सामान्यीकृत ध्वज विविधता: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
फ्लैग की विविधताओं को व्यापकता के विभिन्न स्तरों में परिभाषित किया जा सकता है। प्रोटोटाइप फ़ील्ड '''F''' के ऊपर [[ सदिश स्थल |सदिश स्थल]] ''V'' में पूर्ण फ्लैग्स की विविधता है, जो कि '''F''' के ऊपर [[विशेष रैखिक समूह]] के लिए फ्लैग विविधता है। अन्य फ्लैग विविधतायें आंशिक फ्लैग्स पर विचार करके, या विशेष रैखिक समूह से उपसमूहों जैसे [[सहानुभूति समूह]] पर प्रतिबंध लगाकर उत्पन्न होती हैं। आंशिक फ्लैग्स के लिए, किसी को विचाराधीन फ्लैग्स के आयामों का क्रम निर्दिष्ट करना होगा। रैखिक समूह के उपसमूहों के लिए, फ्लैग्स पर अतिरिक्त शर्तें लगाई जानी चाहिए। | फ्लैग की विविधताओं को व्यापकता के विभिन्न स्तरों में परिभाषित किया जा सकता है। प्रोटोटाइप फ़ील्ड '''F''' के ऊपर [[ सदिश स्थल |सदिश स्थल]] ''V'' में पूर्ण फ्लैग्स की विविधता है, जो कि '''F''' के ऊपर [[विशेष रैखिक समूह]] के लिए फ्लैग विविधता है। अन्य फ्लैग विविधतायें आंशिक फ्लैग्स पर विचार करके, या विशेष रैखिक समूह से उपसमूहों जैसे [[सहानुभूति समूह]] पर प्रतिबंध लगाकर उत्पन्न होती हैं। आंशिक फ्लैग्स के लिए, किसी को विचाराधीन फ्लैग्स के आयामों का क्रम निर्दिष्ट करना होगा। रैखिक समूह के उपसमूहों के लिए, फ्लैग्स पर अतिरिक्त शर्तें लगाई जानी चाहिए। | ||
सबसे सामान्य अर्थ में, सामान्यीकृत फ्लैग विविधता को एक '''प्रक्षेप्य सजातीय विविधता''' के रूप में परिभाषित किया गया है, अर्थात, क्षेत्र | सबसे सामान्य अर्थ में, सामान्यीकृत फ्लैग विविधता को एक '''प्रक्षेप्य सजातीय विविधता''' के रूप में परिभाषित किया गया है, अर्थात, क्षेत्र F पर स्मूथ योजना प्रक्षेप्य विविधता ''X हैं जिसमें एक'' [[रिडक्टिव समूह]] ''G'' (और स्मूथ स्टेबलाइज़र उपसमूह; यह [[विशेषता (बीजगणित)]] शून्य के '''F''' के लिए कोई प्रतिबंध नहीं है) की सकर्मक कार्रवाई के साथ है। यदि ''X'' में '''F'''-[[तर्कसंगत बिंदु]] है, तो यह ''G'' के कुछ [[परवलयिक उपसमूह]] ''P'' के लिए ''G''/''P'' के समरूपी है। प्रक्षेपी सजातीय विविधता को ''G'' के प्रक्षेपित [[समूह प्रतिनिधित्व]] में उच्चतम भार वेक्टर की समूह के रूप में भी अनुभव किया जा सकता है। जटिल प्रक्षेप्य सजातीय विविधतायें परवलयिक प्रकार के कार्टन ज्यामिति के लिए [[ सघन स्थान |कॉम्पैक्ट फ्लैट]] मॉडल स्थान हैं। वे ''G'' के किसी भी अधिकतम कॉम्पैक्ट उपसमूह के अनुसार सजातीय [[रीमैनियन मैनिफोल्ड]] हैं, और वे त्रुटिहीन रूप से कॉम्पैक्ट लाई समूहों की सह-संयुक्त समूह हैं। | ||
फ्लैग मैनिफ़ोल्ड [[सममित स्थान]] हो सकते हैं। जटिल संख्याओं पर, संबंधित फ्लैग मैनिफोल्ड [[हर्मिटियन सममित स्थान]] हैं। वास्तविक संख्याओं पर, एक ''R''-स्पेस वास्तविक फ्लैग मैनिफ़ोल्ड का पर्याय है और संबंधित सममित रिक्त स्थान को सममित ''R''-स्पेस कहा जाता है। | फ्लैग मैनिफ़ोल्ड [[सममित स्थान]] हो सकते हैं। जटिल संख्याओं पर, संबंधित फ्लैग मैनिफोल्ड [[हर्मिटियन सममित स्थान]] हैं। वास्तविक संख्याओं पर, एक ''R''-स्पेस वास्तविक फ्लैग मैनिफ़ोल्ड का पर्याय है और संबंधित सममित रिक्त स्थान को सममित ''R''-स्पेस कहा जाता है। | ||
Line 37: | Line 37: | ||
आंशिक ध्वज विविधता F हस्ताक्षर के सभी फ्लैग्स (d<sub>1</sub>, d<sub>2</sub>, ... d<sub>k</sub>) का स्थान है, जो आयाम n = d<sub>k</sub> से अधिक '''F''' के वेक्टर स्थान V में है। पूर्ण ध्वज विविधता विशेष स्थिति है कि d<sub>''i''</sub> = ''i'' सभी के लिए ''i''। जब k=2, यह V के d<sub>''1''</sub>-आयामी उप-स्थानों का [[ग्रासमैनियन]] है। | आंशिक ध्वज विविधता F हस्ताक्षर के सभी फ्लैग्स (d<sub>1</sub>, d<sub>2</sub>, ... d<sub>k</sub>) का स्थान है, जो आयाम n = d<sub>k</sub> से अधिक '''F''' के वेक्टर स्थान V में है। पूर्ण ध्वज विविधता विशेष स्थिति है कि d<sub>''i''</sub> = ''i'' सभी के लिए ''i''। जब k=2, यह V के d<sub>''1''</sub>-आयामी उप-स्थानों का [[ग्रासमैनियन]] है। | ||
