समीकरणों की विभेदक-बीजगणितीय प्रणाली: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 15: Line 15:
::<math>\begin{align}\dot x(t)&=f(x(t),y(t),t),\\0&=g(x(t),y(t),t).\end{align}</math>
::<math>\begin{align}\dot x(t)&=f(x(t),y(t),t),\\0&=g(x(t),y(t),t).\end{align}</math>
:हो, जहाँ <math>x(t)\in\R^n</math>, <math>y(t)\in\R^m</math>, <math>f:\R^{n+m+1}\to\R^n</math> और <math>g:\R^{n+m+1}\to\R^m</math>।
:हो, जहाँ <math>x(t)\in\R^n</math>, <math>y(t)\in\R^m</math>, <math>f:\R^{n+m+1}\to\R^n</math> और <math>g:\R^{n+m+1}\to\R^m</math>।
इस फॉर्म की डीएई प्रणाली को अर्ध-स्पष्ट कहा जाता है।<ref name="AscherPetzold1998" />समीकरण के दूसरे भाग g का प्रत्येक हल समीकरण के पहले भाग f के माध्यम से x के लिए अद्वितीय दिशा को परिभाषित करता है, जबकि y के लिए दिशा मनमानी है। लेकिन प्रत्येक बिंदु (x,y,t) g का हल नहीं है। x और समीकरणों के पहले भाग f में चरों को विशेषता अंतर मिलता है। y के घटकों और समीकरणों के दूसरे भाग g को प्रणाली के बीजगणितीय चर या समीकरण कहा जाता है। [डीएई के संदर्भ में बीजगणितीय शब्द का अर्थ मात्र व्युत्पन्न से मुक्त है और यह (अमूर्त) बीजगणित से संबंधित नहीं है।]
इस रूप की डीएई प्रणाली को अर्ध-स्पष्ट कहा जाता है।<ref name="AscherPetzold1998" /> समीकरण के दूसरे भाग g का प्रत्येक हल समीकरण के पहले भाग f के माध्यम से x के लिए अद्वितीय दिशा को परिभाषित करता है, जबकि y के लिए दिशा मनमानी है। लेकिन प्रत्येक बिंदु (x,y,t) g का हल नहीं है। x और समीकरणों के पहले भाग f में चरों को विशेषता अंतर मिलता है। y के घटकों और समीकरणों के दूसरे भाग g को प्रणाली के बीजगणितीय चर या समीकरण कहा जाता है। [डीएई के संदर्भ में बीजगणितीय शब्द का अर्थ मात्र व्युत्पन्न से मुक्त है और यह (अमूर्त) बीजगणित से संबंधित नहीं है।]


डीएई के हल में दो भाग होते हैं, पहला सुसंगत प्रारंभिक मूल्यों की खोज और दूसरा प्रक्षेपवक्र की गणना। सुसंगत प्रारंभिक मूल्यों को खोजने के लिए प्रायः डीएई के कुछ घटक फलनों के व्युत्पन्न पर विचार करना आवश्यक होता है। इस प्रक्रिया के लिए आवश्यक व्युत्पन्न के उच्चतम क्रम को विभेदन सूचकांक कहा जाता है। सूचकांक और सुसंगत प्रारंभिक मूल्यों की गणना में प्राप्त समीकरण प्रक्षेपवक्र की गणना में भी उपयोगी हो सकते हैं। अर्ध-स्पष्ट डीएई प्रणाली को विभेदन सूचकांक को से कम करके और इसके विपरीत अंतर्निहित में परिवर्तित किया जा सकता है।<ref>Ascher and Petzold, p. 234</ref>
डीएई के हल में दो भाग होते हैं, पहला सुसंगत प्रारंभिक मानों की खोज और दूसरा प्रक्षेपवक्र की गणना। सुसंगत प्रारंभिक मानों को खोजने के लिए प्रायः डीएई के कुछ घटक फलनों के व्युत्पन्न पर विचार करना आवश्यक होता है। इस प्रक्रिया के लिए आवश्यक व्युत्पन्न के उच्चतम क्रम को विभेदन सूचकांक कहा जाता है। सूचकांक और सुसंगत प्रारंभिक मानों की गणना में प्राप्त समीकरण प्रक्षेपवक्र की गणना में भी उपयोगी हो सकते हैं। अर्ध-स्पष्ट डीएई प्रणाली को विभेदन सूचकांक को से कम करके और इसके विपरीत अंतर्निहित में परिवर्तित किया जा सकता है।<ref>Ascher and Petzold, p. 234</ref>
== डीएई के अन्य रूप ==
== डीएई के अन्य रूप ==
यदि कुछ आश्रित चर उनके व्युत्पन्न के बिना होते हैं तो डीएई से ओडीई का अंतर स्पष्ट हो जाता है। आश्रित चरों के सदिश को युग्म के रूप में लिखा जा सकता है <math>(x,y)</math> और डीएई के विभेदक समीकरणों की प्रणाली फॉर्म में दिखाई देती है
यदि कुछ आश्रित चर उनके व्युत्पन्न के बिना होते हैं तो डीएई से ओडीई का अंतर स्पष्ट हो जाता है। आश्रित चर के सदिश को युग्म <math>(x,y)</math> के रूप में लिखा जा सकता है और डीएई के अंतर समीकरणों की प्रणाली
::<math> F\left(\dot x, x, y, t\right) = 0 </math>
::<math> F\left(\dot x, x, y, t\right) = 0 </math>
जहाँ
के रूप में दिखाई देती है, जहाँ
* <math>x</math>, में सदिश <math>\R^n</math>, आश्रित चर हैं जिनके लिए व्युत्पन्न मौजूद हैं (अंतर चर),
* <math>x</math>, <math>\R^n</math> में सदिश , आश्रित चर हैं जिनके लिए व्युत्पन्न मौजूद हैं (अंतर चर),
* <math>y</math>, में सदिश <math>\R^m</math>, आश्रित चर हैं जिनके लिए कोई व्युत्पन्न मौजूद नहीं है (बीजगणितीय चर),
* <math>y</math>, <math>\R^m</math> में सदिश , आश्रित चर हैं जिनके लिए कोई व्युत्पन्न मौजूद नहीं है (बीजगणितीय चर),
* <math>t</math>, अदिश राशि (सामान्यतः समय) स्वतंत्र चर है।
* <math>t</math>, अदिश राशि (सामान्यतः समय) स्वतंत्र चर है।
* <math>F</math> का सदिश है <math>n+m</math> ऐसे फलन जिनमें इनके सबसेट शामिल होते हैं <math>n+m+1</math> चर और <math>n</math> व्युत्पन्न।
* <math>F</math> <math>n+m</math> फलन का सदिश है जिसमें इन <math>n+m+1</math> चर और <math>n</math> व्युत्पन्न के उप समुच्चय सम्मिलित हैं।


