738 |doi-access=free }}</ref> यद्यपि अधिकांश कमजोर संस्करण को संतुष्ट करती हैं।<ref name="Diecidue, E. 2017"/> | ||
यह उपयोगिता | |||
==साक्ष्य== | ==साक्ष्य== | ||
कई प्रयोग उपयोगार्थी और कल्पनात्मक चयनों के लिए यह प्रभाव की महत्ता की पुष्टि करते हैं। | |||
प्रथम मूल्य | प्रथम मूल्य नीलामी में प्रयोगों से यह दिखाया गया है कि प्रतिस्पर्धियों के और प्रतिस्पर्धियों के बीच औसत बोलियों में महत्वपूर्ण अंतर होता है। विशेष रूप से, "हारने का पछतावा" उस बिद नीलामी के सभी प्रतिभागियों को प्रकट करके उत्पन्न किया जा सकता है,<ref>{{cite journal |last1=Filiz-Ozbay |first1=E. |last2=Ozbay |first2=E. Y. |year=2007 |title=Auctions with anticipated regret: Theory and experiment |journal=[[American Economic Review]] |volume=97 |issue=4 |pages=1407–1418 |doi=10.1257/aer.97.4.1407 |s2cid=51815774 |url=https://semanticscholar.org/paper/7617131f62b6046f9362025590ff912ae1b497b6 }}</ref> और इस तरह हारने वालों को बताया जा सकता है कि उन्हें क्या लाभ हासिल किया जा सकता था और यह कितना हो सकता था जैसे, एक प्रतिभागी का मूल्यांकन $50 है, वह $30 बोलता है और जानता है कि जीतने वाली बोली $35 थी, तो उसे यह भी पता चल जाएगा कि उसे $35 से ऊपर कुछ भी बोलकर $15 कमा सकता था। इससे प्रतिस्पर्धियों को पछतावे की संभावना होती है और यदि बोलने वाले सही तरह से इसकी पूर्वानुमान करते हैं, तो उन्हें पछतावे की संभावना को कम करने के लिए जीतने से अधिक बोलने की प्रवृत्ति होती है। | ||
लॉटरी पर निर्णयों में, प्रयोग प्रत्याशित | लॉटरी पर निर्णयों में, प्रयोग प्रत्याशित रिग्रेट का सहायक साक्ष्य भी प्रदान करते हैं।<ref>{{cite journal |last1=Zeelenberg |first1=M. |last2=Beattie |first2=J. |last3=Van der Pligt |first3=J. |last4=de Vries |first4=N. K. |year=1996 |title=Consequences of regret aversion: Effects of expected feedback on risky decision making |journal=Organizational Behavior and Human Decision Processes |volume=65 |issue=2 |pages=148–158 |doi=10.1006/obhd.1996.0013 |url=http://dare.uva.nl/personal/pure/en/publications/consequences-of-regret-aversion-effect-of-expected-feedback-on-risky-decision-making(795bf97f-53f9-4641-86a2-a0635c537491).html }}</ref><ref>{{cite journal |last1=Zeelenberg |first1=M. |last2=Beattie |first2=J. |year=1997 |title=Consequences of regret aversion 2: Additional evidence for effects of feedback on decision making |journal=Organizational Behavior and Human Decision Processes |volume=72 |issue=1 |pages=63–78 |doi=10.1006/obhd.1997.2730 |url=https://research.tue.nl/nl/publications/consequences-of-regret-aversion-2-additional-evidence-for-effects-of-feedback-on-decision-making(f302d547-7f43-4a9b-96c7-ac50527548d9).html }}</ref><ref>{{cite journal |last1=Somasundaram |first1=J. |last2=Diecidue |first2=E. |year=2016 |title=खेद सिद्धांत और जोखिम दृष्टिकोण|journal=Journal of Risk and Uncertainty |volume=55 |issue=2–3 |pages=1–29 |doi=10.1007/s11166-017-9268-9 }}</ref> जैसा कि पहली कीमत की नीलामी के विषय में होता है, अनिश्चितता के समाधान पर फीडबैक में अंतर के कारण रिग्रेट की संभावना हो सकती है और यदि इसकी आशंका है, तो यह अलग-अलग प्राथमिकताओं को प्रेरित कर सकता है। | ||
उदाहरण के लिए, जब निश्चितता के साथ $40 और सिक्के को उछालने पर $100 का भुगतान करने वाले विकल्प का सामना करना पड़ता है, यदि परिणाम का सही अनुमान लगाया जाता है और $0 अन्यथा, निश्चित भुगतान विकल्प न केवल जोखिम को कम करता है, बल्कि | |||
उदाहरण के लिए, जब निश्चितता के साथ $40 और सिक्के को उछालने पर $100 का भुगतान करने वाले विकल्प का सामना करना पड़ता है, यदि परिणाम का सही अनुमान लगाया जाता है और $0 अन्यथा, निश्चित भुगतान विकल्प न केवल जोखिम को कम करता है, बल्कि रिग्रेट की संभावना को भी कम करता है, क्योंकि सामान्यतः सिक्का उछाला नहीं जाएगा जबकि यदि सिक्का उछाला जाता है, तो $0 का भुगतान करने वाला परिणाम रिग्रेट उत्पन्न करता है। यदि चुने गए विकल्प की परवाह किए बिना सिक्का उछाला जाता है, तो वैकल्पिक भुगतान सदैव ज्ञात रहता और पुनः कोई विकल्प नहीं रहता है जो रिग्रेट की संभावना को खत्म कर दे। | |||
