संवहनी उपलब्ध संभावित ऊर्जा: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[File:Convective instability animation 12Z 21Z Jan08.gif|thumb|350px|right| | {{Short description|Measure of instability in the air as a buoyancy force}} | ||
[[File:Convective instability animation 12Z 21Z Jan08.gif|thumb|350px|right|स्क्यू-टी भूखंड जो बड़े हाइड्रोलैप्स के साथ सुबह की आवाज़ दिखा रहा है, जिसके बाद दोपहर की आवाज़ शीतलन (बाईं ओर चलती हुई लाल वक्र) दिखा रही है, जो मध्य-स्तरों में हुई है, जिसके परिणामस्वरूप अस्थिर वातावरण है क्योंकि सतह पार्सल अब नकारात्मक रूप से उत्प्लावक हो गए हैं। लाल रेखा तापमान है, हरी रेखा ओस बिंदु है, और काली रेखा एयर पार्सल उठाई गई है।]]मौसम विज्ञान में, विषम शक्तिपूर्ण उपलब्ध संभावनात्मक ऊर्जा (सामान्यतः सीएपीई के रूप में संक्षिप्त किया जाता है),<ref>{{cite journal | author = M. W. Moncrieff, M.J. Miller | year = 1976 | title = उष्णकटिबंधीय क्यूम्यलोनिम्बस और स्क्वॉल लाइनों की गतिशीलता और अनुकरण| journal = Q. J. R. Meteorol. Soc. | volume = 120 | pages = 373–94 | doi = 10.1002/qj.49710243208 |bibcode = 1976QJRMS.102..373M | issue = 432 }}</ref> [[कार्य (भौतिकी)]] की एकीकृत मात्रा होती है जो ऊपर की ओर (सकारात्मक) [[उछाल]] वायु के दिए गए द्रव्यमान (जिसे [[ हवाई पार्सेल |हवाई पार्सेल]] कहा जाता है) पर प्रदर्शन करेगी यदि यह पूरे वातावरण में लंबवत रूप से उठे। सकारात्मक सीएपीई के कारण वायु पार्सल ऊपर उठेगा, जबकि नकारात्मक सीएपीई के कारण वायु पार्सल को डूबने का कारण बनेगा। किसी भी [[वायुमंडलीय ध्वनि]] में गैर शून्य सीएपीई [[वायुमंडलीय अस्थिरता]] का संकेत है,जो [[क्यूम्यलस बादल]] और [[क्यूम्यलोनिम्बस बादल]] क्लाउड के विकास के लिए आवश्यक शर्त होती है जिसके साथ संबद्ध उग्र संवेदनशील मौसम संकट होते हैं। | |||
== यांत्रिकी == | == यांत्रिकी == | ||
[[File:B and LCL-LFC.jpg|thumb|right|300px|लेबल की गई महत्वपूर्ण विशेषताओं वाला | [[File:B and LCL-LFC.jpg|thumb|right|300px|लेबल की गई महत्वपूर्ण विशेषताओं वाला स्क्यू-टी आरेख]]सीएपीई क्षोभमंडल की [[सशर्त अस्थिरता]] परत, मुक्त संवहन परत (एफसीएल) के भीतर उपस्थित होती है, जहां आरोही वायु पार्सल परिवेशी वायु की समानता में गर्म होती है। सीएपीई को जूल प्रति किलोग्राम वायु (J/kg) में मापा जाता है। 0 J/kg से अधिक कोई भी मान अस्थिरता और आंधी और ओलों की बढ़ती संभावना को इंगित करता है। जेनेरिक सीएपीई की गणना मुक्त संवहन (एलएफसी) के स्तर से [[संतुलन स्तर]] (ईएल) तक पार्सल की स्थानीय उछाल के [[अभिन्न]] अंग द्वारा की जाती है: | ||
<math display="block">\mathrm{CAPE} = \int_{z_\mathrm{f}}^{z_\mathrm{n}} g \left(\frac{T_\mathrm{v,parcel} - T_\mathrm{v,env}}{T_\mathrm{v,env}}\right) \, dz</math> | <math display="block">\mathrm{CAPE} = \int_{z_\mathrm{f}}^{z_\mathrm{n}} g \left(\frac{T_\mathrm{v,parcel} - T_\mathrm{v,env}}{T_\mathrm{v,env}}\right) \, dz</math> | ||
यहाँ <math>z_\mathrm{f}</math>विकर्षण के स्तर की ऊँचाई है और <math>z_\mathrm{n}</math> संतुलन स्तर (तटस्थ उछाल) की ऊंचाई है, जहां <math>T_\mathrm{v,parcel}</math> विशिष्ट पार्सल का [[आभासी तापमान]] है, जहाँ <math>T_\mathrm{v,env}</math> पर्यावरण का आभासी तापमान है (ध्यान दें कि तापमान केल्विन पैमाने में होना चाहिए), और यहाँ <math>g</math> [[मानक गुरुत्वाकर्षण]] के कारण तेजी से गति है। यह निर्धारितांक वायुमंडलीय बल द्वारा किया गया काम और गुरुत्वाकर्षण के खिलाफ किया गया काम है, इसलिए यह एकाधिक ऊर्जा है जो किनेटिक ऊर्जा बन सकती है। | |||
किसी दिए गए क्षेत्र के लिए सीएपीई की गणना अधिकांशतः [[थर्मोडायनामिक आरेख]] या वायुमंडलीय ध्वनि आरेख (जैसे, [[तिरछा-टी लॉग-पी आरेख]]) से | किसी दिए गए क्षेत्र के लिए सीएपीई की गणना अधिकांशतः [[थर्मोडायनामिक आरेख]] या वायुमंडलीय ध्वनि आरेख (जैसे, [[तिरछा-टी लॉग-पी आरेख|स्क्यू-टी लॉग-पी आरेख]]) से वायु के [[तापमान]] और ओस बिंदु डेटा का उपयोग करके की जाती है, जिसे आमतौर पर मौसम के गुब्बारे द्वारा मापा जाता है। | ||