यह '''F''' के ऊपर V के सामान्य रैखिक समूह G के लिए एक सजातीय स्थान है। स्पष्ट होने के लिए, V = F<sup>n</sup> लें | यह '''F''' के ऊपर V के सामान्य रैखिक समूह G के लिए एक सजातीय स्थान है। स्पष्ट होने के लिए, V = F<sup>n</sup> लें जिससे G = GL(n,'''F''')। आयाम d<sub>''i''</sub> के नेस्टेड उप-स्थान V<sub>''i''</sub> के ध्वज के स्टेबलाइजर को नॉनसिंगुलर [[ब्लॉक मैट्रिक्स]] निचले त्रिकोणीय मैट्रिक्स के समूह के रूप में लिया जा सकता है, जहां ब्लॉक के आयाम n''<sub>i</sub>'' := d<sub>''i''</sub> - d<sub>''i''</sub>−1 (d<sub>''0''</sub> = 0 के साथ) हैं। | ||
निर्धारक के आव्यूहों तक सीमित, यह SL(n,' | निर्धारक के आव्यूहों तक सीमित, यह SL(n,''''F'''<nowiki/>') का परवलयिक उपसमूह P है, और इस प्रकार आंशिक फ्लैग विविधता सजातीय स्थान SL(n,''''F'''<nowiki/>')/P के लिए समरूपी है। | ||
यदि ''''F'''<nowiki/>' वास्तविक या जटिल संख्या है, तो किसी भी फ्लैग को सीधे योग में विभाजित करने के लिए आंतरिक उत्पाद का उपयोग किया जा सकता है, और इसलिए आंशिक फ्लैग विविधता भी जटिल स्थिति में सजातीय स्थान | यदि ''''F'''<nowiki/>' वास्तविक या जटिल संख्या है, तो किसी भी फ्लैग को सीधे योग में विभाजित करने के लिए आंतरिक उत्पाद का उपयोग किया जा सकता है, और इसलिए आंशिक फ्लैग विविधता भी जटिल स्थिति में सजातीय स्थान | ||
Line 47: | Line 47: | ||
के लिए आइसोमोर्फिक है। | के लिए आइसोमोर्फिक है। | ||
== [[अर्धसरल समूह]] | == [[अर्धसरल समूह|अर्धसरल समूहों]] का सामान्यीकरण == | ||
निर्धारक के ऊपरी त्रिकोणीय मैट्रिक्स | निर्धारक के ऊपरी त्रिकोणीय मैट्रिक्स SL(''n'','''F''') के बोरेल उपसमूह हैं, और इसलिए आंशिक फ्लैग के स्टेबलाइजर्स परवलयिक उपसमूह हैं। इसके अतिरिक्त, आंशिक फ्लैग परवलयिक उपसमूह द्वारा निर्धारित किया जाता है जो इसे स्थिर करता है। | ||
इसलिए, अधिक सामान्यतः, यदि G अर्धसरल समूह [[रैखिक बीजगणितीय समूह]] या | इसलिए, अधिक सामान्यतः, यदि G अर्धसरल समूह [[रैखिक बीजगणितीय समूह]] या लाई समूह है, तो G के लिए (सामान्यीकृत) फ्लैग विविधता G/P है जहां P, G का परवलयिक उपसमूह है। परवलयिक उपसमूहों और सामान्यीकृत फ्लैग विविधताओं के बीच पत्राचार प्रत्येक को दूसरे के संदर्भ में समझने की अनुमति देता है। | ||
शब्दावली फ्लैग विविधता का विस्तार उचित है, क्योंकि | शब्दावली फ्लैग विविधता का विस्तार उचित है, क्योंकि ''G''/''P'' के बिंदुओं को अभी भी फ्लैग का उपयोग करके वर्णित किया जा सकता है। जब G पारंपरिक [[झूठ समूह|लाई समूह]] है, जैसे कि सिम्प्लेक्टिक समूह या [[ऑर्थोगोनल समूह]], तो यह विशेष रूप से पारदर्शी होता है। यदि (V, ω) सहानुभूतिपूर्ण सदिश समष्टि है तो V में आंशिक फ्लैग [[समदैशिक]] है यदि फ्लैग में V के उचित उप-स्थानों पर सहानुभूतिपूर्ण रूप लुप्त हो जाता है। आइसोट्रोपिक फ्लैग का स्टेबलाइज़र सिम्प्लेक्टिक समूह Sp(V,ω) का परवलयिक उपसमूह है। ऑर्थोगोनल समूहों के लिए कुछ जटिलताओं के साथ समान तस्वीर है। सबसे पहले, यदि ''''F'''<nowiki/>' बीजगणितीय रूप से बंद नहीं है, तो आइसोट्रोपिक उप-स्थान उपस्थित नहीं हो सकते हैं: सामान्य सिद्धांत के लिए, किसी को [[विभाजित ऑर्थोगोनल समूह|विभाजित ऑर्थोगोनल समूहों]] का उपयोग करने की आवश्यकता होती है। दूसरा, सम आयाम 2m के सदिश स्थानों के लिए, आयाम m के आइसोट्रोपिक उप-स्थान दो स्वादों ("सेल्फ-डुअल" और "एंटी-सेल्फ-डुअल") में आते हैं और सजातीय स्थान प्राप्त करने के लिए इन्हें अलग करने की आवश्यकता होती है। | ||
==सहसंरचना== | ==सहसंरचना== | ||
यदि G कॉम्पैक्ट, कनेक्टेड | यदि G एक कॉम्पैक्ट, कनेक्टेड लाई समूह है, तो इसमें [[अधिकतम टोरस]] T होता है और [[भागफल टोपोलॉजी]] के साथ बाएं कोसेट का स्थान G/T एक कॉम्पैक्ट वास्तविक मैनिफोल्ड होता है। यदि H, T युक्त G का कोई अन्य बंद, जुड़ा हुआ उपसमूह है, तो G/H एक अन्य सघन वास्तविक मैनिफोल्ड (दोनों वास्तव में कॉम्प्लेक्सिफिकेशन (लाई समूह) के माध्यम से कैनोनिकल विधि से जटिल सजातीय स्थान हैं।) है। | ||