=== प्रत्याशित रिग्रेट और अनुभवी रिग्रेट === | |||
पूर्वानुमानित रिग्रेट वे विकल्पों और कार्रवाइयों के लिए अधिक अनुमानित होता है जिनमें लोग अपने आप को जिम्मेदार महसूस करते हैं। लोग खासकर उन वस्तुओ के लिए रिग्रेट को अधिक अनुमानित करते हैं जिन्हें वे एक छोटे सीमा तक चाहते हुए भी प्राप्त नहीं कर सकते हैं। एक अध्ययन में, यात्रियों ने यह पूर्वानुमान किया कि उन्हें अधिक रिग्रेट का अनुभव होगा यदि उन्होंने ट्रेन 1 मिनट के बाद यात्रा नहीं की तो उन्होंने ट्रेन 5 मिनट के बाद यात्रा नहीं की, उदाहरणार्थ, परंतु वास्तविकता में, जिन यात्रियों ने वास्तविकता में 1 या 5 मिनट के बाद ट्रेन मिस की थी, उन्होंने कम रिग्रेट का अनुभव किया। यात्रियों को ऐसा अनुमान लगता था कि वे ट्रेन को छोटी सीमा तक मिस करने पर वे ज्यादा रिग्रेट का अनुभव करेगे, क्योंकि उन्होंने ट्रेन को यात्रा न करने का दोष बाह्य कारणों को कम मान लिया।<ref name=":0">{{Cite journal|title = पीछे की ओर देखने के लिए आगे की ओर देखना पछतावे की गलत भविष्यवाणी|journal = Psychological Science|date = 2004-05-01|issn = 0956-7976|pmid = 15102146|pages = 346–350|volume = 15|issue = 5|doi = 10.1111/j.0956-7976.2004.00681.x|language = en|first1 = Daniel T.|last1 = Gilbert|first2 = Carey K.|last2 = Morewedge|first3 = Jane L.|last3 = Risen|first4 = Timothy D.|last4 = Wilson|citeseerx = 10.1.1.492.9980}}</ref> | |||
==अनुप्रयोग== | ==अनुप्रयोग== | ||
लॉटरी पर विकल्पों की पारंपरिक सेटिंग के अलावा, पहली कीमत की नीलामी में | लॉटरी पर विकल्पों की पारंपरिक सेटिंग के अलावा, पहली कीमत की नीलामी में सामान्यतः देखी जाने वाली ओवरबिडिंग के लिए एक स्पष्टीकरण के रूप में रिग्रेट एवर्शन का प्रस्ताव किया गया है,<ref>{{cite journal |last=Engelbrecht-Wiggans |first=R. |year=1989 |title=नीलामी में इष्टतम बोली पर पछतावे का प्रभाव|journal=Management Science |volume=35 |issue=6 |pages=685–692 |doi=10.1287/mnsc.35.6.685 |hdl=2142/28707 |hdl-access=free }}</ref> और [[स्वभाव प्रभाव]],<ref>{{cite journal |last1=Fogel |first1=S. O. C. |last2=Berry |first2=T. |year=2006 |title=The disposition effect and individual investor decisions: the roles of regret and counterfactual alternatives |journal=Journal of Behavioral Finance |volume=7 |issue=2 |pages=107–116 |doi=10.1207/s15427579jpfm0702_5 }}</ref> दूसरों के बीच में। | ||
==[[ अल्पमहिष्ठ ]] | ==[[ अल्पमहिष्ठ ]] रिग्रेट== | ||
मिनिमैक्स रिग्रेट दृष्टिकोण सबसे खराब स्थिति वाले रिग्रेट को कम करने के लिए है, जिसे मूल रूप से 1951 में [[लियोनार्ड सैवेज]] द्वारा प्रस्तुत किया गया था।<ref name="savage51">{{cite journal |last=Savage |first=L. J. |year=1951 |title=सांख्यिकीय निर्णय का सिद्धांत|journal=Journal of the American Statistical Association |volume=46 |issue=253 |pages=55–67 |doi=10.1080/01621459.1951.10500768 }}</ref> इसका उद्देश्य इष्टतम पाठ्यक्रम के जितना करीब संभव हो सके प्रदर्शन करना है। चूंकि यहां लागू मिनिमैक्स मानदंड भुगतान के बजाय | मिनिमैक्स रिग्रेट दृष्टिकोण सबसे खराब स्थिति वाले रिग्रेट को कम करने के लिए है, जिसे मूल रूप से 1951 में [[लियोनार्ड सैवेज]] द्वारा प्रस्तुत किया गया था।<ref name="savage51">{{cite journal |last=Savage |first=L. J. |year=1951 |title=सांख्यिकीय निर्णय का सिद्धांत|journal=Journal of the American Statistical Association |volume=46 |issue=253 |pages=55–67 |doi=10.1080/01621459.1951.10500768 }}</ref> इसका उद्देश्य इष्टतम पाठ्यक्रम के जितना करीब संभव हो सके प्रदर्शन करना है। चूंकि यहां लागू मिनिमैक्स मानदंड भुगतान के बजाय रिग्रेट (भुगतान का अंतर या अनुपात) पर है, इसलिए यह सामान्य मिनिमैक्स दृष्टिकोण जितना निराशावादी नहीं है। समान दृष्टिकोणों का उपयोग विभिन्न क्षेत्रों में किया गया है जैसे: | ||
* [[परिकल्पना परीक्षण]] | * [[परिकल्पना परीक्षण]] | ||
* [[भविष्यवाणी]] | * [[भविष्यवाणी]] | ||
*[[अर्थशास्त्र]] | *[[अर्थशास्त्र]] | ||
