निर्णय नियम: Difference between revisions
From Vigyanwiki
m (added Category:Vigyan Ready using HotCat) |
|||
Line 18: | Line 18: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 26/07/2023]] | [[Category:Created On 26/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 15:33, 10 August 2023
निर्णय सिद्धांत में, निर्णय नियम एक फलन है जो एक उचित कार्रवाई के लिए एक अवलोकन को माप करता है। निर्णय नियम सांख्यिकी और अर्थशास्त्र के सिद्धांत में एक महत्वपूर्ण भूमिका निभाते हैं, और गेम सिद्धांत में एक रणनीति (गेम सिद्धांत) की अवधारणा से निकटता से संबंधित हैं।
किसी निर्णय नियम की उपयोगिता का मूल्यांकन करने के लिए, विभिन्न अवस्थाओं के अनुसार प्रत्येक कार्रवाई के परिणाम का विवरण देने वाला लॉस फलन होना आवश्यक है।
औपचारिक परिभाषा
संभाव्यता स्थान पर एक अवलोकन योग्य यादृच्छिक वेरिएबल X को देखते हुए, एक पैरामीटर θ ∈ Θ द्वारा निर्धारित किया गया है, और संभावित क्रियाओं का समुच्चय, (नियतात्मक) 'निर्णय नियम' फलन δ:→A है।
निर्णय नियमों के उदाहरण
- अनुमानक एक निर्णय नियम है जिसका उपयोग किसी पैरामीटर का अनुमान लगाने के लिए किया जाता है। इस स्थिति में क्रियाओं का समुच्चय पैरामीटर स्थान है, और एक लॉस फलन पैरामीटर के वास्तविक मान और अनुमानित मान के बीच विसंगति की कास्ट का विवरण देता है। उदाहरण के लिए, एकल अदिश पैरामीटर वाले रैखिक मॉडल में, का डोमेन (सभी वास्तविक संख्याएं) तक विस्तारित हो सकता है। कुछ देखे गए डेटा से का अनुमान लगाने के लिए एक संबद्ध निर्णय नियम हो सकता है, " का मान चुनें, मान लें कि कुछ देखी गई प्रतिक्रियाओं और संबंधित सहसंयोजकों से अनुमानित प्रतिक्रियाओं के बीच वर्ग त्रुटि का योग कम हो जाता है, यह देखते हुए कि आपने चुना है । इस प्रकार, कास्ट फलन वर्ग त्रुटि का योग है, और किसी का लक्ष्य इस कास्ट को कम करना होगा। एक बार कास्ट फलन परिभाषित किया गया है, उदाहरण के लिए, कुछ अनुकूलन एल्गोरिदम का उपयोग करके, को चुना जा सकता है।
- प्रतिगमन विश्लेषण और सांख्यिकीय वर्गीकरण मॉडल में नमूना पूर्वानुमान से बाहर है।