जटिल संरचना और [[सेलुलर समरूपता]] | एक जटिल संरचना और [[सेलुलर समरूपता]] (सह)होमोलॉजी की उपस्थिति से यह देखना आसान हो जाता है कि G/H की [[ कोहोमोलोजी रिंग |कोहोमोलोजी रिंग]] सम डिग्री में केंद्रित है, किन्तु वास्तव में, कुछ अधिक शक्तिशाली कहा जा सकता है। चूँकि G → G/H एक प्रमुख H-बंडल है, इसलिए वर्गीकृत स्थान BH को लक्षित करने वाला एक वर्गीकृत माप G/H → BH उपस्थित है। यदि हम क्रम G → G/H → BH में G/H को समरूप भागफल GH से प्रतिस्थापित करते हैं, तो हमें एक प्रमुख G-बंडल प्राप्त होता है, जिसे G पर H की सही गुणन क्रिया का बोरेल फ़िब्रेशन कहा जाता है, और हम कोहोमोलॉजिकल सेरे का उपयोग कर सकते हैं फाइबर-प्रतिबंध समरूपता H*(G/H) → H*(G) और विशेषता माप H*(BH) → H*(G/H) को समझने के लिए इस बंडल का [[सेरे वर्णक्रमीय अनुक्रम]], इसलिए कहा जाता है क्योंकि इसकी छवि, H*(G/H) का विशिष्ट उपरिंग, मूल बंडल H → G → G/H के विशिष्ट वर्गों को वहन करता है। | ||
और विशेषता | |||
आइए अब हम | आइए अब हम अपने गुणांक वलय को विशेषता शून्य के क्षेत्र k तक सीमित रखें, जिससे, हॉपफ के प्रमेय के अनुसार, H*(G) विषम डिग्री ([[आदिम तत्व (सह-बीजगणित)|अभाज्य तत्वों (सह-बीजगणित)]] का उपस्थान) के जनरेटर पर एक [[बाहरी बीजगणित]] हो। यह इस प्रकार है कि किनारे [[समरूपता|समरूपताएँ]] | ||
हॉपफ | |||
:<math>E_{r+1}^{0,r} \to E_{r+1}^{r+1,0}</math> | :<math>E_{r+1}^{0,r} \to E_{r+1}^{r+1,0}</math> | ||
वर्णक्रमीय अनुक्रम को अंततः पृष्ठ E के बाएँ स्तंभ H*(G) में | वर्णक्रमीय अनुक्रम को अंततः पृष्ठ E<sub>2</sub> के बाएँ स्तंभ H*(G) में अभाज्य तत्वों का स्थान विशेष रूप से निचली पंक्ति H*(BH) में लेना चाहिए: हम जानते हैं कि G और H की रैंक समान है, इसलिए यदि संग्रह किनारे की समरूपता अभाज्य उप-स्थान पर पूर्ण रैंक नहीं थी, फिर अनुक्रम के अंतिम पृष्ठ H*(G/H) में निचली पंक्ति H*(BH) की छवि k-वेक्टर स्थान के रूप में अनंत-आयामी होगी, जो असंभव है, उदाहरण के लिए सेलुलर कोहोमोलॉजी द्वारा फिर से, क्योंकि एक कॉम्पैक्ट सजातीय स्थान एक सीमित [[सीडब्ल्यू कॉम्प्लेक्स]] को स्वीकार करता है। | ||
इसलिए यदि | |||
इस प्रकार रिंग मैप H*(G/H) → H*(G) इस स्थिति में तुच्छ है, और विशेषता | इस प्रकार रिंग मैप H*(G/H) → H*(G) इस स्थिति में तुच्छ है, और विशेषता माप विशेषण है, जिससे H*(G/H) H*(BH) का भागफल हो। माप का कर्नेल किनारे समरूपता के अनुसार अभाज्य तत्वों की छवियों द्वारा उत्पन्न आदर्श है जो कि G में H के समावेश से प्रेरित विहित माप ''H''*(''BG'') → ''H''*(''BH'') की छवि में सकारात्मक-डिग्री तत्वों द्वारा उत्पन्न आदर्श भी है। | ||
माप H*(BG) → H*(BT) इन्जेक्टिव है, और इसी प्रकार H के लिए, छवि के साथ [[वेइल समूह]] की कार्रवाई के अनुसार अपरिवर्तनीय तत्वों की उप-श्रेणी H*(BT)W(G) है, इसलिए कोई अंततः प्राप्त करता है संक्षिप्त विवरण | |||
:<math>H^*(G/H) \cong H^*(BT)^{W(H)}/\big(\widetilde{H}^*(BT)^{W(G)}\big),</math> | :<math>H^*(G/H) \cong H^*(BT)^{W(H)}/\big(\widetilde{H}^*(BT)^{W(G)}\big),</math> | ||
जहाँ <math>\widetilde H^*</math> सकारात्मक-डिग्री तत्वों और कोष्ठक आदर्श की पीढ़ी को दर्शाता है। उदाहरण के लिए, संपूर्ण जटिल फ्लैग मैनिफोल्ड के लिए U(n)/T<sup>n</sup>, के पास है | |||
:<math>H^*\big(U(n)/T^n\big) \cong \mathbb{Q}[t_1,\ldots,t_n]/(\sigma_1,\ldots,\sigma_n),</math> | :<math>H^*\big(U(n)/T^n\big) \cong \mathbb{Q}[t_1,\ldots,t_n]/(\sigma_1,\ldots,\sigma_n),</math> | ||
जहां | जहां t<sub>''j''</sub> डिग्री 2 और σ<sub>''j''</sub> के हैं चर t<sub>''j''</sub> में पहले n [[प्राथमिक सममित बहुपद]] है। अधिक ठोस उदाहरण के लिए, n = 2 लें, जिससे U(2)/[U(1) × U(1)] जटिल ग्रासमैनियन Gr(1,<sup>2</sup>) ≈ ''P''<sup>1</sup> ≈ ''S''<sup>2</sup> हो। फिर हम अपेक्षा करते हैं कि कोहोमोलॉजी रिंग डिग्री दो ([[मौलिक वर्ग]]) के जनरेटर पर बाहरी बीजगणित होगी, और वास्तविक में, | ||