कुल मिलाकर, डीएई का सेट फलन है
कुल मिलाकर, डीएई का समुच्चय फलन\
::<math> F: \R^{(2n+m+1)} \to \R^{(n+m)}. </math>
::<math> F: \R^{(2n+m+1)} \to \R^{(n+m)} </math> है।
प्रारंभिक स्थितियाँ फॉर्म के समीकरणों की प्रणाली का हल होनी चाहिए
प्रारंभिक स्थितियाँ
::<math> F\left(\dot x(t_0),\, x(t_0), y(t_0), t_0 \right) = 0. </math>
::<math> F\left(\dot x(t_0),\, x(t_0), y(t_0), t_0 \right) = 0 </math> रूप के समीकरणों की प्रणाली का हल होनी चाहिए।
== उदाहरण ==
== उदाहरण ==
कार्टेशियन निर्देशांक (x,y) में केंद्र (0,0) के साथ लंबाई L के [[ लंगर |लंगर]] का व्यवहार यूलर-लैग्रेंज समीकरण द्वारा वर्णित है
कार्तीय निर्देशांक (x,y) में केंद्र (0,0) के साथ लंबाई L के [[ लंगर |लोलक]] का व्यवहार यूलर-लैग्रेंज समीकरण  
::<math>\begin{align}
::<math>\begin{align}
\dot x&=u,&\dot y&=v,\\
\dot x&=u,&\dot y&=v,\\
Line 38: Line 38:
x^2+y^2&=L^2,
x^2+y^2&=L^2,
\end{align}</math>
\end{align}</math>
जहाँ <math>\lambda</math> [[लैग्रेंज गुणक]] है। संवेग चर u और v को ऊर्जा संरक्षण के नियम द्वारा नियंत्रित किया जाना चाहिए और उनकी दिशा वृत्त के अनुदिश होनी चाहिए। उन समीकरणों में कोई भी स्थिति स्पष्ट नहीं है। अंतिम समीकरण का विभेदन होता है
द्वारा वर्णित है, जहाँ <math>\lambda</math> [[लैग्रेंज गुणक]] है। संवेग चर u और v को ऊर्जा संरक्षण के नियम द्वारा नियंत्रित किया जाना चाहिए और उनकी दिशा वृत्त के अनुदिश होनी चाहिए। उन समीकरणों में कोई भी स्थिति स्पष्ट नहीं है। अंतिम समीकरण का विभेदन होता है
::<math>\begin{align}
::<math>\begin{align}
&&\dot x\,x+\dot y\,y&=0\\
&&\dot x\,x+\dot y\,y&=0\\
\Rightarrow&& u\,x+v\,y&=0,
\Rightarrow&& u\,x+v\,y&=0,
\end{align}</math>
\end{align}</math>
गति की दिशा को वृत्त की स्पर्श रेखा तक सीमित करना। इस समीकरण के अगले व्युत्पन्न का तात्पर्य है
गति की दिशा को वृत्त की स्पर्श रेखा तक सीमित करना। इस समीकरण का अगला व्युत्पन्न
::<math>\begin{align}
::<math>\begin{align}
&&\dot u\,x+\dot v\,y+u\,\dot x+v\,\dot y&=0,\\
&&\dot u\,x+\dot v\,y+u\,\dot x+v\,\dot y&=0,\\
Line 49: Line 49:
\Rightarrow&& L^2\,\lambda-gy+u^2+v^2&=0,
\Rightarrow&& L^2\,\lambda-gy+u^2+v^2&=0,
\end{align}</math>
\end{align}</math>
और उस अंतिम पहचान का व्युत्पन्न सरल हो जाता है <math>L^2\dot\lambda-3gv=0</math> जिसका तात्पर्य ऊर्जा के संरक्षण से है क्योंकि एकीकरण के बाद स्थिरांक स्थिर रहता है <math>E=\tfrac32gy-\tfrac12L^2\lambda=\frac12(u^2+v^2)+gy</math> गतिज और स्थितिज ऊर्जा का योग है।
को दर्शाता है, और उस अंतिम पहचान का व्युत्पन्न <math>L^2\dot\lambda-3gv=0</math> को सरल बनाता है जिसका तात्पर्य ऊर्जा के संरक्षण से है क्योंकि एकीकरण के बाद स्थिरांक <math>E=\tfrac32gy-\tfrac12L^2\lambda=\frac12(u^2+v^2)+gy</math> गतिज और स्थितिज ऊर्जा का योग है।