सीएपीई प्रभावी रूप से सकारात्मक | सीएपीई प्रभावी रूप से सकारात्मक उड़ानशक्ति है, जिसे B+ या साधारणतः B के रूप में व्यक्त किया जाता है; इसके विपरीत विमवर्तीता प्रतिबंध (CIN) होती है, जिसे B- के रूप में व्यक्त किया जाता है, और इसे "नकारात्मक CAPE" के रूप में समझा जा सकता है। सीआईएनकी तरह, सीएपीई को साधारणतः J/kg में व्यक्त किया जाता है, लेकिन इसे m<sup>2</sup>/s<sup>2</sup> के रूप में भी व्यक्त किया जा सकता है, क्योंकि मान समतुल्य होते हैं। वास्तव में, सीएपीई को कभी-कभी सकारात्मक उत्प्लावक ऊर्जा (पीबीई) के रूप में भी जाना जाता है। इस प्रकार का सीएपीई आरोही पार्सल और नम संवहन के लिए उपलब्ध अधिकतम ऊर्जा है। जब सीआईएन की परत उपस्थित होती है, तो परत को सतह के ताप या यांत्रिक उठाने से नष्ट होना चाहिए, ताकि संवहन सीमा परत पार्सल अपने मुक्त संवहन (एलएफसी) के स्तर तक पहुंच सकें। | ||
ध्वनि आरेख पर, सीएपीई एलएफसी के ऊपर सकारात्मक क्षेत्र है, पार्सल की आभासी तापमान रेखा और | ध्वनि आरेख पर, सीएपीई एलएफसी (स्वतंत्र विमवर्तीता स्तर) के ऊपर सकारात्मक क्षेत्र है, पार्सल की आभासी तापमान रेखा और पर्यावरणीय आभासी तापमान रेखा के बीच का क्षेत्र है, जहां उच्चारित पार्सल पर्यावरण की समानता में गर्म होता है। आभासी तापमान सुधार की उपेक्षा करने से छोटे सीएपीई मूल्यों के लिए सीएपीई के परिकलित मूल्य में पर्याप्त सापेक्ष त्रुटियां हो सकती हैं।<ref>{{cite journal | author = [[Charles A. Doswell III]], E.N. Rasmussen |date=December 1994 | title = केप गणनाओं पर आभासी तापमान सुधार की उपेक्षा का प्रभाव| journal = Weather and Forecasting | volume = 9 | issue = 4 | pages = 625–9 | doi = 10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2|bibcode = 1994WtFor...9..625D | doi-access = free }}</ref> सीएपीई एलएफसी के नीचे भी उपस्थित हो सकता है, लेकिन यदि सीआईएन ([[घटाव]]) की परत उपस्थित है, तो यह सीआईएनके समाप्त होने तक गहरे, नम संवहन के लिए अनुपलब्ध है। जब [[संतृप्त द्रव]] में यांत्रिक संतृप्ति होती है, तो [[बादल का आधार]] उत्थापित संघनन स्तर (LCL) पर शुरू होता है; बल की अनुपस्थिति, बादल आधार [[संवहन संघनन स्तर]] (CCL) पर शुरू होता है, जहां नीचे से गर्म होने से संवहन तापमान तक पहुंचने पर संक्षेपण के बिंदु तक सहज उत्प्लावक उत्थापन होता है। जब सीआईएन अनुपस्थित होता है या दूर हो जाता है, तो एलसीएल या सीसीएल में संतृप्त पार्सल, जो छोटे मेघपुंज बादल थे, एलएफसी तक उठेंगे, और फिर संतुलन स्तर की स्थिर परत को मारने तक स्वचालित रूप से बढ़ेंगे। परिणामस्वरूप गहरे, नम संवहन (DMC)होती है, या सामान्य रूप से आंधी है। | ||
जब | जब पार्सल अस्थिर होता है, तो यह किसी भी दिशा में लंबवत रूप से आगे बढ़ना जारी रखेगा, यह इस बात पर निर्भर करता है कि यह ऊपर या नीचे की ओर बल प्राप्त करता है, जब तक कि यह स्थिर परत तक नहीं पहुंच जाता (हालांकि संवेग, गुरुत्वाकर्षण और अन्य बल पार्सल को जारी रखने का कारण हो सकते हैं)। सीएपीई के कई प्रकार होते हैं, डॉवंड्राफ्ट सीएपीई (डीसीएपीई), वर्षा की संभावित ताकत और बाष्पीकरणीय रूप से ठंडे [[डाउनड्राफ्ट]] का अनुमान लगाता है। अन्य प्रकार के सीएपीई विचार की जा रही गहराई पर निर्भर हो सकते हैं। अन्य उदाहरण सतह आधारित सीएपीई (SBCAPE), मिश्रित परत या औसत परत सीएपीई (MLCAPE), सबसे अस्थिर या अधिकतम प्रयोग करने योग्य सीएपीई (MUCAPE), और सामान्यीकृत सीएपीई (NCAPE) हैं।<ref name="SPC parameters">{{cite web |last=Thompson |first=Rich |title=एसपीसी गंभीर मौसम पैरामीटर्स की व्याख्या|publisher=[[Storm Prediction Center]] |year=2006 |url=http://www.spc.noaa.gov/exper/mesoanalysis/help/begin.html |access-date=2007-05-30 }}</ref> | ||
ऐसे वातावरण में ऊपर या नीचे की ओर विस्थापित द्रव तत्व अपने परिवेश के साथ दबाव संतुलन में बने रहने के लिए [[रूद्धोष्म रूप से]] फैलते या संकुचित होते हैं, और इस | ऐसे वातावरण में ऊपर या नीचे की ओर विस्थापित द्रव तत्व अपने परिवेश के साथ दबाव संतुलन में बने रहने के लिए [[रूद्धोष्म रूप से]] फैलते या संकुचित होते हैं, और इस तरह कम या अधिक सघन हो जाते हैं। | ||
यदि | यदि अप्रचालित माध्य और्ववृद्धि या घटना वातावरण माध्यम की घनता के घटाव या वृद्धि से कम होती है, तो विस्थापित तत्व को नीचे या ऊपर की दिशा में दबाव का सामना करना पड़ेगा, जिससे वह अपने मूल स्थान पर पुनर्स्थापित होगा। इस प्रकार, प्रारंभिक विस्थापन के लिए एक प्रतिक्रियाशील बल होगा। ऐसी स्थिति को संप्रेषणीय स्थिरता के रूप में संदर्भित किया जाता है। | ||