मिनिमैक्स का एक लाभ (अपेक्षित | मिनिमैक्स का एक लाभ (अपेक्षित रिग्रेट के विपरीत) यह है कि यह विभिन्न परिणामों की संभावनाओं से स्वतंत्र है: इस प्रकार यदि रिग्रेट की सटीक गणना की जा सकती है, तो कोई विश्वसनीय रूप से मिनिमैक्स रिग्रेट का उपयोग कर सकता है। हालाँकि, परिणामों की संभावनाओं का अनुमान लगाना कठिन है। | ||
यह मानक मिनिमैक्स दृष्टिकोण से भिन्न है क्योंकि यह परिणामों के बीच अंतर या अनुपात का उपयोग करता है, और इस प्रकार मानक मिनिमैक्स की तरह अंतराल या अनुपात माप, साथ ही [[क्रमिक माप]] (रैंकिंग) की आवश्यकता होती है। | यह मानक मिनिमैक्स दृष्टिकोण से भिन्न है क्योंकि यह परिणामों के बीच अंतर या अनुपात का उपयोग करता है, और इस प्रकार मानक मिनिमैक्स की तरह अंतराल या अनुपात माप, साथ ही [[क्रमिक माप]] (रैंकिंग) की आवश्यकता होती है। | ||
Line 40: | Line 41: | ||
{|class="wikitable" | {|class="wikitable" | ||
! | !रिटर्न | ||
!ब्याज दरें बढ़ती हैं | |||
!स्थैतिक दरें | |||
!ब्याज दरें गिरती हैं | |||
!खराब वापसी | |||
|- | |- | ||
! | !स्टाक | ||
| −4 || 4 || 12 || ''−4'' | | −4 || 4 || 12 || ''−4'' | ||
|- | |- | ||
! | !बांड | ||
| −2 || 3 || 8 || ''−2'' | | −2 || 3 || 8 || ''−2'' | ||
|- | |- | ||
! | !मुद्रा बाजार | ||
| 3 || 2 || 1 || ''1'' | | 3 || 2 || 1 || ''1'' | ||
|- | |- | ||
| | |बेस्ट रिटर्न | ||
| ''3'' || ''4'' || ''12'' | | ''3'' || ''4'' || ''12'' | ||
|} | |} | ||
रिटर्न के आधार पर क्रूड [[मैक्सिमम (निर्णय सिद्धांत)]] विकल्प मुद्रा बाजार में निवेश करना होगा, जिससे कम से कम 1 का रिटर्न सुनिश्चित होगा। हालांकि, अगर ब्याज दरें गिरती हैं तो इस विकल्प से जुड़ा | रिटर्न के आधार पर क्रूड [[मैक्सिमम (निर्णय सिद्धांत)]] विकल्प मुद्रा बाजार में निवेश करना होगा, जिससे कम से कम 1 का रिटर्न सुनिश्चित होगा। हालांकि, अगर ब्याज दरें गिरती हैं तो इस विकल्प से जुड़ा रिग्रेट बड़ा होगा। यह 11 होगा, जो 12 के बीच का अंतर है जो प्राप्त हो सकता था यदि परिणाम पहले से ज्ञात होता और 1 प्राप्त होता। शेयरों में लगभग 11.1% और मुद्रा बाजार में 88.9% के मिश्रित पोर्टफोलियो ने कम से कम 2.22 का रिटर्न सुनिश्चित किया होगा; लेकिन, यदि ब्याज दरें गिरीं, तो लगभग 9.78 का रिग्रेट होगा। | ||
इस उदाहरण के लिए खेद तालिका, सर्वोत्तम रिटर्न से वास्तविक रिटर्न घटाकर बनाई गई है, इस प्रकार है: | इस उदाहरण के लिए खेद तालिका, सर्वोत्तम रिटर्न से वास्तविक रिटर्न घटाकर बनाई गई है, इस प्रकार है: | ||
Line 70: | Line 75: | ||
| 0 || 2 || 11 || ''11'' | | 0 || 2 || 11 || ''11'' | ||
|} | |} | ||
इसलिए, | इसलिए, रिग्रेट के आधार पर एक न्यूनतम विकल्प का उपयोग करते हुए, सबसे अच्छा तरीका बांड में निवेश करना होगा, जिससे यह सुनिश्चित हो सके कि रिग्रेट 5 से अधिक बुरा न हो। एक मिश्रित निवेश पोर्टफोलियो और भी बेहतर प्रदर्शन करेगा: स्टॉक में निवेश किया गया 61.1% और मुद्रा बाजार में 38.9% निवेश लगभग 4.28 से अधिक रिग्रेट नहीं पैदा करेगा। | ||
==उदाहरण: रैखिक अनुमान सेटिंग== | ==उदाहरण: रैखिक अनुमान सेटिंग== | ||
निम्नलिखित एक उदाहरण है कि कैसे खेद की अवधारणा का उपयोग एक रेखीय अनुमानक को डिजाइन करने के लिए किया जा सकता है। | निम्नलिखित एक उदाहरण है कि कैसे खेद की अवधारणा का उपयोग एक रेखीय अनुमानक को डिजाइन करने के लिए किया जा सकता है। | ||
इस उदाहरण में, समस्या एक परिमित-आयामी पैरामीटर वेक्टर के रैखिक अनुमानक का निर्माण करना है <math>x</math> ज्ञात शोर सहप्रसरण संरचना के साथ इसके शोर रैखिक माप से। के पुनर्निर्माण का नुकसान <math>x</math> माध्य-वर्ग त्रुटि (MSE) का उपयोग करके मापा जाता है। अज्ञात पैरामीटर वेक्टर एक [[दीर्घवृत्ताभ]] में स्थित होने के लिए जाना जाता है <math>E</math> शून्य पर केंद्रित. | इस उदाहरण में, समस्या एक परिमित-आयामी पैरामीटर वेक्टर के रैखिक अनुमानक का निर्माण करना है <math>x</math> ज्ञात शोर सहप्रसरण संरचना के साथ इसके शोर रैखिक माप से। के पुनर्निर्माण का नुकसान <math>x</math> माध्य-वर्ग त्रुटि (MSE) का उपयोग करके मापा जाता है। अज्ञात पैरामीटर वेक्टर एक [[दीर्घवृत्ताभ]] में स्थित होने के लिए जाना जाता है <math>E</math> शून्य पर केंद्रित. रिग्रेट को रैखिक अनुमानक के एमएसई के बीच अंतर के रूप में परिभाषित किया गया है जो पैरामीटर को नहीं जानता है <math>x</math>, और रैखिक अनुमानक का एमएसई जो जानता है <math>x</math>. इसके अलावा, चूंकि अनुमानक रैखिक होने तक सीमित है, इसलिए बाद वाले मामले में शून्य एमएसई हासिल नहीं किया जा सकता है। इस मामले में, उत्तल अनुकूलन समस्या का समाधान इष्टतम, न्यूनतम रिग्रेट-न्यूनतम रैखिक अनुमानक देता है, जिसे निम्नलिखित तर्क द्वारा देखा जा सकता है। | ||