सभी आश्रित चरों के लिए अद्वितीय व्युत्पन्न मान प्राप्त करने के लिए अंतिम समीकरण को तीन बार विभेदित किया गया था। यह 3 का विभेदन सूचकांक देता है, जो विवश यांत्रिक प्रणालियों के लिए विशिष्ट है।
सभी आश्रित चरों के लिए अद्वितीय व्युत्पन्न मान प्राप्त करने के लिए अंतिम समीकरण को तीन बार विभेदित किया गया था। यह 3 का विभेदन सूचकांक देता है, जो कृत्रिम यांत्रिक प्रणालियों के लिए विशिष्ट है।


यदि प्रारंभिक मान <math>(x_0,u_0)</math> और y के लिए चिह्न दिया गया है, अन्य चर इसके माध्यम से निर्धारित किए जाते हैं <math>y=\pm\sqrt{L^2-x^2}</math>, और अगर <math>y\ne0</math> तब <math>v=-ux/y</math> और <math>\lambda=(gy-u^2-v^2)/L^2</math>। अगले बिंदु पर आगे बढ़ने के लिए x और u के व्युत्पन्न प्राप्त करना पर्याप्त है, अर्थात, हल करने की प्रणाली अब है
यदि प्रारंभिक मान <math>(x_0,u_0)</math> और y के लिए चिह्न दिया गया है, तो अन्य चर <math>y=\pm\sqrt{L^2-x^2}</math> के माध्यम से निर्धारित किए जाते हैं, और यदि <math>y\ne0</math> है तो <math>v=-ux/y</math> और <math>\lambda=(gy-u^2-v^2)/L^2</math>। अगले बिंदु पर आगे बढ़ने के लिए x और u के व्युत्पन्न प्राप्त करना पर्याप्त है, अर्थात, हल करने की प्रणाली अब


:: <math>\begin{align}
:: <math>\begin{align}
Line 61: Line 61:
0&=x^2+y^2-L^2,\\
0&=x^2+y^2-L^2,\\
0&=ux+vy,\\
0&=ux+vy,\\
0&=u^2-gy+v^2+L^2\,\lambda.
0&=u^2-gy+v^2+L^2\,\lambda
\end{align}</math>
\end{align}</math>है।
यह सूचकांक 1 का अर्ध-स्पष्ट डीएई है। इसी तरह के समीकरणों का और सेट शुरू से प्राप्त किया जा सकता है <math>(y_0,v_0)</math> और x के लिए चिन्ह।
यह सूचकांक 1 का अर्ध-स्पष्ट डीएई है। समान समीकरणों का एक और समुच्चय <math>(y_0,v_0)</math> और x के चिह्न से प्रारम्भ करके प्राप्त किया जा सकता है।