दूसरी ओर, यदि एडियाबेटिक कमी या घनत्व में वृद्धि परिवेश तरल पदार्थ की समानता में अधिक है, तो ऊपर या नीचे की ओर विस्थापन को परिवेशी तरल | दूसरी ओर, यदि एडियाबेटिक कमी या घनत्व में वृद्धि परिवेश तरल पदार्थ की समानता में अधिक है, तो ऊपर या नीचे की ओर विस्थापन को परिवेशी तरल द्वारा उसी दिशा में अतिरिक्त बल के साथ पूरा किया जाता है। इन परिस्थितियों में प्रारंभिक स्थिति से छोटे अनुपातिक विचलन में वृद्धि हो जाता है। इस स्थिति को [[संवहनी अस्थिरता]] कहा जाता है।<ref>{{Cite book| last = Shu | first = Frank | title = The Physics of Astrophysics, volume II: Gas dynamics | journal = The Physics of Astrophysics. Volume II: Gas Dynamics | year = 1992 | isbn=978-0-935702-65-1| bibcode = 1992pavi.book.....S }}</ref> | ||
संप्रेषणीय अस्थिरता को स्थैतिक अस्थिरता भी कहा जाता है, क्योंकि अस्थिरता वायु के मौजूदा गति पर निर्भर नहीं करती है; यह [[गतिशील अस्थिरता (द्रव यांत्रिकी)]] के विपरीत होता है जहां अस्थिरता वायु की गति और इसके संबंधित प्रभावों जैसे गतिशील उठाने पर निर्भर है। | |||
== वज्रपात का महत्व == | == वज्रपात का महत्व == | ||
तड़ित झंझावात तब बनते हैं जब वायु पार्सलों को लंबवत रूप से उठाया जाता है। गहरे, नम संवहन के लिए | तड़ित झंझावात तब बनते हैं जब वायु पार्सलों को लंबवत रूप से उठाया जाता है। गहरे, नम संवहन के लिए पार्सल को एलएफसी तक ले जाने की आवश्यकता होती है जहां यह गैर-सकारात्मक उछाल की परत तक पहुंचने तक स्वचालित रूप से उगता है। पृथ्वी का वातावरण सतह पर और क्षोभमंडल के निचले स्तरों पर गर्म है जहां [[मिश्रित परत]] ([[ग्रहों की सीमा परत]]|ग्रहों की सीमा परत (पीबीएल)) है, लेकिन ऊंचाई के साथ काफी ठंडा हो जाता है। वातावरण का तापमान प्रोफ़ाइल, तापमान में परिवर्तन, ऊंचाई के साथ ठंडा होने की डिग्री, ह्रास दर है। जब ऊपर उठता हुआ वायु पार्सल आसपास के वातावरण की समानता में अधिक धीरे-धीरे ठंडा होता है, तो यह गर्म रहता है और वायु का घनत्व कम होता है। पार्सल वायुमंडल के माध्यम से स्वतंत्र रूप से (संवहन; यांत्रिक लिफ्ट के बिना) तब तक जारी रहता है जब तक कि यह अपने से कम घने (गर्म) वायु के क्षेत्र तक नहीं पहुंच जाता। | ||
सकारात्मक-उछाल क्षेत्र की मात्रा, और आकार, [[ updraft | | सकारात्मक-उछाल क्षेत्र की मात्रा, और आकार, [[ updraft |अपड्राफ्ट]] की गति को नियंत्रित करता है, इस प्रकार चरम सीएपीई के परिणामस्वरूप विस्फोटक झंझावात विकास हो सकता है; इस तरह का तेजी से विकास आमतौर पर तब होता है जब ढक्कन को हीटिंग या मैकेनिकल लिफ्ट से तोड़ा जाता है जब [[कैपिंग उलटा]] द्वारा संग्रहीत सीएपीई जारी किया जाता है। सीएपीई की मात्रा यह भी नियंत्रित करती है कि निम्न-स्तर की [[vorticity|वोर्टिकितय]] कैसे प्रवेश करती है और फिर अपड्राफ्ट में फैली हुई है, [[[[बवंडर]]जनन]] के महत्व के साथ। बवंडर के लिए सबसे महत्वपूर्ण सीएपीई वायुमंडल के सबसे निचले 1 से 3 किमी (0.6 से 1.9 मील) के भीतर है, जबकि गहरी परत सीएपीई और मध्य-स्तर पर सीएपीई की चौड़ाई [[ Supercell |सुपरसेल]] के लिए महत्वपूर्ण है। [[बवंडर का प्रकोप]] उच्च सीएपीई वातावरण में होता है। अपड्राफ्ट ताकत के कारण बहुत बड़े ओलों के उत्पादन के लिए बड़े सीएपीई की आवश्यकता होती है, हालांकि कम सीएपीई के साथ घूमने वाला अपड्राफ्ट मजबूत हो सकता है। बड़ा सीएपीई लाइटनिंग गतिविधि को भी बढ़ावा देता है।<ref name="climatology parameters">{{cite journal |last=Craven |first=Jeffrey P. |author2=H.E. Brooks |title=गहरे नम संवहन से जुड़े साउंडिंग डेरिवेटिव पैरामीटर्स का बेसलाइन क्लाइमेटोलॉजी|journal=[[National Weather Digest]] |volume=28 |pages=13–24 |date=December 2004 |url=http://www.nssl.noaa.gov/users/brooks/public_html/papers/cravenbrooksnwa.pdf }}</ref> | ||
गंभीर मौसम के लिए दो उल्लेखनीय दिनों ने 5 kJ/kg से अधिक सीएपीई मान प्रदर्शित किया। 1999 के ओक्लाहोमा बवंडर के प्रकोप से दो घंटे पहले 3 मई, 1999 को ओक्लाहोमा सिटी, ओक्लाहोमा में लगने वाला सीएपीई मूल्य 5.89 kJ/kg था। कुछ घंटों बाद, शहर के दक्षिणी उपनगरों में फुजिता पैमाने का बवंडर आया। साथ ही 4 मई, 2007 को 5.5 kJ/kg के सीएपीई मान तक पहुँच गए थे और मई 2007 में [[फुजिता पैमाना]] में वृद्धि हुई थी, ग्रीन्सबर्ग, कैनसस के माध्यम से बवंडर का प्रकोप हुआ था। उन दिनों, यह स्पष्ट था कि बवंडर के लिए परिस्थितियाँ परिपक्व थीं और सीएपीई महत्वपूर्ण कारक नहीं था। हालांकि, एक्सट्रीम सीएपीई, अपड्राफ्ट (और डॉवंड्राफ्ट) को संशोधित करके, असाधारण घटनाओं के लिए अनुमति दे सकता है, जैसे कि घातक F5 बवंडर जिसने प्लेनफील्ड टोर्नेडो को मारा। 28 अगस्त, 1990 को प्लेनफील्ड, [[इलिनोइस]] और 27 मई, 1997 को जेरेल, टेक्सास दिनों में। जो बड़े बवंडर के लिए अनुकूल रूप से स्पष्ट नहीं थे। [[ प्लेनफील्ड बवंडर |प्लेनफील्ड बवंडर]] के वातावरण में सीएपीई 8 kJ/किग्रा से अधिक होने का अनुमान लगाया गया था और [[मध्य टेक्सास बवंडर प्रकोप]] के लिए लगभग 7 kJ/किग्रा था। | |||