मान्यताओं के अनुसार, मनाया गया वेक्टर <math>y</math> और अज्ञात नियतात्मक पैरामीटर वेक्टर <math>x</math> रैखिक | मान्यताओं के अनुसार, मनाया गया वेक्टर <math>y</math> और अज्ञात नियतात्मक पैरामीटर वेक्टर <math>x</math> रैखिक प्रारूप से बंधे हैं | ||
:<math>y=Hx+w</math> | :<math>y=Hx+w</math> | ||
कहाँ <math>H</math> एक ज्ञात है <math>n \times m</math> पूर्ण कॉलम रैंक के साथ मैट्रिक्स <math>m</math>, और <math>w</math> ज्ञात सहप्रसरण मैट्रिक्स के साथ एक शून्य माध्य यादृच्छिक वेक्टर है <math>C_w</math>. | कहाँ <math>H</math> एक ज्ञात है <math>n \times m</math> पूर्ण कॉलम रैंक के साथ मैट्रिक्स <math>m</math>, और <math>w</math> ज्ञात सहप्रसरण मैट्रिक्स के साथ एक शून्य माध्य यादृच्छिक वेक्टर है <math>C_w</math>. | ||
Line 84: | Line 89: | ||
का एक रेखीय अनुमान हो <math>x</math> से <math>y</math>, कहाँ <math>G</math> है कुछ <math>m \times n</math> आव्यूह। इस अनुमानक का MSE द्वारा दिया गया है | का एक रेखीय अनुमान हो <math>x</math> से <math>y</math>, कहाँ <math>G</math> है कुछ <math>m \times n</math> आव्यूह। इस अनुमानक का MSE द्वारा दिया गया है | ||
:<math>MSE = E\left(||\hat{x}-x||^2\right) = Tr(GC_wG^*) + x^*(I-GH)^*(I-GH)x.</math> | :<math>MSE = E\left(||\hat{x}-x||^2\right) = Tr(GC_wG^*) + x^*(I-GH)^*(I-GH)x.</math> | ||
चूंकि एमएसई स्पष्ट रूप से निर्भर करता है <math>x</math> इसे सीधे तौर पर कम नहीं किया जा सकता. इसके बजाय, अच्छे एमएसई प्रदर्शन के साथ एक रैखिक अनुमानक को परिभाषित करने के लिए | चूंकि एमएसई स्पष्ट रूप से निर्भर करता है <math>x</math> इसे सीधे तौर पर कम नहीं किया जा सकता. इसके बजाय, अच्छे एमएसई प्रदर्शन के साथ एक रैखिक अनुमानक को परिभाषित करने के लिए रिग्रेट की अवधारणा का उपयोग किया जा सकता है। यहां रिग्रेट को परिभाषित करने के लिए, एक रैखिक अनुमानक पर विचार करें जो पैरामीटर का मूल्य जानता है <math>x</math>, यानी, मैट्रिक्स <math>G</math> स्पष्ट रूप से निर्भर हो सकता है <math>x</math>: | ||
:<math>\hat{x}^o=G(x)y.</math> | :<math>\hat{x}^o=G(x)y.</math> | ||
का एमएसई <math>\hat{x}^o</math> है | का एमएसई <math>\hat{x}^o</math> है | ||
Line 94: | Line 99: | ||
इसे प्रतिस्थापित करना <math>G(x)</math> में वापस <math>MSE^o</math>, एक मिलता है | इसे प्रतिस्थापित करना <math>G(x)</math> में वापस <math>MSE^o</math>, एक मिलता है | ||
:<math>MSE^o=\frac{x^*x}{1+x^*H^*C_w^{-1}Hx}.</math> | :<math>MSE^o=\frac{x^*x}{1+x^*H^*C_w^{-1}Hx}.</math> | ||
यह एक रैखिक अनुमान के साथ प्राप्त किया जाने वाला सबसे छोटा एमएसई है जो जानता है <math>x</math>. व्यवहार में यह एमएसई हासिल नहीं किया जा सकता है, लेकिन यह इष्टतम एमएसई पर एक बंधन के रूप में कार्य करता है। द्वारा निर्दिष्ट रैखिक अनुमानक का उपयोग करने का | यह एक रैखिक अनुमान के साथ प्राप्त किया जाने वाला सबसे छोटा एमएसई है जो जानता है <math>x</math>. व्यवहार में यह एमएसई हासिल नहीं किया जा सकता है, लेकिन यह इष्टतम एमएसई पर एक बंधन के रूप में कार्य करता है। द्वारा निर्दिष्ट रैखिक अनुमानक का उपयोग करने का रिग्रेट <math>G</math> के बराबर है | ||
:<math>R(x,G)=MSE-MSE^o=Tr(GC_wG^*) + x^*(I-GH)^*(I-GH)x-\frac{x^*x}{1+x^*H^*C_w^{-1}Hx}.</math> | :<math>R(x,G)=MSE-MSE^o=Tr(GC_wG^*) + x^*(I-GH)^*(I-GH)x-\frac{x^*x}{1+x^*H^*C_w^{-1}Hx}.</math> | ||
यहां न्यूनतम | यहां न्यूनतम रिग्रेट दृष्टिकोण सबसे खराब स्थिति वाले रिग्रेट को कम करने के लिए है, अर्थात, | ||