:<math>H^*\big(U(2)/T^2\big) \cong \mathbb{Q}[t_1,t_2]/(t_1 + t_2, t_1 t_2) | :<math>H^*\big(U(2)/T^2\big) \cong \mathbb{Q}[t_1,t_2]/(t_1 + t_2, t_1 t_2) | ||
\cong \mathbb{Q}[t_1]/(t_1^2),</math> | \cong \mathbb{Q}[t_1]/(t_1^2),</math> | ||
जैसी कि आशा | जैसी कि आशा थी। | ||
==उच्चतम भार समूह और प्रक्षेप्य सजातीय विविधतायें== | ==उच्चतम भार समूह और प्रक्षेप्य सजातीय विविधतायें== | ||
यदि G अर्धसरल बीजगणितीय समूह (या | यदि G अर्धसरल बीजगणितीय समूह (या लाई समूह) है और V, G का (परिमित आयामी) उच्चतम भार प्रतिनिधित्व है, तो उच्चतम भार स्थान [[प्रक्षेप्य स्थान]] P(V) में बिंदु है और G की क्रिया के अनुसार इसकी समूह प्रक्षेप्य बीजगणितीय विविधता है। यह विविधता (सामान्यीकृत) फ्लैग विविधता है, और इसके अतिरिक्त, G के लिए प्रत्येक (सामान्यीकृत) फ्लैग विविधता इस तरह से उत्पन्न होती है। | ||
[[आर्मंड बोरेल]] ने दिखाया{{Citation needed|reason=Need to cite the paper where Borel proves what follows|date=March 2021}} कि यह सामान्य अर्धसरल बीजगणितीय समूह | [[आर्मंड बोरेल]] ने दिखाया{{Citation needed|reason=Need to cite the paper where Borel proves what follows|date=March 2021}} कि यह सामान्य अर्धसरल बीजगणितीय समूह G की फ्लैग विविधताओं की विशेषता है: वे बिल्कुल G की पूर्ण विविधता वाले सजातीय स्थान हैं, या समकक्ष (इस संदर्भ में), प्रक्षेप्य सजातीय G-विविधतायें हैं। | ||
==सममित स्थान== | ==सममित स्थान== | ||
{{main|Symmetric space}} | {{main|Symmetric space}} | ||
मान लीजिए G अधिकतम सघन उपसमूह K के साथ अर्धसरल | मान लीजिए G अधिकतम सघन उपसमूह K के साथ अर्धसरल लाई समूह है। तब K परवलयिक उपसमूहों के किसी भी संयुग्मन वर्ग पर संक्रमणीय रूप से कार्य करता है, और इसलिए सामान्यीकृत फ्लैग विविधता G/P आइसोमेट्री समूह K के साथ सघन सजातीय रीमैनियन मैनिफोल्ड K/(K∩P) है। इसके अतिरिक्त, यदि G जटिल लाई समूह है, तो G/P सजातीय काहलर मैनिफोल्ड है। | ||
इसे चारों ओर घुमाते हुए, रीमैनियन सजातीय स्थान | इसे चारों ओर घुमाते हुए, रीमैनियन सजातीय स्थान | ||
Line 96: | Line 93: | ||
:एम = के/(के∩पी) | :एम = के/(के∩पी) | ||
परिवर्तनों के सख्ती से बड़े | परिवर्तनों के सख्ती से बड़े लाई समूह को स्वीकार करें, अर्थात् G। इस स्थिति में विशेषज्ञता कि एम सममित स्थान है, यह अवलोकन इतने बड़े समरूपता समूह को स्वीकार करने वाले सभी सममित स्थान उत्पन्न करता है, और इन स्थानों को कोबायाशी और नागानो द्वारा वर्गीकृत किया गया है। | ||
यदि G जटिल | यदि G जटिल लाई समूह है, तो इस तरह से उत्पन्न होने वाले सममित स्थान M कॉम्पैक्ट हर्मिटियन सममित स्थान हैं: K आइसोमेट्री समूह है, और G, M का बिहोलोमोर्फिज्म समूह है। | ||
वास्तविक संख्याओं पर, वास्तविक फ्लैग मैनिफोल्ड को आर-स्पेस भी कहा जाता है, और आर-स्पेस जो कि के के | वास्तविक संख्याओं पर, वास्तविक फ्लैग मैनिफोल्ड को आर-स्पेस भी कहा जाता है, और आर-स्पेस जो कि के के अनुसार रीमैनियन सममित स्थान हैं, सममित आर-स्पेस के रूप में जाने जाते हैं। सममित आर-स्पेस जो हर्मिटियन सममित नहीं हैं, G को बायोलोमोर्फिज्म समूह G का वास्तविक रूप मानकर प्राप्त किए जाते हैं।<sup>सी</sup>हर्मिटियन सममित स्थान G का<sup>सी</sup>/पी<sup>c</sup> ऐसा कि P := P<sup>c</sup>∩G, G का परवलयिक उपसमूह है। उदाहरणों में प्रक्षेप्य स्थान (G के साथ [[प्रक्षेप्य परिवर्तन]]ों का समूह) और गोले (G के साथ [[अनुरूप परिवर्तन]]ों का समूह) शामिल हैं। | ||
==यह भी देखें== | ==यह भी देखें== | ||
* [[परवलयिक झूठ बीजगणित]] | * [[परवलयिक झूठ बीजगणित|परवलयिक लाई बीजगणित]] | ||
* [[ब्रुहट अपघटन]] | * [[ब्रुहट अपघटन]] | ||
Line 110: | Line 107: | ||
* Robert J. Baston and Michael G. Eastwood, ''The Penrose Transform: its Interaction with Representation Theory'', Oxford University Press, 1989. | * Robert J. Baston and Michael G. Eastwood, ''The Penrose Transform: its Interaction with Representation Theory'', Oxford University Press, 1989. | ||