कम सीएपीई मूल्यों वाले क्षेत्र में गंभीर मौसम और बवंडर विकसित हो सकते हैं। 20 अप्रैल 2004 को इलिनोइस और [[इंडियाना]] में हुआ अप्रैल 2004 का यूटिका बवंडर इसका | कम सीएपीई मूल्यों वाले क्षेत्र में गंभीर मौसम और बवंडर विकसित हो सकते हैं। 20 अप्रैल 2004 को इलिनोइस और [[इंडियाना]] में हुआ अप्रैल 2004 का यूटिका बवंडर इसका अच्छा उदाहरण है। महत्वपूर्ण रूप से उस मामले में, हालांकि समग्र सीएपीई कमजोर था, क्षोभमंडल के निम्नतम स्तरों में मजबूत सीएपीई था जो बड़े, लंबे-ट्रैक, तीव्र बवंडर पैदा करने वाले मिनीसुपरसेल के प्रकोप को सक्षम करता था।<ref name="Utica outbreak">{{cite conference |first=Albert E. |last=Pietrycha |author-link=Albert E. Pietrycha |author2=J.M. Davies |author3=M. Ratzer |author4=P. Merzlock |title=Tornadoes in a Deceptively Small CAPE Environment: The 4/20/04 Outbreak in Illinois and Indiana |book-title=Preprints of the 22nd Conference on Severe Local Storms |publisher=[[American Meteorological Society]] |date=October 2004 |location=Hyannis, Massachusetts |url=http://ams.confex.com/ams/11aram22sls/techprogram/paper_81569.htm }}</ref> | ||
== मौसम विज्ञान से उदाहरण == | == मौसम विज्ञान से उदाहरण == | ||
संवहनी अस्थिरता का | संवहनी अस्थिरता का अच्छा अच्छा उदाहरण अवस्थित है जहां संकुचित मध्य स्तरीय हवा को निचले ट्रोपोस्फियर में गर्म, नम हवा के ऊपर खींचा जाता है, वहां [[हाइड्रोलैप्स]] (ऊंचाई के साथ तेजी से घटते ओस बिंदु तापमान का क्षेत्र) का परिणाम उस क्षेत्र में होता है जहां नम [[सीमा परत]] और मध्य-स्तर की वायु मिलती है। जैसे-जैसे दिन के समय गर्माहट नम सीमा परत के भीतर बढ़ती जाती है, कुछ नम वायु इसके ऊपर की शुष्क मध्य-स्तर की वायु के साथ परस्पर क्रिया करना शुरू कर देगी। थर्मोडायनामिक प्रक्रियाओं के कारण, चूंकि शुष्क मध्य-स्तर की वायु धीरे-धीरे संतृप्त होती है, इसका तापमान गिरना शुरू हो जाता है, जिससे [[स्थिरोष्म चूक दर]] बढ़ जाती है। कुछ शर्तों के तहत, चूक दर कम समय में काफी बढ़ सकती है, जिसके परिणामस्वरूप संवहन होता है। उच्च संवहन अस्थिरता गंभीर झंझावात और बवंडर का कारण बन सकती है क्योंकि नम वायु जो सीमा परत में फंसी हुई है, अंतत: एडियाबेटिक लैप्स दर के सापेक्ष अत्यधिक नकारात्मक रूप से उत्प्लावक हो जाती है और क्यूम्यलस क्लाउड या [[क्यूम्यलोनिम्बस]] के विकास को ट्रिगर करने वाली आर्द्र वायु के तेजी से बढ़ते बुलबुले के रूप में निकल जाती है। बादल। | ||
== सीमाएं == | == सीमाएं == | ||
मौसम विज्ञान में उपयोग किए जाने वाले अधिकांश मापदंडों के साथ, ध्यान में रखने के लिए कुछ चेतावनियां हैं। इनमें से | मौसम विज्ञान में उपयोग किए जाने वाले अधिकांश मापदंडों के साथ, ध्यान में रखने के लिए कुछ चेतावनियां हैं। इनमें से वह है जो सीएपीई ने भौतिक रूप से दर्शाता है और किन परिस्थितियों में सीएपीई का उपयोग किया जा सकता है। उदाहरण जहां सीएपीई निर्धारित करने के लिए अधिक सामान्य विधि टूटना शुरू हो सकती है वह उष्णकटिबंधीय चक्रवातों (उदा. उष्णकटिबंधीय अवसाद, उष्णकटिबंधीय [[तूफान]], तूफान) की उपस्थिति में है।<ref>{{cite conference |title=ट्रॉपिकल साइक्लोन टोरनेडो रिजीम में रिवर्सिबल केप|last1= Edwards |first1= Roger |author-link1= Roger Edwards (meteorologist)|last2= Thompson |first2= Richard |date= November 2014 |publisher= [[American Meteorological Society]] |location= Madison, WI |conference= 27th AMS Severe Local Storms Conference |doi= 10.13140/2.1.2530.5921 |url= https://www.researchgate.net/publication/270821803 }}</ref> <ref>{{cite AV media |people= [[Roger Edwards (meteorologist)|Roger Edwards]] |date= July 7, 2017 |title= Tropical Cyclone Tornadoes: Dual-Pol Radar Applications and Reversible CAPE |type= YouTube Video |language= English |url= https://www.youtube.com/watch?v=_AhqdR_UNoM&ab_channel=NOAAWeatherPartners |access-date= December 27, 2021 |publisher= [[NOAA]]}}</ref> | ||