<math>\sup_{x\in E} R(x,G).</math> यह पैरामीटर के सबसे खराब मामले में सर्वोत्तम प्राप्त करने योग्य प्रदर्शन के जितना करीब हो सके प्रदर्शन की अनुमति देगा <math>x</math>. यद्यपि यह समस्या कठिन प्रतीत होती है, यह [[उत्तल अनुकूलन]] का एक उदाहरण है और विशेष रूप से एक संख्यात्मक समाधान की कुशलतापूर्वक गणना की जा सकती है।<ref>{{cite journal |first1=Y. C. |last1=Eldar |first2=A. |last2=Ben-Tal |first3=A. |last3=Nemirovski |title=लीनियर मिनिमैक्स सीमित डेटा अनिश्चितताओं के साथ नियतात्मक मापदंडों के आकलन पर खेद व्यक्त करता है|journal=IEEE Trans. Signal Process. |volume=52 |issue=8 |pages=2177–2188 |year=2004 |doi=10.1109/TSP.2004.831144 |bibcode=2004ITSP...52.2177E }}</ref> इसी तरह के विचारों का उपयोग कब किया जा सकता है <math>x</math> सहप्रसरण मैट्रिक्स में अनिश्चितता के साथ यादृच्छिक है।<ref>{{cite journal |first1=Y. C. |last1=Eldar |first2=Neri |last2=Merhav |title=रैंडम पैरामीटर्स के मजबूत अनुमान के लिए एक प्रतिस्पर्धी मिनिमैक्स दृष्टिकोण|journal=IEEE Trans. Signal Process. |volume=52 |issue=7 |pages=1931–1946 |year=2004 |doi=10.1109/TSP.2004.828931 |bibcode=2004ITSP...52.1931E }}</ref><ref>{{cite journal |first1=Y. C. |last1=Eldar |first2=Neri |last2=Merhav |title=सिग्नल सहप्रसरण अनिश्चितताओं के साथ मिनिमैक्स एमएसई-अनुपात अनुमान|journal=IEEE Trans. Signal Process. |volume=53 |issue=4 |pages=1335–1347 |year=2005 |doi=10.1109/TSP.2005.843701 |bibcode=2005ITSP...53.1335E }}</ref> | <math>\sup_{x\in E} R(x,G).</math> यह पैरामीटर के सबसे खराब मामले में सर्वोत्तम प्राप्त करने योग्य प्रदर्शन के जितना करीब हो सके प्रदर्शन की अनुमति देगा <math>x</math>. यद्यपि यह समस्या कठिन प्रतीत होती है, यह [[उत्तल अनुकूलन]] का एक उदाहरण है और विशेष रूप से एक संख्यात्मक समाधान की कुशलतापूर्वक गणना की जा सकती है।<ref>{{cite journal |first1=Y. C. |last1=Eldar |first2=A. |last2=Ben-Tal |first3=A. |last3=Nemirovski |title=लीनियर मिनिमैक्स सीमित डेटा अनिश्चितताओं के साथ नियतात्मक मापदंडों के आकलन पर खेद व्यक्त करता है|journal=IEEE Trans. Signal Process. |volume=52 |issue=8 |pages=2177–2188 |year=2004 |doi=10.1109/TSP.2004.831144 |bibcode=2004ITSP...52.2177E }}</ref> इसी तरह के विचारों का उपयोग कब किया जा सकता है <math>x</math> सहप्रसरण मैट्रिक्स में अनिश्चितता के साथ यादृच्छिक है।<ref>{{cite journal |first1=Y. C. |last1=Eldar |first2=Neri |last2=Merhav |title=रैंडम पैरामीटर्स के मजबूत अनुमान के लिए एक प्रतिस्पर्धी मिनिमैक्स दृष्टिकोण|journal=IEEE Trans. Signal Process. |volume=52 |issue=7 |pages=1931–1946 |year=2004 |doi=10.1109/TSP.2004.828931 |bibcode=2004ITSP...52.1931E }}</ref><ref>{{cite journal |first1=Y. C. |last1=Eldar |first2=Neri |last2=Merhav |title=सिग्नल सहप्रसरण अनिश्चितताओं के साथ मिनिमैक्स एमएसई-अनुपात अनुमान|journal=IEEE Trans. Signal Process. |volume=53 |issue=4 |pages=1335–1347 |year=2005 |doi=10.1109/TSP.2005.843701 |bibcode=2005ITSP...53.1335E }}</ref> | ||
==यह भी देखें== | ==यह भी देखें== | ||
* [[प्रतिस्पर्धी पछतावा]] | * [[प्रतिस्पर्धी पछतावा|प्रतिस्पर्धी रिग्रेट]] | ||
* निर्णय सिद्धांत | * निर्णय सिद्धांत | ||
* [[सूचना-अंतराल निर्णय सिद्धांत]] | * [[सूचना-अंतराल निर्णय सिद्धांत]] | ||
* [[लॉस फंकशन]] | * [[लॉस फंकशन]] | ||
* मिनिमैक्स | * मिनिमैक्स | ||
* | * रिग्रेट (भावना) | ||
* वाल्ड का मैक्सिमम | * वाल्ड का मैक्सिमम प्रारूप | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 13:21, 4 August 2023
निर्णय सिद्धांत में, अनिश्चितता के तहत निर्णय लेने पर सर्वोत्तम कार्रवाई के बारे में जानकारी निश्चित निर्णय के बाद आए मानवीय भावनात्मक प्रतिक्रिया का अनुभव किया जा सकता है, और इसे लिए गए निर्णय और इष्टतम निर्णय के बीच अंतर के मूल्य के रूप में मापा जा सकता है।।
'रिग्रेट एवर्शन' या 'प्रत्याशित रिग्रेट' के सिद्धांत का अर्थ है कि जब व्यक्ति निर्णय के सामने होते हैं, तो वे रिग्रेट की पूर्वानुमान कर सकते हैं और इसलिए अपने चयन में रिग्रेट को नष्ट करने या कम करने की इच्छा को सम्मिलित करते हैं। रिग्रेट एक नकारात्मक भावना है जिसमें एक शक्तिशाली सामाजिक और प्रतिष्ठा संबंध होता है, और इसे मानव अनुभव से सीखने और जोखिम से बचने के मानवीय मनोविज्ञान में केंद्रीय बनाया गया है। रिग्रेट की सचेत अपेक्षा ने एक प्रतिक्रिया गति उत्पन्न की है जो रिग्रेट को भावनात्मक क्षेत्र से पार कर देती है जिसे प्रायः केवल मानव व्यवहार के रूप में देखा जाता है और जो निर्णय सिद्धांत में प्रारूप किए गए तथ्यों के क्षेत्र में तार्किक चयन व्यवहार मे किया जाता है।