* Jürgen Berndt, ''[http://www.mth.kcl.ac.uk/~berndt/sophia.pdf | * Jürgen Berndt, ''[http://www.mth.kcl.ac.uk/~berndt/sophia.pdf लाई group actions on manifolds]'', Lecture notes, Tokyo, 2002. | ||
* Jürgen Berndt, Sergio Console and Carlos Olmos, ''[https://books.google.com/books?id=u3w4f63rmU8C Submanifolds and Holonomy]'', Chapman & Hall/CRC Press, 2003. | * Jürgen Berndt, Sergio Console and Carlos Olmos, ''[https://books.google.com/books?id=u3w4f63rmU8C Submanifolds and Holonomy]'', Chapman & Hall/CRC Press, 2003. | ||
* Michel Brion, ''[http://www-fourier.ujf-grenoble.fr/~mbrion/notes.html Lectures on the geometry of flag varieties]'', Lecture notes, Varsovie, 2003. | * Michel Brion, ''[http://www-fourier.ujf-grenoble.fr/~mbrion/notes.html Lectures on the geometry of flag varieties]'', Lecture notes, Varsovie, 2003. | ||
* [[James E. Humphreys]], ''[https://books.google.com/books?id=hNgRLxlwL8oC Linear Algebraic Groups]'', Graduate Texts in Mathematics, 21, Springer-Verlag, 1972. | * [[James E. Humphreys]], ''[https://books.google.com/books?id=hNgRLxlwL8oC Linear Algebraic Groups]'', Graduate Texts in Mathematics, 21, Springer-Verlag, 1972. | ||
* S. Kobayashi and T. Nagano, ''On filtered | * S. Kobayashi and T. Nagano, ''On filtered लाई algebras and geometric structures'' I, II, J. Math. Mech. '''13''' (1964), 875–907, '''14''' (1965) 513–521. | ||
{{Authority control}}[[Category: विभेदक ज्यामिति]] [[Category: बीजगणितीय सजातीय रिक्त स्थान]] | {{Authority control}}[[Category: विभेदक ज्यामिति]] [[Category: बीजगणितीय सजातीय रिक्त स्थान]] |
Revision as of 14:02, 2 August 2023
गणित में, सामान्यीकृत फ्लैग विविधता (या बस फ्लैग विविधता) सजातीय स्थान है जिसके बिंदु फ़ील्ड (गणित) F पर परिमित-आयामी वेक्टर स्थान V में फ्लैग (रैखिक बीजगणित) होते हैं। जब F वास्तविक या जटिल संख्या होती है, तो सामान्यीकृत फ्लैग विविधता स्मूथ मैनिफोल्ड या जटिल मैनिफोल्ड होती है, जिसे वास्तविक या जटिल फ्लैग मैनिफोल्ड कहा जाता है। फ्लैग की विविधतायें स्वाभाविक रूप से प्रक्षेपी विविधता हैं।
फ्लैग की विविधताओं को व्यापकता के विभिन्न स्तरों में परिभाषित किया जा सकता है। प्रोटोटाइप फ़ील्ड F के ऊपर सदिश स्थल V में पूर्ण फ्लैग्स की विविधता है, जो कि F के ऊपर विशेष रैखिक समूह के लिए फ्लैग विविधता है। अन्य फ्लैग विविधतायें आंशिक फ्लैग्स पर विचार करके, या विशेष रैखिक समूह से उपसमूहों जैसे सहानुभूति समूह पर प्रतिबंध लगाकर उत्पन्न होती हैं। आंशिक फ्लैग्स के लिए, किसी को विचाराधीन फ्लैग्स के आयामों का क्रम निर्दिष्ट करना होगा। रैखिक समूह के उपसमूहों के लिए, फ्लैग्स पर अतिरिक्त शर्तें लगाई जानी चाहिए।
सबसे सामान्य अर्थ में, सामान्यीकृत फ्लैग विविधता को एक प्रक्षेप्य सजातीय विविधता के रूप में परिभाषित किया गया है, अर्थात, क्षेत्र F पर स्मूथ योजना प्रक्षेप्य विविधता X हैं जिसमें एक रिडक्टिव समूह G (और स्मूथ स्टेबलाइज़र उपसमूह; यह विशेषता (बीजगणित) शून्य के F के लिए कोई प्रतिबंध नहीं है) की सकर्मक कार्रवाई के साथ है। यदि X में F-तर्कसंगत बिंदु है, तो यह G के कुछ परवलयिक उपसमूह P के लिए G/P के समरूपी है। प्रक्षेपी सजातीय विविधता को G के प्रक्षेपित समूह प्रतिनिधित्व में उच्चतम भार वेक्टर की समूह के रूप में भी अनुभव किया जा सकता है। जटिल प्रक्षेप्य सजातीय विविधतायें परवलयिक प्रकार के कार्टन ज्यामिति के लिए कॉम्पैक्ट फ्लैट मॉडल स्थान हैं। वे G के किसी भी अधिकतम कॉम्पैक्ट उपसमूह के अनुसार सजातीय रीमैनियन मैनिफोल्ड हैं, और वे त्रुटिहीन रूप से कॉम्पैक्ट लाई समूहों की सह-संयुक्त समूह हैं।
फ्लैग मैनिफ़ोल्ड सममित स्थान हो सकते हैं। जटिल संख्याओं पर, संबंधित फ्लैग मैनिफोल्ड हर्मिटियन सममित स्थान हैं। वास्तविक संख्याओं पर, एक R-स्पेस वास्तविक फ्लैग मैनिफ़ोल्ड का पर्याय है और संबंधित सममित रिक्त स्थान को सममित R-स्पेस कहा जाता है।