सीएपीई निर्धारित करने का अधिक सामान्य तरीका उष्णकटिबंधीय चक्रवातों के पास टूट सकता है क्योंकि सीएपीई मानता है कि संक्षेपण के | सीएपीई निर्धारित करने का अधिक सामान्य तरीका उष्णकटिबंधीय चक्रवातों के पास टूट सकता है क्योंकि सीएपीई मानता है कि संक्षेपण के दौरान तरल पानी तुरंत खो जाता है। इस प्रकार को रूद्धोष्म वंश पर अपरिवर्तनीय माना जाता है। यह प्रक्रिया उष्णकटिबंधीय चक्रवातों (लघु अवधि के लिए टीसी) के लिए यथार्थवादी नहीं होती है। उष्णकटिबंधीय चक्रवातों के लिए प्रक्रिया को अधिक यथार्थवादी बनाने के लिए "रिवर्सिबल सीएपीई" (संक्षेप में आरसीएपीई)का उपयोग किया जाता है। आरसीएपीई, सीएपीई के मानक सम्मेलन के विपरीत चरम को मानता है और यह है कि प्रक्रिया के दौरान कोई तरल पानी नहीं खोएगा। यह नई प्रक्रिया पार्सल को जल लोडिंग से संबंधित अधिक सघनता प्रदान करती है। | ||
आरसीएपीई की गणना सीएपीई के समान सूत्र का उपयोग करके ही निर्धारित किया जाता है, सूत्र में अंतर आभासी तापमान में होता है। इस नए सूत्रीकरण में, हम पार्सल संतृप्ति मिश्रण अनुपात (जिससे तरल पानी का संघनन और गायब हो जाता है) को पार्सल पानी की मात्रा से बदल देते हैं। यह मामूली परिवर्तन एकीकरण के माध्यम से हमें मिलने वाले मूल्यों को काफी हद तक बदल सकता है। | |||
आरसीएपीई की कुछ सीमाएँ हैं, जिनमें से यह है कि आरसीएपीई किसी टीसी के भीतर उपयोग के लिए सुसंगत रखते हुए कोई वाष्पीकरण नहीं मानता है, लेकिन इसका उपयोग कहीं और किया जाना चाहिए। | |||
सीएपीई और आरसीएपीई दोनों की | सीएपीई और आरसीएपीई दोनों की और सीमा यह है कि वर्तमान में, दोनों प्रणालियां [[प्रवेश (मौसम विज्ञान)]] पर विचार नहीं करती हैं। | ||
== यह भी देखें | == यह भी देखें{{Portal|Weather|Physics}}== | ||
{{Portal|Weather|Physics}} | |||
* [[वायुमंडलीय ऊष्मप्रवैगिकी]] | * [[वायुमंडलीय ऊष्मप्रवैगिकी]] | ||
* [[उठा हुआ सूचकांक]] | * [[उठा हुआ सूचकांक]] | ||
Line 49: | Line 50: | ||
== संदर्भ == | == संदर्भ == | ||
{{Reflist|colwidth=35em}} | {{Reflist|colwidth=35em}} | ||
== अग्रिम पठन == | == अग्रिम पठन == | ||
* Barry, R.G. and Chorley, R.J. ''Atmosphere, weather and climate'' (7th ed) Routledge 1998 p. 80-81 {{ISBN|0-415-16020-0}} | * Barry, R.G. and Chorley, R.J. ''Atmosphere, weather and climate'' (7th ed) Routledge 1998 p. 80-81 {{ISBN|0-415-16020-0}} | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
*[https://earth.nullschool.net/#current/wind/surface/level/overlay=cape/winkel3 Map of current global | *[https://earth.nullschool.net/#current/wind/surface/level/overlay=cape/winkel3 Map of current global CAPE] | ||
{{DEFAULTSORT:Convective Available Potential Energy}}[[Category: गंभीर मौसम और संवहन]] [[Category: वायुमंडलीय ऊष्मप्रवैगिकी]] [[Category: द्रव गतिविज्ञान]] | {{DEFAULTSORT:Convective Available Potential Energy}}[[Category: गंभीर मौसम और संवहन]] [[Category: वायुमंडलीय ऊष्मप्रवैगिकी]] [[Category: द्रव गतिविज्ञान]] |
Revision as of 01:01, 19 June 2023
मौसम विज्ञान में, विषम शक्तिपूर्ण उपलब्ध संभावनात्मक ऊर्जा (सामान्यतः सीएपीई के रूप में संक्षिप्त किया जाता है),[1] कार्य (भौतिकी) की एकीकृत मात्रा होती है जो ऊपर की ओर (सकारात्मक) उछाल वायु के दिए गए द्रव्यमान (जिसे हवाई पार्सेल कहा जाता है) पर प्रदर्शन करेगी यदि यह पूरे वातावरण में लंबवत रूप से उठे। सकारात्मक सीएपीई के कारण वायु पार्सल ऊपर उठेगा, जबकि नकारात्मक सीएपीई के कारण वायु पार्सल को डूबने का कारण बनेगा। किसी भी वायुमंडलीय ध्वनि में गैर शून्य सीएपीई वायुमंडलीय अस्थिरता का संकेत है,जो क्यूम्यलस बादल और क्यूम्यलोनिम्बस बादल क्लाउड के विकास के लिए आवश्यक शर्त होती है जिसके साथ संबद्ध उग्र संवेदनशील मौसम संकट होते हैं।
यांत्रिकी
सीएपीई क्षोभमंडल की सशर्त अस्थिरता परत, मुक्त संवहन परत (एफसीएल) के भीतर उपस्थित होती है, जहां आरोही वायु पार्सल परिवेशी वायु की समानता में गर्म होती है। सीएपीई को जूल प्रति किलोग्राम वायु (J/kg) में मापा जाता है। 0 J/kg से अधिक कोई भी मान अस्थिरता और आंधी और ओलों की बढ़ती संभावना को इंगित करता है। जेनेरिक सीएपीई की गणना मुक्त संवहन (एलएफसी) के स्तर से संतुलन स्तर (ईएल) तक पार्सल की स्थानीय उछाल के अभिन्न अंग द्वारा की जाती है:
किसी दिए गए क्षेत्र के लिए सीएपीई की गणना अधिकांशतः थर्मोडायनामिक आरेख या वायुमंडलीय ध्वनि आरेख (जैसे, स्क्यू-टी लॉग-पी आरेख) से वायु के तापमान और ओस बिंदु डेटा का उपयोग करके की जाती है, जिसे आमतौर पर मौसम के गुब्बारे द्वारा मापा जाता है।
सीएपीई प्रभावी रूप से सकारात्मक उड़ानशक्ति है, जिसे B+ या साधारणतः B के रूप में व्यक्त किया जाता है; इसके विपरीत विमवर्तीता प्रतिबंध (CIN) होती है, जिसे B- के रूप में व्यक्त किया जाता है, और इसे "नकारात्मक CAPE" के रूप में समझा जा सकता है। सीआईएनकी तरह, सीएपीई को साधारणतः J/kg में व्यक्त किया जाता है, लेकिन इसे m2/s2 के रूप में भी व्यक्त किया जा सकता है, क्योंकि मान समतुल्य होते हैं। वास्तव में, सीएपीई को कभी-कभी सकारात्मक उत्प्लावक ऊर्जा (पीबीई) के रूप में भी जाना जाता है। इस प्रकार का सीएपीई आरोही पार्सल और नम संवहन के लिए उपलब्ध अधिकतम ऊर्जा है। जब सीआईएन की परत उपस्थित होती है, तो परत को सतह के ताप या यांत्रिक उठाने से नष्ट होना चाहिए, ताकि संवहन सीमा परत पार्सल अपने मुक्त संवहन (एलएफसी) के स्तर तक पहुंच सकें।
ध्वनि आरेख पर, सीएपीई एलएफसी (स्वतंत्र विमवर्तीता स्तर) के ऊपर सकारात्मक क्षेत्र है, पार्सल की आभासी तापमान रेखा और पर्यावरणीय आभासी तापमान रेखा के बीच का क्षेत्र है, जहां उच्चारित पार्सल पर्यावरण की समानता में गर्म होता है। आभासी तापमान सुधार की उपेक्षा करने से छोटे सीएपीई मूल्यों के लिए सीएपीई के परिकलित मूल्य में पर्याप्त सापेक्ष त्रुटियां हो सकती हैं।[2] सीएपीई एलएफसी के नीचे भी उपस्थित हो सकता है, लेकिन यदि सीआईएन (घटाव) की परत उपस्थित है, तो यह सीआईएनके समाप्त होने तक गहरे, नम संवहन के लिए अनुपलब्ध है। जब संतृप्त द्रव में यांत्रिक संतृप्ति होती है, तो बादल का आधार उत्थापित संघनन स्तर (LCL) पर शुरू होता है; बल की अनुपस्थिति, बादल आधार संवहन संघनन स्तर (CCL) पर शुरू होता है, जहां नीचे से गर्म होने से संवहन तापमान तक पहुंचने पर संक्षेपण के बिंदु तक सहज उत्प्लावक उत्थापन होता है। जब सीआईएन अनुपस्थित होता है या दूर हो जाता है, तो एलसीएल या सीसीएल में संतृप्त पार्सल, जो छोटे मेघपुंज बादल थे, एलएफसी तक उठेंगे, और फिर संतुलन स्तर की स्थिर परत को मारने तक स्वचालित रूप से बढ़ेंगे। परिणामस्वरूप गहरे, नम संवहन (DMC)होती है, या सामान्य रूप से आंधी है।
जब पार्सल अस्थिर होता है, तो यह किसी भी दिशा में लंबवत रूप से आगे बढ़ना जारी रखेगा, यह इस बात पर निर्भर करता है कि यह ऊपर या नीचे की ओर बल प्राप्त करता है, जब तक कि यह स्थिर परत तक नहीं पहुंच जाता (हालांकि संवेग, गुरुत्वाकर्षण और अन्य बल पार्सल को जारी रखने का कारण हो सकते हैं)। सीएपीई के कई प्रकार होते हैं, डॉवंड्राफ्ट सीएपीई (डीसीएपीई), वर्षा की संभावित ताकत और बाष्पीकरणीय रूप से ठंडे डाउनड्राफ्ट का अनुमान लगाता है। अन्य प्रकार के सीएपीई विचार की जा रही गहराई पर निर्भर हो सकते हैं। अन्य उदाहरण सतह आधारित सीएपीई (SBCAPE), मिश्रित परत या औसत परत सीएपीई (MLCAPE), सबसे अस्थिर या अधिकतम प्रयोग करने योग्य सीएपीई (MUCAPE), और सामान्यीकृत सीएपीई (NCAPE) हैं।[3]
ऐसे वातावरण में ऊपर या नीचे की ओर विस्थापित द्रव तत्व अपने परिवेश के साथ दबाव संतुलन में बने रहने के लिए रूद्धोष्म रूप से फैलते या संकुचित होते हैं, और इस तरह कम या अधिक सघन हो जाते हैं।
यदि अप्रचालित माध्य और्ववृद्धि या घटना वातावरण माध्यम की घनता के घटाव या वृद्धि से कम होती है, तो विस्थापित तत्व को नीचे या ऊपर की दिशा में दबाव का सामना करना पड़ेगा, जिससे वह अपने मूल स्थान पर पुनर्स्थापित होगा। इस प्रकार, प्रारंभिक विस्थापन के लिए एक प्रतिक्रियाशील बल होगा। ऐसी स्थिति को संप्रेषणीय स्थिरता के रूप में संदर्भित किया जाता है।
दूसरी ओर, यदि एडियाबेटिक कमी या घनत्व में वृद्धि परिवेश तरल पदार्थ की समानता में अधिक है, तो ऊपर या नीचे की ओर विस्थापन को परिवेशी तरल द्वारा उसी दिशा में अतिरिक्त बल के साथ पूरा किया जाता है। इन परिस्थितियों में प्रारंभिक स्थिति से छोटे अनुपातिक विचलन में वृद्धि हो जाता है। इस स्थिति को संवहनी अस्थिरता कहा जाता है।[4]
संप्रेषणीय अस्थिरता को स्थैतिक अस्थिरता भी कहा जाता है, क्योंकि अस्थिरता वायु के मौजूदा गति पर निर्भर नहीं करती है; यह गतिशील अस्थिरता (द्रव यांत्रिकी) के विपरीत होता है जहां अस्थिरता वायु की गति और इसके संबंधित प्रभावों जैसे गतिशील उठाने पर निर्भर है।