विवरण
रिग्रेट थ्योरी सैद्धांतिक अर्थशास्त्र में एक प्रारूप है जिसे 1982 में ग्राहम लूम्स और रॉबर्ट सुगडेन द्वारा एक साथ विकसित किया गया था।[1] डेविड ई. बेल,[2] और पीटर सी. फिशबर्न।[3] रिग्रेट सिद्धांत प्रत्याशित रिग्रेट के प्रभाव को ध्यान में रखते हुए अनिश्चितता के अंतर्गत चुनाव का प्रारूप तैयार करता है। इसके बाद, कई अन्य लेखकों ने इसमें सुधार किया।[4]यह उपयोगिता फलन में एक रिग्रेट शब्द को सम्मिलित करता है जो नकारात्मक रूप से वास्तविक परिणाम पर निर्भर करता है और सकारात्मक रूप से अनिश्चितता समाधान को देखते हुए सर्वोत्तम वैकल्पिक परिणाम पर निर्भर करता है। यह रिग्रेट शब्द सामान्यतः पारंपरिक उपयोगिता सूचकांक में घटाया गया एक बढ़ता हुआ, निरंतर और गैर-नकारात्मक कार्य है। इस प्रकार की प्राथमिकताएँ सदैव पारंपरिक अर्थों में सकर्मक संबंध का उल्लंघन करती हैं,[5] यद्यपि अधिकांश कमजोर संस्करण को संतुष्ट करती हैं।[4]
साक्ष्य
कई प्रयोग उपयोगार्थी और कल्पनात्मक चयनों के लिए यह प्रभाव की महत्ता की पुष्टि करते हैं।
प्रथम मूल्य नीलामी में प्रयोगों से यह दिखाया गया है कि प्रतिस्पर्धियों के और प्रतिस्पर्धियों के बीच औसत बोलियों में महत्वपूर्ण अंतर होता है। विशेष रूप से, "हारने का पछतावा" उस बिद नीलामी के सभी प्रतिभागियों को प्रकट करके उत्पन्न किया जा सकता है,[6] और इस तरह हारने वालों को बताया जा सकता है कि उन्हें क्या लाभ हासिल किया जा सकता था और यह कितना हो सकता था जैसे, एक प्रतिभागी का मूल्यांकन $50 है, वह $30 बोलता है और जानता है कि जीतने वाली बोली $35 थी, तो उसे यह भी पता चल जाएगा कि उसे $35 से ऊपर कुछ भी बोलकर $15 कमा सकता था। इससे प्रतिस्पर्धियों को पछतावे की संभावना होती है और यदि बोलने वाले सही तरह से इसकी पूर्वानुमान करते हैं, तो उन्हें पछतावे की संभावना को कम करने के लिए जीतने से अधिक बोलने की प्रवृत्ति होती है।
लॉटरी पर निर्णयों में, प्रयोग प्रत्याशित रिग्रेट का सहायक साक्ष्य भी प्रदान करते हैं।[7][8][9] जैसा कि पहली कीमत की नीलामी के विषय में होता है, अनिश्चितता के समाधान पर फीडबैक में अंतर के कारण रिग्रेट की संभावना हो सकती है और यदि इसकी आशंका है, तो यह अलग-अलग प्राथमिकताओं को प्रेरित कर सकता है।
उदाहरण के लिए, जब निश्चितता के साथ $40 और सिक्के को उछालने पर $100 का भुगतान करने वाले विकल्प का सामना करना पड़ता है, यदि परिणाम का सही अनुमान लगाया जाता है और $0 अन्यथा, निश्चित भुगतान विकल्प न केवल जोखिम को कम करता है, बल्कि रिग्रेट की संभावना को भी कम करता है, क्योंकि सामान्यतः सिक्का उछाला नहीं जाएगा जबकि यदि सिक्का उछाला जाता है, तो $0 का भुगतान करने वाला परिणाम रिग्रेट उत्पन्न करता है। यदि चुने गए विकल्प की परवाह किए बिना सिक्का उछाला जाता है, तो वैकल्पिक भुगतान सदैव ज्ञात रहता और पुनः कोई विकल्प नहीं रहता है जो रिग्रेट की संभावना को खत्म कर दे।
प्रत्याशित रिग्रेट और अनुभवी रिग्रेट
पूर्वानुमानित रिग्रेट वे विकल्पों और कार्रवाइयों के लिए अधिक अनुमानित होता है जिनमें लोग अपने आप को जिम्मेदार महसूस करते हैं। लोग खासकर उन वस्तुओ के लिए रिग्रेट को अधिक अनुमानित करते हैं जिन्हें वे एक छोटे सीमा तक चाहते हुए भी प्राप्त नहीं कर सकते हैं। एक अध्ययन में, यात्रियों ने यह पूर्वानुमान किया कि उन्हें अधिक रिग्रेट का अनुभव होगा यदि उन्होंने ट्रेन 1 मिनट के बाद यात्रा नहीं की तो उन्होंने ट्रेन 5 मिनट के बाद यात्रा नहीं की, उदाहरणार्थ, परंतु वास्तविकता में, जिन यात्रियों ने वास्तविकता में 1 या 5 मिनट के बाद ट्रेन मिस की थी, उन्होंने कम रिग्रेट का अनुभव किया। यात्रियों को ऐसा अनुमान लगता था कि वे ट्रेन को छोटी सीमा तक मिस करने पर वे ज्यादा रिग्रेट का अनुभव करेगे, क्योंकि उन्होंने ट्रेन को यात्रा न करने का दोष बाह्य कारणों को कम मान लिया।[10]
अनुप्रयोग