सदिश स्थान में फ्लैग
फ़ील्ड 'F' के ऊपर परिमित आयामी वेक्टर स्पेस V में फ्लैग रैखिक उप-स्थानों का बढ़ता हुआ क्रम है, जहां बढ़ने का अर्थ है कि प्रत्येक अगले (निस्पंदन (अमूर्त बीजगणित) देखें) का उचित उप-स्थान है:
यदि हम dim Vi = di लिखें तो हमारे पास है
जहां n, V का आयाम (रैखिक बीजगणित) है। इसलिए, हमारे पास k ≤ n होना चाहिए। एक फ्लैग को पूर्ण फ्लैग कहा जाता है यदि सभी i के लिए di = i हो, अन्यथा इसे आंशिक फ्लैग कहा जाता है। फ्लैग का हस्ताक्षर अनुक्रम (d1, ..., dk) है।
कुछ उप-स्थानों को हटाकर पूर्ण फ्लैग से आंशिक फ्लैग प्राप्त किया जा सकता है। इसके विपरीत, किसी भी आंशिक फ्लैग को उपयुक्त उप-स्थान डालकर (कई भिन्न-भिन्न विधियों से) पूरा किया जा सकता है।
प्रोटोटाइप: संपूर्ण फ्लैग विविधता
रैखिक बीजगणित के मूल परिणामों के अनुसार, फ़ील्ड 'F' के ऊपर n-आयामी वेक्टर स्पेस V में कोई भी दो पूर्ण फ्लैग ज्यामितीय दृष्टिकोण से एक दूसरे से अलग नहीं हैं। कहने का तात्पर्य यह है कि सामान्य रैखिक समूह समूह क्रिया (गणित) सभी पूर्ण फ्लैग्स के सेट पर सकर्मक रूप से कार्य करता है।
V के लिए एक क्रमबद्ध आधार (रैखिक बीजगणित) तय करें, इसकी पहचान Fn से करें, जिसका सामान्य रैखिक समूह n × n व्युत्क्रमणीय आव्यूहों का समूह GL(n,F) है। इस आधार से जुड़ा मानक फ्लैग वह है जहां ith उपस्थान को आधार के पहले i वैक्टर द्वारा प्रसारित किया जाता है। इस आधार के सापेक्ष, मानक फ्लैग का स्टेबलाइज़र (समूह सिद्धांत) नॉनसिंगुलर निचले त्रिकोणीय मैट्रिक्स का समूह (गणित) है, जिसे हम Bn द्वारा दर्शाते हैं। इसलिए संपूर्ण फ्लैग विविधता को एक सजातीय स्थान GL(n,'F') / Bn के रूप में लिखा जा सकता है, जो विशेष रूप से दर्शाता है कि इसका 'F' के ऊपर आयाम n(n−1)/2 है।
ध्यान दें कि पहचान के गुणक सभी फ्लैग्स पर तुच्छ रूप से कार्य करते हैं, और इसलिए कोई व्यक्ति निर्धारक वाले आव्यूहों के विशेष रैखिक समूह SL(n,'F') पर ध्यान केंद्रित कर सकता है, जो अर्धसरल बीजगणितीय समूह है; सारणिक के निचले त्रिकोणीय मैट्रिक्स का सेट बोरेल उपसमूह है।
यदि फ़ील्ड 'F' वास्तविक या जटिल संख्या है तो हम वी पर आंतरिक उत्पाद प्रस्तुत कर सकते हैं जैसे कि चुना गया आधार ऑर्थोनॉर्मल है। कोई भी पूर्ण फ्लैग ऑर्थोगोनल पूरक लेकर एक-आयामी उप-स्थानों के प्रत्यक्ष योग में विभाजित हो जाता है। इससे यह निष्कर्ष निकलता है कि जटिल संख्याओं पर पूरा फ्लैग मैनिफोल्ड सजातीय स्थान है
जहां U(n) एकात्मक समूह है और Tn विकर्ण एकात्मक आव्यूहों का n-टोरस है। वास्तविक संख्याओं पर समान विवरण है जिसमें U(n) को ऑर्थोगोनल समूह O(n) और T द्वारा प्रतिस्थापित किया गया है, और Tn को विकर्ण ऑर्थोगोनल मैट्रिक्स (जिसमें विकर्ण प्रविष्टियाँ ±1 हैं) द्वारा प्रतिस्थापित किया गया है।
आंशिक फ्लैग विविधतायें
आंशिक फ्लैग विविधता
आंशिक ध्वज विविधता F हस्ताक्षर के सभी फ्लैग्स (d1, d2, ... dk) का स्थान है, जो आयाम n = dk से अधिक F के वेक्टर स्थान V में है। पूर्ण ध्वज विविधता विशेष स्थिति है कि di = i सभी के लिए i। जब k=2, यह V के d1-आयामी उप-स्थानों का ग्रासमैनियन है।
यह F के ऊपर V के सामान्य रैखिक समूह G के लिए एक सजातीय स्थान है। स्पष्ट होने के लिए, V = Fn लें जिससे G = GL(n,F)। आयाम di के नेस्टेड उप-स्थान Vi के ध्वज के स्टेबलाइजर को नॉनसिंगुलर ब्लॉक मैट्रिक्स निचले त्रिकोणीय मैट्रिक्स के समूह के रूप में लिया जा सकता है, जहां ब्लॉक के आयाम ni := di - di−1 (d0 = 0 के साथ) हैं।
निर्धारक के आव्यूहों तक सीमित, यह SL(n,'F') का परवलयिक उपसमूह P है, और इस प्रकार आंशिक फ्लैग विविधता सजातीय स्थान SL(n,'F')/P के लिए समरूपी है।
यदि 'F' वास्तविक या जटिल संख्या है, तो किसी भी फ्लैग को सीधे योग में विभाजित करने के लिए आंतरिक उत्पाद का उपयोग किया जा सकता है, और इसलिए आंशिक फ्लैग विविधता भी जटिल स्थिति में सजातीय स्थान
या वास्तविक स्थिति में
के लिए आइसोमोर्फिक है।