वज्रपात का महत्व
तड़ित झंझावात तब बनते हैं जब वायु पार्सलों को लंबवत रूप से उठाया जाता है। गहरे, नम संवहन के लिए पार्सल को एलएफसी तक ले जाने की आवश्यकता होती है जहां यह गैर-सकारात्मक उछाल की परत तक पहुंचने तक स्वचालित रूप से उगता है। पृथ्वी का वातावरण सतह पर और क्षोभमंडल के निचले स्तरों पर गर्म है जहां मिश्रित परत (ग्रहों की सीमा परत|ग्रहों की सीमा परत (पीबीएल)) है, लेकिन ऊंचाई के साथ काफी ठंडा हो जाता है। वातावरण का तापमान प्रोफ़ाइल, तापमान में परिवर्तन, ऊंचाई के साथ ठंडा होने की डिग्री, ह्रास दर है। जब ऊपर उठता हुआ वायु पार्सल आसपास के वातावरण की समानता में अधिक धीरे-धीरे ठंडा होता है, तो यह गर्म रहता है और वायु का घनत्व कम होता है। पार्सल वायुमंडल के माध्यम से स्वतंत्र रूप से (संवहन; यांत्रिक लिफ्ट के बिना) तब तक जारी रहता है जब तक कि यह अपने से कम घने (गर्म) वायु के क्षेत्र तक नहीं पहुंच जाता।
सकारात्मक-उछाल क्षेत्र की मात्रा, और आकार, अपड्राफ्ट की गति को नियंत्रित करता है, इस प्रकार चरम सीएपीई के परिणामस्वरूप विस्फोटक झंझावात विकास हो सकता है; इस तरह का तेजी से विकास आमतौर पर तब होता है जब ढक्कन को हीटिंग या मैकेनिकल लिफ्ट से तोड़ा जाता है जब कैपिंग उलटा द्वारा संग्रहीत सीएपीई जारी किया जाता है। सीएपीई की मात्रा यह भी नियंत्रित करती है कि निम्न-स्तर की वोर्टिकितय कैसे प्रवेश करती है और फिर अपड्राफ्ट में फैली हुई है, [[बवंडरजनन]] के महत्व के साथ। बवंडर के लिए सबसे महत्वपूर्ण सीएपीई वायुमंडल के सबसे निचले 1 से 3 किमी (0.6 से 1.9 मील) के भीतर है, जबकि गहरी परत सीएपीई और मध्य-स्तर पर सीएपीई की चौड़ाई सुपरसेल के लिए महत्वपूर्ण है। बवंडर का प्रकोप उच्च सीएपीई वातावरण में होता है। अपड्राफ्ट ताकत के कारण बहुत बड़े ओलों के उत्पादन के लिए बड़े सीएपीई की आवश्यकता होती है, हालांकि कम सीएपीई के साथ घूमने वाला अपड्राफ्ट मजबूत हो सकता है। बड़ा सीएपीई लाइटनिंग गतिविधि को भी बढ़ावा देता है।[5] गंभीर मौसम के लिए दो उल्लेखनीय दिनों ने 5 kJ/kg से अधिक सीएपीई मान प्रदर्शित किया। 1999 के ओक्लाहोमा बवंडर के प्रकोप से दो घंटे पहले 3 मई, 1999 को ओक्लाहोमा सिटी, ओक्लाहोमा में लगने वाला सीएपीई मूल्य 5.89 kJ/kg था। कुछ घंटों बाद, शहर के दक्षिणी उपनगरों में फुजिता पैमाने का बवंडर आया। साथ ही 4 मई, 2007 को 5.5 kJ/kg के सीएपीई मान तक पहुँच गए थे और मई 2007 में फुजिता पैमाना में वृद्धि हुई थी, ग्रीन्सबर्ग, कैनसस के माध्यम से बवंडर का प्रकोप हुआ था। उन दिनों, यह स्पष्ट था कि बवंडर के लिए परिस्थितियाँ परिपक्व थीं और सीएपीई महत्वपूर्ण कारक नहीं था। हालांकि, एक्सट्रीम सीएपीई, अपड्राफ्ट (और डॉवंड्राफ्ट) को संशोधित करके, असाधारण घटनाओं के लिए अनुमति दे सकता है, जैसे कि घातक F5 बवंडर जिसने प्लेनफील्ड टोर्नेडो को मारा। 28 अगस्त, 1990 को प्लेनफील्ड, इलिनोइस और 27 मई, 1997 को जेरेल, टेक्सास दिनों में। जो बड़े बवंडर के लिए अनुकूल रूप से स्पष्ट नहीं थे। प्लेनफील्ड बवंडर के वातावरण में सीएपीई 8 kJ/किग्रा से अधिक होने का अनुमान लगाया गया था और मध्य टेक्सास बवंडर प्रकोप के लिए लगभग 7 kJ/किग्रा था।
कम सीएपीई मूल्यों वाले क्षेत्र में गंभीर मौसम और बवंडर विकसित हो सकते हैं। 20 अप्रैल 2004 को इलिनोइस और इंडियाना में हुआ अप्रैल 2004 का यूटिका बवंडर इसका अच्छा उदाहरण है। महत्वपूर्ण रूप से उस मामले में, हालांकि समग्र सीएपीई कमजोर था, क्षोभमंडल के निम्नतम स्तरों में मजबूत सीएपीई था जो बड़े, लंबे-ट्रैक, तीव्र बवंडर पैदा करने वाले मिनीसुपरसेल के प्रकोप को सक्षम करता था।[6]
मौसम विज्ञान से उदाहरण
संवहनी अस्थिरता का अच्छा अच्छा उदाहरण अवस्थित है जहां संकुचित मध्य स्तरीय हवा को निचले ट्रोपोस्फियर में गर्म, नम हवा के ऊपर खींचा जाता है, वहां हाइड्रोलैप्स (ऊंचाई के साथ तेजी से घटते ओस बिंदु तापमान का क्षेत्र) का परिणाम उस क्षेत्र में होता है जहां नम सीमा परत और मध्य-स्तर की वायु मिलती है। जैसे-जैसे दिन के समय गर्माहट नम सीमा परत के भीतर बढ़ती जाती है, कुछ नम वायु इसके ऊपर की शुष्क मध्य-स्तर की वायु के साथ परस्पर क्रिया करना शुरू कर देगी। थर्मोडायनामिक प्रक्रियाओं के कारण, चूंकि शुष्क मध्य-स्तर की वायु धीरे-धीरे संतृप्त होती है, इसका तापमान गिरना शुरू हो जाता है, जिससे स्थिरोष्म चूक दर बढ़ जाती है। कुछ शर्तों के तहत, चूक दर कम समय में काफी बढ़ सकती है, जिसके परिणामस्वरूप संवहन होता है। उच्च संवहन अस्थिरता गंभीर झंझावात और बवंडर का कारण बन सकती है क्योंकि नम वायु जो सीमा परत में फंसी हुई है, अंतत: एडियाबेटिक लैप्स दर के सापेक्ष अत्यधिक नकारात्मक रूप से उत्प्लावक हो जाती है और क्यूम्यलस क्लाउड या क्यूम्यलोनिम्बस के विकास को ट्रिगर करने वाली आर्द्र वायु के तेजी से बढ़ते बुलबुले के रूप में निकल जाती है। बादल।