लॉटरी पर विकल्पों की पारंपरिक सेटिंग के अलावा, पहली कीमत की नीलामी में सामान्यतः देखी जाने वाली ओवरबिडिंग के लिए एक स्पष्टीकरण के रूप में रिग्रेट एवर्शन का प्रस्ताव किया गया है,[11] और स्वभाव प्रभाव,[12] दूसरों के बीच में।
अल्पमहिष्ठ रिग्रेट
मिनिमैक्स रिग्रेट दृष्टिकोण सबसे खराब स्थिति वाले रिग्रेट को कम करने के लिए है, जिसे मूल रूप से 1951 में लियोनार्ड सैवेज द्वारा प्रस्तुत किया गया था।[13] इसका उद्देश्य इष्टतम पाठ्यक्रम के जितना करीब संभव हो सके प्रदर्शन करना है। चूंकि यहां लागू मिनिमैक्स मानदंड भुगतान के बजाय रिग्रेट (भुगतान का अंतर या अनुपात) पर है, इसलिए यह सामान्य मिनिमैक्स दृष्टिकोण जितना निराशावादी नहीं है। समान दृष्टिकोणों का उपयोग विभिन्न क्षेत्रों में किया गया है जैसे:
मिनिमैक्स का एक लाभ (अपेक्षित रिग्रेट के विपरीत) यह है कि यह विभिन्न परिणामों की संभावनाओं से स्वतंत्र है: इस प्रकार यदि रिग्रेट की सटीक गणना की जा सकती है, तो कोई विश्वसनीय रूप से मिनिमैक्स रिग्रेट का उपयोग कर सकता है। हालाँकि, परिणामों की संभावनाओं का अनुमान लगाना कठिन है।
यह मानक मिनिमैक्स दृष्टिकोण से भिन्न है क्योंकि यह परिणामों के बीच अंतर या अनुपात का उपयोग करता है, और इस प्रकार मानक मिनिमैक्स की तरह अंतराल या अनुपात माप, साथ ही क्रमिक माप (रैंकिंग) की आवश्यकता होती है।
उदाहरण
मान लीजिए कि किसी निवेशक को स्टॉक, बॉन्ड या मुद्रा बाजार में निवेश के बीच चयन करना है, और कुल रिटर्न इस पर निर्भर करता है कि ब्याज दरों पर क्या होता है। निम्न तालिका कुछ संभावित रिटर्न दिखाती है:
रिटर्न | ब्याज दरें बढ़ती हैं | स्थैतिक दरें | ब्याज दरें गिरती हैं | खराब वापसी |
---|---|---|---|---|
स्टाक | −4 | 4 | 12 | −4 |
बांड | −2 | 3 | 8 | −2 |
मुद्रा बाजार | 3 | 2 | 1 | 1 |
बेस्ट रिटर्न | 3 | 4 | 12 |
रिटर्न के आधार पर क्रूड मैक्सिमम (निर्णय सिद्धांत) विकल्प मुद्रा बाजार में निवेश करना होगा, जिससे कम से कम 1 का रिटर्न सुनिश्चित होगा। हालांकि, अगर ब्याज दरें गिरती हैं तो इस विकल्प से जुड़ा रिग्रेट बड़ा होगा। यह 11 होगा, जो 12 के बीच का अंतर है जो प्राप्त हो सकता था यदि परिणाम पहले से ज्ञात होता और 1 प्राप्त होता। शेयरों में लगभग 11.1% और मुद्रा बाजार में 88.9% के मिश्रित पोर्टफोलियो ने कम से कम 2.22 का रिटर्न सुनिश्चित किया होगा; लेकिन, यदि ब्याज दरें गिरीं, तो लगभग 9.78 का रिग्रेट होगा।
इस उदाहरण के लिए खेद तालिका, सर्वोत्तम रिटर्न से वास्तविक रिटर्न घटाकर बनाई गई है, इस प्रकार है:
Regret | Interest rates rise | Static rates | Interest rates fall | Worst regret |
---|---|---|---|---|
Stocks | 7 | 0 | 0 | 7 |
Bonds | 5 | 1 | 4 | 5 |
Money market | 0 | 2 | 11 | 11 |
इसलिए, रिग्रेट के आधार पर एक न्यूनतम विकल्प का उपयोग करते हुए, सबसे अच्छा तरीका बांड में निवेश करना होगा, जिससे यह सुनिश्चित हो सके कि रिग्रेट 5 से अधिक बुरा न हो। एक मिश्रित निवेश पोर्टफोलियो और भी बेहतर प्रदर्शन करेगा: स्टॉक में निवेश किया गया 61.1% और मुद्रा बाजार में 38.9% निवेश लगभग 4.28 से अधिक रिग्रेट नहीं पैदा करेगा।
उदाहरण: रैखिक अनुमान सेटिंग
निम्नलिखित एक उदाहरण है कि कैसे खेद की अवधारणा का उपयोग एक रेखीय अनुमानक को डिजाइन करने के लिए किया जा सकता है। इस उदाहरण में, समस्या एक परिमित-आयामी पैरामीटर वेक्टर के रैखिक अनुमानक का निर्माण करना है ज्ञात शोर सहप्रसरण संरचना के साथ इसके शोर रैखिक माप से। के पुनर्निर्माण का नुकसान माध्य-वर्ग त्रुटि (MSE) का उपयोग करके मापा जाता है। अज्ञात पैरामीटर वेक्टर एक दीर्घवृत्ताभ में स्थित होने के लिए जाना जाता है शून्य पर केंद्रित. रिग्रेट को रैखिक अनुमानक के एमएसई के बीच अंतर के रूप में परिभाषित किया गया है जो पैरामीटर को नहीं जानता है , और रैखिक अनुमानक का एमएसई जो जानता है . इसके अलावा, चूंकि अनुमानक रैखिक होने तक सीमित है, इसलिए बाद वाले मामले में शून्य एमएसई हासिल नहीं किया जा सकता है। इस मामले में, उत्तल अनुकूलन समस्या का समाधान इष्टतम, न्यूनतम रिग्रेट-न्यूनतम रैखिक अनुमानक देता है, जिसे निम्नलिखित तर्क द्वारा देखा जा सकता है।
मान्यताओं के अनुसार, मनाया गया वेक्टर और अज्ञात नियतात्मक पैरामीटर वेक्टर रैखिक प्रारूप से बंधे हैं
कहाँ एक ज्ञात है पूर्ण कॉलम रैंक के साथ मैट्रिक्स , और ज्ञात सहप्रसरण मैट्रिक्स के साथ एक शून्य माध्य यादृच्छिक वेक्टर है .