डीएई स्वाभाविक रूप से गैर-रेखीय उपकरणों के साथ सर्किट के मॉडलिंग में भी होते हैं। डीएई को नियोजित करने वाले [[संशोधित नोडल विश्लेषण]] का उपयोग उदाहरण के लिए संख्यात्मक सर्किट सिमुलेटर के सर्वव्यापी [[ मसाला |मसाला]] परिवार में किया जाता है।<ref name="IlchmannReis2013">{{cite book|editor=Achim Ilchmann |editor2=Timo Reis|title=विभेदक-बीजगणितीय समीकरणों में सर्वेक्षण I|year=2013|publisher=Springer Science & Business Media|isbn=978-3-642-34928-7|author=Ricardo Riaza|chapter=DAEs in Circuit Modelling: A Survey}}</ref> इसी तरह, फ्राउनहोफर सोसाइटी|फ्राउनहोफर के [[एनालॉग इनसाइड्स]] [[मेथेमेटिका]] पैकेज का उपयोग [[नेटलिस्ट]] से डीएई प्राप्त करने के लिए किया जा सकता है और फिर कुछ मामलों में समीकरणों को सरल बनाया जा सकता है या प्रतीकात्मक रूप से हल भी किया जा सकता है।<ref>{{Cite book | doi = 10.1007/978-1-4020-6149-3_4| chapter = Improving Efficiency and Robustness of Analog Behavioral Models| title = एंबेडेड सिस्टम के लिए डिज़ाइन और विशिष्टता भाषाओं में प्रगति| pages = 53| year = 2007| last1 = Platte | first1 = D. | last2 = Jing | first2 = S. | last3 = Sommer | first3 = R. | last4 = Barke | first4 = E. | isbn = 978-1-4020-6147-9}}</ref><ref>{{Cite book | doi = 10.1007/978-3-642-23568-9_17| chapter = Fast and Robust Symbolic Model Order Reduction with Analog Insydes| title = वैज्ञानिक कंप्यूटिंग में कंप्यूटर बीजगणित| volume = 6885| pages = 215| series = Lecture Notes in Computer Science| year = 2011| last1 = Hauser | first1 = M. | last2 = Salzig | first2 = C. | last3 = Dreyer | first3 = A. | isbn = 978-3-642-23567-2}}</ref> यह ध्यान देने योग्य है कि डीएई (एक सर्किट के) के सूचकांक को [[सकारात्मक प्रतिक्रिया]] के साथ कैपेसिटर [[परिचालन एम्पलीफायरों]] के माध्यम से कैस्केडिंग/युग्मन द्वारा मनमाने ढंग से उच्च बनाया जा सकता है।<ref name="BrenanCampbell1996" />
डीएई स्वाभाविक रूप से गैर-रेखीय उपकरणों के साथ सर्किट के मॉडलिंग में भी होते हैं। डीएई को नियोजित करने वाले [[संशोधित नोडल विश्लेषण]] का उपयोग उदाहरण के लिए संख्यात्मक सर्किट सिमुलेटर के सर्वव्यापी [[ मसाला |मसाला]] परिवार में किया जाता है।<ref name="IlchmannReis2013">{{cite book|editor=Achim Ilchmann |editor2=Timo Reis|title=विभेदक-बीजगणितीय समीकरणों में सर्वेक्षण I|year=2013|publisher=Springer Science & Business Media|isbn=978-3-642-34928-7|author=Ricardo Riaza|chapter=DAEs in Circuit Modelling: A Survey}}</ref> इसी प्रकार, फ्राउनहोफर सोसाइटी|फ्राउनहोफर के [[एनालॉग इनसाइड्स]] [[मेथेमेटिका]] पैकेज का उपयोग [[नेटलिस्ट]] से डीएई प्राप्त करने के लिए किया जा सकता है और फिर कुछ मामलों में समीकरणों को सरल बनाया जा सकता है या प्रतीकात्मक रूप से हल भी किया जा सकता है।<ref>{{Cite book | doi = 10.1007/978-1-4020-6149-3_4| chapter = Improving Efficiency and Robustness of Analog Behavioral Models| title = एंबेडेड सिस्टम के लिए डिज़ाइन और विशिष्टता भाषाओं में प्रगति| pages = 53| year = 2007| last1 = Platte | first1 = D. | last2 = Jing | first2 = S. | last3 = Sommer | first3 = R. | last4 = Barke | first4 = E. | isbn = 978-1-4020-6147-9}}</ref><ref>{{Cite book | doi = 10.1007/978-3-642-23568-9_17| chapter = Fast and Robust Symbolic Model Order Reduction with Analog Insydes| title = वैज्ञानिक कंप्यूटिंग में कंप्यूटर बीजगणित| volume = 6885| pages = 215| series = Lecture Notes in Computer Science| year = 2011| last1 = Hauser | first1 = M. | last2 = Salzig | first2 = C. | last3 = Dreyer | first3 = A. | isbn = 978-3-642-23567-2}}</ref> यह ध्यान देने योग्य है कि डीएई (एक सर्किट के) के सूचकांक को [[सकारात्मक प्रतिक्रिया]] के साथ कैपेसिटर [[परिचालन एम्पलीफायरों]] के माध्यम से कैस्केडिंग/युग्मन द्वारा मनमाने ढंग से उच्च बनाया जा सकता है।<ref name="BrenanCampbell1996" />
==सूचकांक 1 का अर्ध-स्पष्ट डीएई ==
==सूचकांक 1 का अर्ध-स्पष्ट डीएई ==
फॉर्म का डीएई
रूप का डीएई
:: ::<math>\begin{align}\dot x&=f(x,y,t),\\0&=g(x,y,t).\end{align}</math>
:: ::<math>\begin{align}\dot x&=f(x,y,t),\\0&=g(x,y,t).\end{align}</math>
अर्ध-स्पष्ट कहलाते हैं। इंडेक्स-1 प्रॉपर्टी के लिए आवश्यक है कि g, y के लिए अंतर्निहित फलन प्रमेय हो। दूसरे शब्दों में, विभेदन सूचकांक 1 है यदि टी के लिए बीजगणितीय समीकरणों के विभेदन से अंतर्निहित ओडीई प्रणाली परिणाम प्राप्त होती है,
अर्ध-स्पष्ट कहलाते हैं। इंडेक्स-1 प्रॉपर्टी के लिए आवश्यक है कि g, y के लिए अंतर्निहित फलन प्रमेय हो। दूसरे शब्दों में, विभेदन सूचकांक 1 है यदि टी के लिए बीजगणितीय समीकरणों के विभेदन से अंतर्निहित ओडीई प्रणाली परिणाम प्राप्त होती है,
Line 75: Line 75:
\end{align}</math>
\end{align}</math>
जिसके लिए हल संभव है <math>(\dot x,\,\dot y)</math> अगर <math>\det\left(\partial_y g(x,y,t)\right)\ne 0.</math>
जिसके लिए हल संभव है <math>(\dot x,\,\dot y)</math> अगर <math>\det\left(\partial_y g(x,y,t)\right)\ne 0.</math>
प्रत्येक पर्याप्त रूप से सुचारू डीएई लगभग हर जगह इस अर्ध-स्पष्ट सूचकांक-1 फॉर्म में कम करने योग्य है।
प्रत्येक पर्याप्त रूप से सुचारू डीएई लगभग हर जगह इस अर्ध-स्पष्ट सूचकांक-1 रूप में कम करने योग्य है।