अर्धसरल समूहों का सामान्यीकरण
निर्धारक के ऊपरी त्रिकोणीय मैट्रिक्स SL(n,F) के बोरेल उपसमूह हैं, और इसलिए आंशिक फ्लैग के स्टेबलाइजर्स परवलयिक उपसमूह हैं। इसके अतिरिक्त, आंशिक फ्लैग परवलयिक उपसमूह द्वारा निर्धारित किया जाता है जो इसे स्थिर करता है।
इसलिए, अधिक सामान्यतः, यदि G अर्धसरल समूह रैखिक बीजगणितीय समूह या लाई समूह है, तो G के लिए (सामान्यीकृत) फ्लैग विविधता G/P है जहां P, G का परवलयिक उपसमूह है। परवलयिक उपसमूहों और सामान्यीकृत फ्लैग विविधताओं के बीच पत्राचार प्रत्येक को दूसरे के संदर्भ में समझने की अनुमति देता है।
शब्दावली फ्लैग विविधता का विस्तार उचित है, क्योंकि G/P के बिंदुओं को अभी भी फ्लैग का उपयोग करके वर्णित किया जा सकता है। जब G पारंपरिक लाई समूह है, जैसे कि सिम्प्लेक्टिक समूह या ऑर्थोगोनल समूह, तो यह विशेष रूप से पारदर्शी होता है। यदि (V, ω) सहानुभूतिपूर्ण सदिश समष्टि है तो V में आंशिक फ्लैग समदैशिक है यदि फ्लैग में V के उचित उप-स्थानों पर सहानुभूतिपूर्ण रूप लुप्त हो जाता है। आइसोट्रोपिक फ्लैग का स्टेबलाइज़र सिम्प्लेक्टिक समूह Sp(V,ω) का परवलयिक उपसमूह है। ऑर्थोगोनल समूहों के लिए कुछ जटिलताओं के साथ समान तस्वीर है। सबसे पहले, यदि 'F' बीजगणितीय रूप से बंद नहीं है, तो आइसोट्रोपिक उप-स्थान उपस्थित नहीं हो सकते हैं: सामान्य सिद्धांत के लिए, किसी को विभाजित ऑर्थोगोनल समूहों का उपयोग करने की आवश्यकता होती है। दूसरा, सम आयाम 2m के सदिश स्थानों के लिए, आयाम m के आइसोट्रोपिक उप-स्थान दो स्वादों ("सेल्फ-डुअल" और "एंटी-सेल्फ-डुअल") में आते हैं और सजातीय स्थान प्राप्त करने के लिए इन्हें अलग करने की आवश्यकता होती है।
सहसंरचना
यदि G एक कॉम्पैक्ट, कनेक्टेड लाई समूह है, तो इसमें अधिकतम टोरस T होता है और भागफल टोपोलॉजी के साथ बाएं कोसेट का स्थान G/T एक कॉम्पैक्ट वास्तविक मैनिफोल्ड होता है। यदि H, T युक्त G का कोई अन्य बंद, जुड़ा हुआ उपसमूह है, तो G/H एक अन्य सघन वास्तविक मैनिफोल्ड (दोनों वास्तव में कॉम्प्लेक्सिफिकेशन (लाई समूह) के माध्यम से कैनोनिकल विधि से जटिल सजातीय स्थान हैं।) है।
एक जटिल संरचना और सेलुलर समरूपता (सह)होमोलॉजी की उपस्थिति से यह देखना आसान हो जाता है कि G/H की कोहोमोलोजी रिंग सम डिग्री में केंद्रित है, किन्तु वास्तव में, कुछ अधिक शक्तिशाली कहा जा सकता है। चूँकि G → G/H एक प्रमुख H-बंडल है, इसलिए वर्गीकृत स्थान BH को लक्षित करने वाला एक वर्गीकृत माप G/H → BH उपस्थित है। यदि हम क्रम G → G/H → BH में G/H को समरूप भागफल GH से प्रतिस्थापित करते हैं, तो हमें एक प्रमुख G-बंडल प्राप्त होता है, जिसे G पर H की सही गुणन क्रिया का बोरेल फ़िब्रेशन कहा जाता है, और हम कोहोमोलॉजिकल सेरे का उपयोग कर सकते हैं फाइबर-प्रतिबंध समरूपता H*(G/H) → H*(G) और विशेषता माप H*(BH) → H*(G/H) को समझने के लिए इस बंडल का सेरे वर्णक्रमीय अनुक्रम, इसलिए कहा जाता है क्योंकि इसकी छवि, H*(G/H) का विशिष्ट उपरिंग, मूल बंडल H → G → G/H के विशिष्ट वर्गों को वहन करता है।
आइए अब हम अपने गुणांक वलय को विशेषता शून्य के क्षेत्र k तक सीमित रखें, जिससे, हॉपफ के प्रमेय के अनुसार, H*(G) विषम डिग्री (अभाज्य तत्वों (सह-बीजगणित) का उपस्थान) के जनरेटर पर एक बाहरी बीजगणित हो। यह इस प्रकार है कि किनारे समरूपताएँ
वर्णक्रमीय अनुक्रम को अंततः पृष्ठ E2 के बाएँ स्तंभ H*(G) में अभाज्य तत्वों का स्थान विशेष रूप से निचली पंक्ति H*(BH) में लेना चाहिए: हम जानते हैं कि G और H की रैंक समान है, इसलिए यदि संग्रह किनारे की समरूपता अभाज्य उप-स्थान पर पूर्ण रैंक नहीं थी, फिर अनुक्रम के अंतिम पृष्ठ H*(G/H) में निचली पंक्ति H*(BH) की छवि k-वेक्टर स्थान के रूप में अनंत-आयामी होगी, जो असंभव है, उदाहरण के लिए सेलुलर कोहोमोलॉजी द्वारा फिर से, क्योंकि एक कॉम्पैक्ट सजातीय स्थान एक सीमित सीडब्ल्यू कॉम्प्लेक्स को स्वीकार करता है।