सीमाएं
मौसम विज्ञान में उपयोग किए जाने वाले अधिकांश मापदंडों के साथ, ध्यान में रखने के लिए कुछ चेतावनियां हैं। इनमें से वह है जो सीएपीई ने भौतिक रूप से दर्शाता है और किन परिस्थितियों में सीएपीई का उपयोग किया जा सकता है। उदाहरण जहां सीएपीई निर्धारित करने के लिए अधिक सामान्य विधि टूटना शुरू हो सकती है वह उष्णकटिबंधीय चक्रवातों (उदा. उष्णकटिबंधीय अवसाद, उष्णकटिबंधीय तूफान, तूफान) की उपस्थिति में है।[7] [8]
सीएपीई निर्धारित करने का अधिक सामान्य तरीका उष्णकटिबंधीय चक्रवातों के पास टूट सकता है क्योंकि सीएपीई मानता है कि संक्षेपण के दौरान तरल पानी तुरंत खो जाता है। इस प्रकार को रूद्धोष्म वंश पर अपरिवर्तनीय माना जाता है। यह प्रक्रिया उष्णकटिबंधीय चक्रवातों (लघु अवधि के लिए टीसी) के लिए यथार्थवादी नहीं होती है। उष्णकटिबंधीय चक्रवातों के लिए प्रक्रिया को अधिक यथार्थवादी बनाने के लिए "रिवर्सिबल सीएपीई" (संक्षेप में आरसीएपीई)का उपयोग किया जाता है। आरसीएपीई, सीएपीई के मानक सम्मेलन के विपरीत चरम को मानता है और यह है कि प्रक्रिया के दौरान कोई तरल पानी नहीं खोएगा। यह नई प्रक्रिया पार्सल को जल लोडिंग से संबंधित अधिक सघनता प्रदान करती है।
आरसीएपीई की गणना सीएपीई के समान सूत्र का उपयोग करके ही निर्धारित किया जाता है, सूत्र में अंतर आभासी तापमान में होता है। इस नए सूत्रीकरण में, हम पार्सल संतृप्ति मिश्रण अनुपात (जिससे तरल पानी का संघनन और गायब हो जाता है) को पार्सल पानी की मात्रा से बदल देते हैं। यह मामूली परिवर्तन एकीकरण के माध्यम से हमें मिलने वाले मूल्यों को काफी हद तक बदल सकता है।
आरसीएपीई की कुछ सीमाएँ हैं, जिनमें से यह है कि आरसीएपीई किसी टीसी के भीतर उपयोग के लिए सुसंगत रखते हुए कोई वाष्पीकरण नहीं मानता है, लेकिन इसका उपयोग कहीं और किया जाना चाहिए।
सीएपीई और आरसीएपीई दोनों की और सीमा यह है कि वर्तमान में, दोनों प्रणालियां प्रवेश (मौसम विज्ञान) पर विचार नहीं करती हैं।
यह भी देखें
संदर्भ
- ↑ M. W. Moncrieff, M.J. Miller (1976). "उष्णकटिबंधीय क्यूम्यलोनिम्बस और स्क्वॉल लाइनों की गतिशीलता और अनुकरण". Q. J. R. Meteorol. Soc. 120 (432): 373–94. Bibcode:1976QJRMS.102..373M. doi:10.1002/qj.49710243208.
- ↑ Charles A. Doswell III, E.N. Rasmussen (December 1994). "केप गणनाओं पर आभासी तापमान सुधार की उपेक्षा का प्रभाव". Weather and Forecasting. 9 (4): 625–9. Bibcode:1994WtFor...9..625D. doi:10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.
- ↑ Thompson, Rich (2006). "एसपीसी गंभीर मौसम पैरामीटर्स की व्याख्या". Storm Prediction Center. Retrieved 2007-05-30.
- ↑ Shu, Frank (1992). The Physics of Astrophysics, volume II: Gas dynamics. Bibcode:1992pavi.book.....S. ISBN 978-0-935702-65-1.
{{cite book}}
:|journal=
ignored (help) - ↑ Craven, Jeffrey P.; H.E. Brooks (December 2004). "गहरे नम संवहन से जुड़े साउंडिंग डेरिवेटिव पैरामीटर्स का बेसलाइन क्लाइमेटोलॉजी" (PDF). National Weather Digest. 28: 13–24.
- ↑ Pietrycha, Albert E.; J.M. Davies; M. Ratzer; P. Merzlock (October 2004). "Tornadoes in a Deceptively Small CAPE Environment: The 4/20/04 Outbreak in Illinois and Indiana". Preprints of the 22nd Conference on Severe Local Storms. Hyannis, Massachusetts: American Meteorological Society.
- ↑ Edwards, Roger; Thompson, Richard (November 2014). ट्रॉपिकल साइक्लोन टोरनेडो रिजीम में रिवर्सिबल केप. 27th AMS Severe Local Storms Conference. Madison, WI: American Meteorological Society. doi:10.13140/2.1.2530.5921.
- ↑ Roger Edwards (July 7, 2017). Tropical Cyclone Tornadoes: Dual-Pol Radar Applications and Reversible CAPE (YouTube Video) (in English). NOAA. Retrieved December 27, 2021.
अग्रिम पठन
- Barry, R.G. and Chorley, R.J. Atmosphere, weather and climate (7th ed) Routledge 1998 p. 80-81 ISBN 0-415-16020-0