== डीएई और अनुप्रयोगों का संख्यात्मक उपचार ==
== डीएई और अनुप्रयोगों का संख्यात्मक उपचार ==
Line 82: Line 82:


::<math>\begin{align}\frac{dx}{dt}&=f\left(x,y,t\right),\\0&=g\left(x,y,t\right).\end{align}</math>
::<math>\begin{align}\frac{dx}{dt}&=f\left(x,y,t\right),\\0&=g\left(x,y,t\right).\end{align}</math>
शुद्ध ओडीई सॉल्वरों द्वारा हल के लिए मनमाने ढंग से डीएई प्रणाली को ओडीई में परिवर्तित करना गैर-तुच्छ फलन है। जिन तकनीकों को नियोजित किया जा सकता है उनमें [[पैन्टेलाइड्स एल्गोरिदम]] और [[डमी व्युत्पन्न सूचकांक कटौती विधि]] शामिल हैं। वैकल्पिक रूप से, असंगत प्रारंभिक स्थितियों के साथ उच्च-सूचकांक डीएई का सीधा हल भी संभव है। इस हल दृष्टिकोण में परिमित तत्वों पर ऑर्थोगोनल संयोजन या बीजगणितीय अभिव्यक्तियों में प्रत्यक्ष प्रतिलेखन के माध्यम से व्युत्पन्न तत्वों का परिवर्तन शामिल है। यह किसी भी सूचकांक के डीएई को खुले समीकरण रूप में पुनर्व्यवस्थित किए बिना हल करने की अनुमति देता है
शुद्ध ओडीई सॉल्वरों द्वारा हल के लिए मनमाने ढंग से डीएई प्रणाली को ओडीई में परिवर्तित करना गैर-तुच्छ फलन है। जिन तकनीकों को नियोजित किया जा सकता है उनमें [[पैन्टेलाइड्स एल्गोरिदम]] और [[डमी व्युत्पन्न सूचकांक कटौती विधि]] सम्मिलित हैं। वैकल्पिक रूप से, असंगत प्रारंभिक स्थितियों के साथ उच्च-सूचकांक डीएई का सीधा हल भी संभव है। इस हल दृष्टिकोण में परिमित तत्वों पर ऑर्थोगोनल संयोजन या बीजगणितीय अभिव्यक्तियों में प्रत्यक्ष प्रतिलेखन के माध्यम से व्युत्पन्न तत्वों का परिवर्तन सम्मिलित है। यह किसी भी सूचकांक के डीएई को खुले समीकरण रूप में पुनर्व्यवस्थित किए बिना हल करने की अनुमति देता है


::<math>\begin{align}0&=f\left(\frac{dx}{dt},x,y,t\right),\\0&=g\left(x,y,t\right).\end{align}</math>
::<math>\begin{align}0&=f\left(\frac{dx}{dt},x,y,t\right),\\0&=g\left(x,y,t\right).\end{align}</math>

Revision as of 09:33, 7 August 2023

विद्युत अभियन्त्रण में, समीकरणों की अंतर-बीजीय प्रणाली (डीएई) समीकरणों की एक ऐसी प्रणाली है जिसमें या तो अंतर समीकरण और बीजगणितीय समीकरण होते हैं, या इस प्रकार की प्रणाली के बराबर होती है।