होने देना
का एक रेखीय अनुमान हो से , कहाँ है कुछ आव्यूह। इस अनुमानक का MSE द्वारा दिया गया है
चूंकि एमएसई स्पष्ट रूप से निर्भर करता है इसे सीधे तौर पर कम नहीं किया जा सकता. इसके बजाय, अच्छे एमएसई प्रदर्शन के साथ एक रैखिक अनुमानक को परिभाषित करने के लिए रिग्रेट की अवधारणा का उपयोग किया जा सकता है। यहां रिग्रेट को परिभाषित करने के लिए, एक रैखिक अनुमानक पर विचार करें जो पैरामीटर का मूल्य जानता है , यानी, मैट्रिक्स स्पष्ट रूप से निर्भर हो सकता है :
का एमएसई है
इष्टतम खोजने के लिए , के संबंध में विभेदित है और व्युत्पन्न 0 प्राप्त करने के बराबर है
फिर, मैट्रिक्स उलटा लेम्मा का उपयोग करें
इसे प्रतिस्थापित करना में वापस , एक मिलता है
यह एक रैखिक अनुमान के साथ प्राप्त किया जाने वाला सबसे छोटा एमएसई है जो जानता है . व्यवहार में यह एमएसई हासिल नहीं किया जा सकता है, लेकिन यह इष्टतम एमएसई पर एक बंधन के रूप में कार्य करता है। द्वारा निर्दिष्ट रैखिक अनुमानक का उपयोग करने का रिग्रेट के बराबर है
यहां न्यूनतम रिग्रेट दृष्टिकोण सबसे खराब स्थिति वाले रिग्रेट को कम करने के लिए है, अर्थात,
यह पैरामीटर के सबसे खराब मामले में सर्वोत्तम प्राप्त करने योग्य प्रदर्शन के जितना करीब हो सके प्रदर्शन की अनुमति देगा . यद्यपि यह समस्या कठिन प्रतीत होती है, यह उत्तल अनुकूलन का एक उदाहरण है और विशेष रूप से एक संख्यात्मक समाधान की कुशलतापूर्वक गणना की जा सकती है।[14] इसी तरह के विचारों का उपयोग कब किया जा सकता है सहप्रसरण मैट्रिक्स में अनिश्चितता के साथ यादृच्छिक है।[15][16]
यह भी देखें
- प्रतिस्पर्धी रिग्रेट
- निर्णय सिद्धांत
- सूचना-अंतराल निर्णय सिद्धांत
- लॉस फंकशन
- मिनिमैक्स
- रिग्रेट (भावना)
- वाल्ड का मैक्सिमम प्रारूप
संदर्भ
- ↑ Loomes, G.; Sugden, R. (1982). "Regret theory: An alternative theory of rational choice under uncertainty". Economic Journal. 92 (4): 805–824. doi:10.2307/2232669. JSTOR 2232669.
- ↑ Bell, D. E. (1982). "अनिश्चितता की स्थिति में निर्णय लेने में पछतावा". Operations Research. 30 (5): 961–981. doi:10.1287/opre.30.5.961.
- ↑ Fishburn, P. C. (1982). अपेक्षित उपयोगिता की नींव. Theory & Decision Library. ISBN 90-277-1420-7.
- ↑ 4.0 4.1 Diecidue, E.; Somasundaram, J. (2017). "Regret Theory: A New Foundation". Journal of Economic Theory. 172: 88–119. doi:10.1016/j.jet.2017.08.006.
- ↑ Bikhchandani, S.; Segal, U. (2011). "सकर्मक खेद". Theoretical Economics. 6 (1): 95–108. doi:10.3982/TE738.
- ↑ Filiz-Ozbay, E.; Ozbay, E. Y. (2007). "Auctions with anticipated regret: Theory and experiment". American Economic Review. 97 (4): 1407–1418. doi:10.1257/aer.97.4.1407. S2CID 51815774.
- ↑ Zeelenberg, M.; Beattie, J.; Van der Pligt, J.; de Vries, N. K. (1996). "Consequences of regret aversion: Effects of expected feedback on risky decision making". Organizational Behavior and Human Decision Processes. 65 (2): 148–158. doi:10.1006/obhd.1996.0013.
- ↑ Zeelenberg, M.; Beattie, J. (1997). "Consequences of regret aversion 2: Additional evidence for effects of feedback on decision making". Organizational Behavior and Human Decision Processes. 72 (1): 63–78. doi:10.1006/obhd.1997.2730.
- ↑ Somasundaram, J.; Diecidue, E. (2016). "खेद सिद्धांत और जोखिम दृष्टिकोण". Journal of Risk and Uncertainty. 55 (2–3): 1–29. doi:10.1007/s11166-017-9268-9.
- ↑ Gilbert, Daniel T.; Morewedge, Carey K.; Risen, Jane L.; Wilson, Timothy D. (2004-05-01). "पीछे की ओर देखने के लिए आगे की ओर देखना पछतावे की गलत भविष्यवाणी". Psychological Science (in English). 15 (5): 346–350. CiteSeerX 10.1.1.492.9980. doi:10.1111/j.0956-7976.2004.00681.x. ISSN 0956-7976. PMID 15102146.
- ↑ Engelbrecht-Wiggans, R. (1989). "नीलामी में इष्टतम बोली पर पछतावे का प्रभाव". Management Science. 35 (6): 685–692. doi:10.1287/mnsc.35.6.685. hdl:2142/28707.
- ↑ Fogel, S. O. C.; Berry, T. (2006). "The disposition effect and individual investor decisions: the roles of regret and counterfactual alternatives". Journal of Behavioral Finance. 7 (2): 107–116. doi:10.1207/s15427579jpfm0702_5.
- ↑ Savage, L. J. (1951). "सांख्यिकीय निर्णय का सिद्धांत". Journal of the American Statistical Association. 46 (253): 55–67. doi:10.1080/01621459.1951.10500768.
- ↑ Eldar, Y. C.; Ben-Tal, A.; Nemirovski, A. (2004). "लीनियर मिनिमैक्स सीमित डेटा अनिश्चितताओं के साथ नियतात्मक मापदंडों के आकलन पर खेद व्यक्त करता है". IEEE Trans. Signal Process. 52 (8): 2177–2188. Bibcode:2004ITSP...52.2177E. doi:10.1109/TSP.2004.831144.
- ↑ Eldar, Y. C.; Merhav, Neri (2004). "रैंडम पैरामीटर्स के मजबूत अनुमान के लिए एक प्रतिस्पर्धी मिनिमैक्स दृष्टिकोण". IEEE Trans. Signal Process. 52 (7): 1931–1946. Bibcode:2004ITSP...52.1931E. doi:10.1109/TSP.2004.828931.
- ↑ Eldar, Y. C.; Merhav, Neri (2005). "सिग्नल सहप्रसरण अनिश्चितताओं के साथ मिनिमैक्स एमएसई-अनुपात अनुमान". IEEE Trans. Signal Process. 53 (4): 1335–1347. Bibcode:2005ITSP...53.1335E. doi:10.1109/TSP.2005.843701.
बाहरी संबंध
- "TUTORIAL G05: Decision theory". Archived from the original on 3 July 2015.