क्रॉस-सहप्रसरण: Difference between revisions

From Vigyanwiki
Line 38: Line 38:


===संयुक्त WSS प्रक्रियाओं के लिए परिभाषा===
===संयुक्त WSS प्रक्रियाओं के लिए परिभाषा===
अगर <math>\left\{X_t\right\}</math> और <math>\left\{Y_t\right\}</math> यदि संयुक्त वाइड-सेंस स्टेशनरी हैं| संयुक्त रूप [[संयुक्त व्यापक अर्थ स्थिरता]] हैं, तो निम्नलिखित सत्य हैं:
अगर <math>\left\{X_t\right\}</math> और <math>\left\{Y_t\right\}</math> यदि संयुक्त वाइड-सेंस स्टेशनरी हैं तो यह संयुक्त रूप से [[संयुक्त व्यापक अर्थ स्थिरता|व्यापक अर्थ स्थिरता]] हैं जो सत्य हैं-


:<math>\mu_X(t_1) = \mu_X(t_2) \triangleq \mu_X</math> सभी के लिए <math>t_1,t_2</math>,
:<math>\mu_X(t_1) = \mu_X(t_2) \triangleq \mu_X</math> सभी के लिए <math>t_1,t_2</math>,
Line 46: Line 46:


:<math>\operatorname{K}_{XY}(t_1,t_2) = \operatorname{K}_{XY}(t_2 - t_1,0)</math> सभी के लिए <math>t_1,t_2</math>
:<math>\operatorname{K}_{XY}(t_1,t_2) = \operatorname{K}_{XY}(t_2 - t_1,0)</math> सभी के लिए <math>t_1,t_2</math>
व्यवस्थित करके <math>\tau = t_2 - t_1</math> (समय अंतराल, या समय की मात्रा जिसके द्वारा सिग्नल स्थानांतरित किया गया है), हम परिभाषित कर सकते हैं
यह व्यवस्थित करके <math>\tau = t_2 - t_1</math> (समय अंतराल या समय की मात्रा जिसके द्वारा संकेत स्थानांतरित किया गया है) जिन्हें हम परिभाषित कर सकते हैं


:<math>\operatorname{K}_{XY}(\tau) =  \operatorname{K}_{XY}(t_2 - t_1) \triangleq \operatorname{K}_{XY}(t_1,t_2)</math>.
:<math>\operatorname{K}_{XY}(\tau) =  \operatorname{K}_{XY}(t_2 - t_1) \triangleq \operatorname{K}_{XY}(t_1,t_2)</math>.


इसलिए दो संयुक्त WSS प्रक्रियाओं का क्रॉस-कोवरियन्स फ़ंक्शन इस प्रकार दिया गया है:
इसलिए दो संयुक्त WSS प्रक्रियाओं का प्रतिकूल-विवरण समारोह इस प्रकार दिया गया है-


{{Equation box 1
{{Equation box 1
Line 61: Line 61:
|background colour=#F5FFFA}}
|background colour=#F5FFFA}}


जो के बराबर है
जो इसके बराबर है,


:<math>\operatorname{K}_{XY}(\tau) = \operatorname{cov} (X_{t+\tau}, Y_{t}) = \operatorname{E}[(X_{t+ \tau} - \mu_X)(Y_{t} - \mu_Y)] = \operatorname{E}[X_{t+\tau} Y_t] - \mu_X \mu_Y</math>.
:<math>\operatorname{K}_{XY}(\tau) = \operatorname{cov} (X_{t+\tau}, Y_{t}) = \operatorname{E}[(X_{t+ \tau} - \mu_X)(Y_{t} - \mu_Y)] = \operatorname{E}[X_{t+\tau} Y_t] - \mu_X \mu_Y</math>.

Revision as of 21:16, 2 August 2023

संभाव्यता और सांख्यिकी में, दो प्रसंभाव्य प्रक्रियाएं दी गई हैं और , क्रॉस-सहप्रसरण एक कार्य है जो समय बिंदुओं के जोड़े पर एक प्रक्रिया का दूसरी प्रकिया के साथ विवरण देता है, तथा सामान्य संकेतन के साथ अपेक्षित मूल्य संचालक (गणित) के लिए, प्रक्रियाओं में माध्य कार्य हैं और , प्रतिकूल-विवरण द्वारा दिया जाता है

प्रतिकूल-सहप्रसरण प्रश्न में प्रक्रियाओं के अधिक उपयोग किए जाने वाले क्रॉस-सहसंबंध से संबंधित है।

दो यादृच्छिक सदिशों के स्थान में और , प्रतिकूल विवरण एक होगा आव्यूह (अधिकतर दर्शाया जाता है ) प्रविष्टियों के साथ इस प्रकार अवधारणा को एक यादृच्छिक सदिश के सहप्रसरण से अलग करने के लिए प्रतिकूल-सहप्रसरण शब्द का उपयोग किया जाता है , जिसे अदिश घटकों में सहप्रसरण आव्यूह को समझा जाता है।