गणित में ये विभेदक बीजगणितीय प्रकारों के उदाहरण हैं और आदर्शों के अनुरूप हैं विभेदक बहुपद वलयों में (बीजगणितीय समायोजन के लिए विभेदक बीजगणित पर लेख देखें)।

हम इन अंतर समीकरणों को स्वतंत्र चर t में चर x के आश्रित सदिश के लिए

के रूप में लिख सकते हैं।

इन प्रतीकों को एक वास्तविक चर के फलनों के रूप में विचार करते समय (जैसा कि इलेक्ट्रिकल इंजीनियरिंग या नियंत्रण सिद्धांत में अनुप्रयोगों में होता है) हम को आश्रित चर के एक सदिश के रूप में देखते हैं और प्रणाली में कई समीकरण होते हैं, जिन्हें हम फलन के रूप में मानते हैं।

वे सामान्य अंतर समीकरण (ओडीई) से अलग हैं क्योंकि एक डीएई फलन x के सभी घटकों के व्युत्पन्न के लिए पूर्ण रूप से हल करने योग्य नहीं है क्योंकि ये सभी प्रकट नहीं हो सकते हैं (अर्थात कुछ समीकरण बीजगणितीय हैं); तकनीकी रूप से एक अंतर्निहित ओडीई प्रणाली [जिसे स्पष्ट किया जा सकता है] और एक डीएई प्रणाली के बीच अंतर यह है कि जैकोबियन आव्यूह एक डीएई प्रणाली के लिए एक विलक्षण आव्यूह है।[1] ओडीई और डीएई के बीच यह अंतर इसलिए किया गया है क्योंकि डीएई की अलग-अलग विशेषताएं हैं और इन्हें हल करना सामान्यतः पर अधिक कठिन होता है।[2]

व्यावहारिक रूप से, डीएई और ओडीई के बीच अंतर प्रायः यह होता है कि डीएई प्रणाली का हल इनपुट संकेत के व्युत्पन्न पर निर्भर करता है, न कि मात्र संकेत पर, जैसा कि ओडीई की स्थिति में होता है;[3] यह समस्या सामान्यतः हिस्टैरिसीस वाले अरेखीय प्रणाली में सामने आती है,[4] जैसे कि श्मिट ट्रिगर[5]

यह अंतर अधिक स्पष्ट रूप से दिखाई देता है यदि प्रणाली को फिर से लिखा जाए ताकि x के अतिरिक्त हम आश्रित चरों के सदिशों के युग्म पर विचार करें और डीएई का रूप

हो, जहाँ , , और

इस रूप की डीएई प्रणाली को अर्ध-स्पष्ट कहा जाता है।[1] समीकरण के दूसरे भाग g का प्रत्येक हल समीकरण के पहले भाग f के माध्यम से x के लिए अद्वितीय दिशा को परिभाषित करता है, जबकि y के लिए दिशा मनमानी है। लेकिन प्रत्येक बिंदु (x,y,t) g का हल नहीं है। x और समीकरणों के पहले भाग f में चरों को विशेषता अंतर मिलता है। y के घटकों और समीकरणों के दूसरे भाग g को प्रणाली के बीजगणितीय चर या समीकरण कहा जाता है। [डीएई के संदर्भ में बीजगणितीय शब्द का अर्थ मात्र व्युत्पन्न से मुक्त है और यह (अमूर्त) बीजगणित से संबंधित नहीं है।]

डीएई के हल में दो भाग होते हैं, पहला सुसंगत प्रारंभिक मानों की खोज और दूसरा प्रक्षेपवक्र की गणना। सुसंगत प्रारंभिक मानों को खोजने के लिए प्रायः डीएई के कुछ घटक फलनों के व्युत्पन्न पर विचार करना आवश्यक होता है। इस प्रक्रिया के लिए आवश्यक व्युत्पन्न के उच्चतम क्रम को विभेदन सूचकांक कहा जाता है। सूचकांक और सुसंगत प्रारंभिक मानों की गणना में प्राप्त समीकरण प्रक्षेपवक्र की गणना में भी उपयोगी हो सकते हैं। अर्ध-स्पष्ट डीएई प्रणाली को विभेदन सूचकांक को से कम करके और इसके विपरीत अंतर्निहित में परिवर्तित किया जा सकता है।[6]

डीएई के अन्य रूप

यदि कुछ आश्रित चर उनके व्युत्पन्न के बिना होते हैं तो डीएई से ओडीई का अंतर स्पष्ट हो जाता है। आश्रित चर के सदिश को युग्म के रूप में लिखा जा सकता है और डीएई के अंतर समीकरणों की प्रणाली

के रूप में दिखाई देती है, जहाँ

  • , में सदिश , आश्रित चर हैं जिनके लिए व्युत्पन्न मौजूद हैं (अंतर चर),
  • , में सदिश , आश्रित चर हैं जिनके लिए कोई व्युत्पन्न मौजूद नहीं है (बीजगणितीय चर),
  • , अदिश राशि (सामान्यतः समय) स्वतंत्र चर है।
  • फलन का सदिश है जिसमें इन चर और व्युत्पन्न के उप समुच्चय सम्मिलित हैं।