इस प्रकार रिंग मैप H*(G/H) → H*(G) इस स्थिति में तुच्छ है, और विशेषता माप विशेषण है, जिससे H*(G/H) H*(BH) का भागफल हो। माप का कर्नेल किनारे समरूपता के अनुसार अभाज्य तत्वों की छवियों द्वारा उत्पन्न आदर्श है जो कि G में H के समावेश से प्रेरित विहित माप H*(BG) → H*(BH) की छवि में सकारात्मक-डिग्री तत्वों द्वारा उत्पन्न आदर्श भी है।
माप H*(BG) → H*(BT) इन्जेक्टिव है, और इसी प्रकार H के लिए, छवि के साथ वेइल समूह की कार्रवाई के अनुसार अपरिवर्तनीय तत्वों की उप-श्रेणी H*(BT)W(G) है, इसलिए कोई अंततः प्राप्त करता है संक्षिप्त विवरण
जहाँ सकारात्मक-डिग्री तत्वों और कोष्ठक आदर्श की पीढ़ी को दर्शाता है। उदाहरण के लिए, संपूर्ण जटिल फ्लैग मैनिफोल्ड के लिए U(n)/Tn, के पास है
जहां tj डिग्री 2 और σj के हैं चर tj में पहले n प्राथमिक सममित बहुपद है। अधिक ठोस उदाहरण के लिए, n = 2 लें, जिससे U(2)/[U(1) × U(1)] जटिल ग्रासमैनियन Gr(1,2) ≈ P1 ≈ S2 हो। फिर हम अपेक्षा करते हैं कि कोहोमोलॉजी रिंग डिग्री दो (मौलिक वर्ग) के जनरेटर पर बाहरी बीजगणित होगी, और वास्तविक में,
जैसी कि आशा थी।
उच्चतम भार समूह और प्रक्षेप्य सजातीय विविधतायें
यदि G अर्धसरल बीजगणितीय समूह (या लाई समूह) है और V, G का (परिमित आयामी) उच्चतम भार प्रतिनिधित्व है, तो उच्चतम भार स्थान प्रक्षेप्य स्थान P(V) में बिंदु है और G की क्रिया के अनुसार इसकी समूह प्रक्षेप्य बीजगणितीय विविधता है। यह विविधता (सामान्यीकृत) फ्लैग विविधता है, और इसके अतिरिक्त, G के लिए प्रत्येक (सामान्यीकृत) फ्लैग विविधता इस तरह से उत्पन्न होती है।
आर्मंड बोरेल ने दिखाया[citation needed] कि यह सामान्य अर्धसरल बीजगणितीय समूह G की फ्लैग विविधताओं की विशेषता है: वे बिल्कुल G की पूर्ण विविधता वाले सजातीय स्थान हैं, या समकक्ष (इस संदर्भ में), प्रक्षेप्य सजातीय G-विविधतायें हैं।
सममित स्थान
मान लीजिए G अधिकतम सघन उपसमूह K के साथ अर्धसरल लाई समूह है। तब K परवलयिक उपसमूहों के किसी भी संयुग्मन वर्ग पर संक्रमणीय रूप से कार्य करता है, और इसलिए सामान्यीकृत फ्लैग विविधता G/P आइसोमेट्री समूह K के साथ सघन सजातीय रीमैनियन मैनिफोल्ड K/(K∩P) है। इसके अतिरिक्त, यदि G जटिल लाई समूह है, तो G/P सजातीय काहलर मैनिफोल्ड है।
इसे चारों ओर घुमाते हुए, रीमैनियन सजातीय स्थान
- एम = के/(के∩पी)
परिवर्तनों के सख्ती से बड़े लाई समूह को स्वीकार करें, अर्थात् G। इस स्थिति में विशेषज्ञता कि एम सममित स्थान है, यह अवलोकन इतने बड़े समरूपता समूह को स्वीकार करने वाले सभी सममित स्थान उत्पन्न करता है, और इन स्थानों को कोबायाशी और नागानो द्वारा वर्गीकृत किया गया है।
यदि G जटिल लाई समूह है, तो इस तरह से उत्पन्न होने वाले सममित स्थान M कॉम्पैक्ट हर्मिटियन सममित स्थान हैं: K आइसोमेट्री समूह है, और G, M का बिहोलोमोर्फिज्म समूह है।
वास्तविक संख्याओं पर, वास्तविक फ्लैग मैनिफोल्ड को आर-स्पेस भी कहा जाता है, और आर-स्पेस जो कि के के अनुसार रीमैनियन सममित स्थान हैं, सममित आर-स्पेस के रूप में जाने जाते हैं। सममित आर-स्पेस जो हर्मिटियन सममित नहीं हैं, G को बायोलोमोर्फिज्म समूह G का वास्तविक रूप मानकर प्राप्त किए जाते हैं।सीहर्मिटियन सममित स्थान G कासी/पीc ऐसा कि P := Pc∩G, G का परवलयिक उपसमूह है। उदाहरणों में प्रक्षेप्य स्थान (G के साथ प्रक्षेप्य परिवर्तनों का समूह) और गोले (G के साथ अनुरूप परिवर्तनों का समूह) शामिल हैं।
यह भी देखें
संदर्भ
- Robert J. Baston and Michael G. Eastwood, The Penrose Transform: its Interaction with Representation Theory, Oxford University Press, 1989.
- Jürgen Berndt, लाई group actions on manifolds, Lecture notes, Tokyo, 2002.
- Jürgen Berndt, Sergio Console and Carlos Olmos, Submanifolds and Holonomy, Chapman & Hall/CRC Press, 2003.
- Michel Brion, Lectures on the geometry of flag varieties, Lecture notes, Varsovie, 2003.
- James E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, 21, Springer-Verlag, 1972.
- S. Kobayashi and T. Nagano, On filtered लाई algebras and geometric structures I, II, J. Math. Mech. 13 (1964), 875–907, 14 (1965) 513–521.