संकेत में आगे बढ़ाना प्रतिकूल विवरण को अधिकतर प्रतकूल-सहसंबंध कहा जाता है और यह दो संकेत (सूचना सिद्धांत) की एक समानता माप है, जिसका उपयोग अधिकतर किसी अज्ञात संकेत में किसी ज्ञात संकेत से तुलना करके सुविधाओं को खोजने के लिए किया जाता है। यह संकेतों के बीच सापेक्ष समय का एक कार्य है, इसे कभी-कभी स्लाइडिंग डॉट उत्पाद कहा जाता है और इस संकेत में पहचान और क्रिप्ट विश्लेषण में अनुप्रयोग होते हैं।

यादृच्छिक सदिशों का प्रतिकूल-सहप्रसरण

प्रसंभाव्य प्रक्रियाओं का प्रतिकूल-विवरण

यादृच्छिक सदिशों के प्रतिकूल-विवरण की परिभाषा को निम्नानुसार प्रसंभाव्य प्रक्रिया में सामान्यीकृत किया जा सकता है।

परिभाषा

और विवरण प्रक्रियाओं को निरूपित करें फिर प्रक्रियाओं का प्रतिकूल-विवरण समारोह द्वारा परिभाषित किया गया है।[1]: p.172 

 

 

 

 

(Eq.1)

जहॉं और .

यदि प्रक्रियाएँ जटिल-मूल्यवान विवरण प्रक्रियाएँ हैं, तो दूसरे कारक को जटिल संयुग्मित करने की आवश्यकता होती है।


संयुक्त WSS प्रक्रियाओं के लिए परिभाषा

अगर और यदि संयुक्त वाइड-सेंस स्टेशनरी हैं तो यह संयुक्त रूप से व्यापक अर्थ स्थिरता हैं जो सत्य हैं-

सभी के लिए ,
सभी के लिए

और

सभी के लिए

यह व्यवस्थित करके (समय अंतराल या समय की मात्रा जिसके द्वारा संकेत स्थानांतरित किया गया है) जिन्हें हम परिभाषित कर सकते हैं

.

इसलिए दो संयुक्त WSS प्रक्रियाओं का प्रतिकूल-विवरण समारोह इस प्रकार दिया गया है-

 

 

 

 

(Eq.2)

जो इसके बराबर है,

.

असंबद्धता

दो विवरण प्रक्रियाएं और यदि उनका सहप्रसरण हो तो यह असंबद्ध कहलाते हैं औपचारिक रूप से हर समय के लिए शून्य है।

.

नियतात्मक संकेतों का क्रॉस-सहप्रसरण

क्रॉस-कोवेरिएंस सिग्नल प्रोसेसिंग में भी प्रासंगिक है जहां दो व्यापक-अर्थ स्थिर यादृच्छिक प्रक्रियाओं के बीच क्रॉस-कोवेरिएंस का अनुमान एक प्रक्रिया से मापे गए नमूनों के उत्पाद और दूसरे से मापे गए नमूनों (और इसके समय बदलाव) के औसत से लगाया जा सकता है। औसत में शामिल नमूने सिग्नल में सभी नमूनों का एक मनमाना उपसमूह हो सकते हैं (उदाहरण के लिए, एक सीमित समय विंडो के भीतर नमूने या एक नमूना (सांख्यिकी)|सिग्नलों में से एक का उप-नमूना)। बड़ी संख्या में नमूनों के लिए, औसत वास्तविक सहप्रसरण में परिवर्तित हो जाता है।

क्रॉस-सहप्रसरण दो संकेतों के बीच एक नियतात्मक क्रॉस-सहप्रसरण का भी उल्लेख कर सकता है। इसमें सभी समय सूचकांकों का योग शामिल है। उदाहरण के लिए, असतत-समय संकेतों के लिए और क्रॉस-कोवेरिएंस को इस प्रकार परिभाषित किया गया है

जहां रेखा इंगित करती है कि सिग्नल जटिल-मूल्यवान होने पर जटिल संयुग्म लिया जाता है।

सतत कार्य के लिए और (नियतात्मक) क्रॉस-कोवरियन्स को इस प्रकार परिभाषित किया गया है

.

गुण

दो निरंतर संकेतों का (नियतात्मक) प्रतिकूल-सहप्रसरण रूपांतरण से संबंधित है।

और दो असतत-समय संकेतों का (नियतात्मक) प्रतिकूल-सहप्रसरण- असतत रूपांतरण से संबंधित है।

.

यह भी देखें

  • स्वतः सहप्रसरण।
  • स्वसहसंबंध।
  • सह - संबंध।
  • रूपांतरण।
  • पार सहसंबंध।

संदर्भ

  1. Kun Il Park, Fundamentals of Probability and Stochastic Processes with Applications to Communications, Springer, 2018, 978-3-319-68074-3


बाहरी संबंध