कुल मिलाकर, डीएई का समुच्चय फलन\

है।

प्रारंभिक स्थितियाँ

रूप के समीकरणों की प्रणाली का हल होनी चाहिए।

उदाहरण

कार्तीय निर्देशांक (x,y) में केंद्र (0,0) के साथ लंबाई L के लोलक का व्यवहार यूलर-लैग्रेंज समीकरण

द्वारा वर्णित है, जहाँ लैग्रेंज गुणक है। संवेग चर u और v को ऊर्जा संरक्षण के नियम द्वारा नियंत्रित किया जाना चाहिए और उनकी दिशा वृत्त के अनुदिश होनी चाहिए। उन समीकरणों में कोई भी स्थिति स्पष्ट नहीं है। अंतिम समीकरण का विभेदन होता है

गति की दिशा को वृत्त की स्पर्श रेखा तक सीमित करना। इस समीकरण का अगला व्युत्पन्न

को दर्शाता है, और उस अंतिम पहचान का व्युत्पन्न को सरल बनाता है जिसका तात्पर्य ऊर्जा के संरक्षण से है क्योंकि एकीकरण के बाद स्थिरांक गतिज और स्थितिज ऊर्जा का योग है।

सभी आश्रित चरों के लिए अद्वितीय व्युत्पन्न मान प्राप्त करने के लिए अंतिम समीकरण को तीन बार विभेदित किया गया था। यह 3 का विभेदन सूचकांक देता है, जो कृत्रिम यांत्रिक प्रणालियों के लिए विशिष्ट है।

यदि प्रारंभिक मान और y के लिए चिह्न दिया गया है, तो अन्य चर के माध्यम से निर्धारित किए जाते हैं, और यदि है तो और । अगले बिंदु पर आगे बढ़ने के लिए x और u के व्युत्पन्न प्राप्त करना पर्याप्त है, अर्थात, हल करने की प्रणाली अब

है।

यह सूचकांक 1 का अर्ध-स्पष्ट डीएई है। समान समीकरणों का एक और समुच्चय और x के चिह्न से प्रारम्भ करके प्राप्त किया जा सकता है।

डीएई स्वाभाविक रूप से गैर-रेखीय उपकरणों के साथ सर्किट के मॉडलिंग में भी होते हैं। डीएई को नियोजित करने वाले संशोधित नोडल विश्लेषण का उपयोग उदाहरण के लिए संख्यात्मक सर्किट सिमुलेटर के सर्वव्यापी मसाला परिवार में किया जाता है।[7] इसी प्रकार, फ्राउनहोफर सोसाइटी|फ्राउनहोफर के एनालॉग इनसाइड्स मेथेमेटिका पैकेज का उपयोग नेटलिस्ट से डीएई प्राप्त करने के लिए किया जा सकता है और फिर कुछ मामलों में समीकरणों को सरल बनाया जा सकता है या प्रतीकात्मक रूप से हल भी किया जा सकता है।[8][9] यह ध्यान देने योग्य है कि डीएई (एक सर्किट के) के सूचकांक को सकारात्मक प्रतिक्रिया के साथ कैपेसिटर परिचालन एम्पलीफायरों के माध्यम से कैस्केडिंग/युग्मन द्वारा मनमाने ढंग से उच्च बनाया जा सकता है।[4]

सूचकांक 1 का अर्ध-स्पष्ट डीएई

रूप का डीएई

::

अर्ध-स्पष्ट कहलाते हैं। इंडेक्स-1 प्रॉपर्टी के लिए आवश्यक है कि g, y के लिए अंतर्निहित फलन प्रमेय हो। दूसरे शब्दों में, विभेदन सूचकांक 1 है यदि टी के लिए बीजगणितीय समीकरणों के विभेदन से अंतर्निहित ओडीई प्रणाली परिणाम प्राप्त होती है,

जिसके लिए हल संभव है अगर प्रत्येक पर्याप्त रूप से सुचारू डीएई लगभग हर जगह इस अर्ध-स्पष्ट सूचकांक-1 रूप में कम करने योग्य है।

डीएई और अनुप्रयोगों का संख्यात्मक उपचार

डीएई को हल करने में दो प्रमुख समस्याएं सूचकांक में कमी और लगातार प्रारंभिक स्थितियां हैं। अधिकांश संख्यात्मक सॉल्वरों को साधारण अंतर समीकरणों और बीजगणितीय समीकरणों की आवश्यकता होती है

शुद्ध ओडीई सॉल्वरों द्वारा हल के लिए मनमाने ढंग से डीएई प्रणाली को ओडीई में परिवर्तित करना गैर-तुच्छ फलन है। जिन तकनीकों को नियोजित किया जा सकता है उनमें पैन्टेलाइड्स एल्गोरिदम और डमी व्युत्पन्न सूचकांक कटौती विधि सम्मिलित हैं। वैकल्पिक रूप से, असंगत प्रारंभिक स्थितियों के साथ उच्च-सूचकांक डीएई का सीधा हल भी संभव है। इस हल दृष्टिकोण में परिमित तत्वों पर ऑर्थोगोनल संयोजन या बीजगणितीय अभिव्यक्तियों में प्रत्यक्ष प्रतिलेखन के माध्यम से व्युत्पन्न तत्वों का परिवर्तन सम्मिलित है। यह किसी भी सूचकांक के डीएई को खुले समीकरण रूप में पुनर्व्यवस्थित किए बिना हल करने की अनुमति देता है

एक बार जब मॉडल को बीजगणितीय समीकरण रूप में परिवर्तित कर दिया जाता है, तो इसे बड़े पैमाने पर नॉनलाइनियर प्रोग्रामिंग सॉल्वर (एपीमॉनिटर देखें) द्वारा हल किया जा सकता है।

ट्रैक्टिबिलिटी

संख्यात्मक तरीकों के संदर्भ में डीएई की ट्रैक्टेबिलिटी के कई उपाय विकसित हुए हैं, जैसे विभेदन सूचकांक, गड़बड़ी सूचकांक, ट्रैक्टेबिलिटी इंडेक्स, ज्यामितीय सूचकांक और क्रोनकर इंडेक्स।[10][11]

डीएई के लिए संरचनात्मक विश्लेषण

हम उपयोग करते हैं -डीएई का विश्लेषण करने की विधि। हम डीएई के लिए हस्ताक्षर आव्यूह का निर्माण करते हैं , जहां प्रत्येक पंक्ति प्रत्येक समीकरण से मेल खाती है और प्रत्येक स्तंभ प्रत्येक चर से मेल खाता है । स्थिति में प्रवेश है , जो कि व्युत्पन्न के उच्चतम क्रम को दर्शाता है में होता है , या अगर में नहीं होता है

उपरोक्त पेंडुलम डीएई के लिए, चर हैं । संबंधित हस्ताक्षर आव्यूह है

यह भी देखें

संदर्भ

  1. 1.0 1.1 Uri M. Ascher; Linda R. Petzold (1998). साधारण विभेदक समीकरणों और विभेदक-बीजगणितीय समीकरणों के लिए कंप्यूटर विधियाँ. SIAM. p. 12. ISBN 978-1-61197-139-2.
  2. Achim Ilchmann; Timo Reis (2014). विभेदक-बीजगणितीय समीकरण II में सर्वेक्षण. Springer. pp. 104–105. ISBN 978-3-319-11050-9.
  3. Renate Merker; Wolfgang Schwarz, eds. (2001). System Design Automation: Fundamentals, Principles, Methods, Examples. Springer Science & Business Media. p. 221. ISBN 978-0-7923-7313-1.
  4. 4.0 4.1 K. E. Brenan; S. L. Campbell; L. R. Petzold (1996). विभेदक-बीजगणितीय समीकरणों में प्रारंभिक-मूल्य समस्याओं का संख्यात्मक समाधान. SIAM. pp. 173–177. ISBN 978-1-61197-122-4.
  5. Günther, M.; Feldmann, U.; Ter Maten, J. (2005). "Modelling and Discretization of Circuit Problems". इलेक्ट्रोमैग्नेटिक्स में संख्यात्मक तरीके. Handbook of Numerical Analysis. Vol. 13. p. 523. doi:10.1016/S1570-8659(04)13006-8. ISBN 978-0-444-51375-5., pp. 529-531
  6. Ascher and Petzold, p. 234
  7. Ricardo Riaza (2013). "DAEs in Circuit Modelling: A Survey". In Achim Ilchmann; Timo Reis (eds.). विभेदक-बीजगणितीय समीकरणों में सर्वेक्षण I. Springer Science & Business Media. ISBN 978-3-642-34928-7.
  8. Platte, D.; Jing, S.; Sommer, R.; Barke, E. (2007). "Improving Efficiency and Robustness of Analog Behavioral Models". एंबेडेड सिस्टम के लिए डिज़ाइन और विशिष्टता भाषाओं में प्रगति. p. 53. doi:10.1007/978-1-4020-6149-3_4. ISBN 978-1-4020-6147-9.
  9. Hauser, M.; Salzig, C.; Dreyer, A. (2011). "Fast and Robust Symbolic Model Order Reduction with Analog Insydes". वैज्ञानिक कंप्यूटिंग में कंप्यूटर बीजगणित. Lecture Notes in Computer Science. Vol. 6885. p. 215. doi:10.1007/978-3-642-23568-9_17. ISBN 978-3-642-23567-2.
  10. Ricardo Riaza (2008). Differential-algebraic Systems: Analytical Aspects and Circuit Applications. World Scientific. pp. 5–8. ISBN 978-981-279-181-8.
  11. Takamatsu, Mizuyo; Iwata, Satoru (2008). "सर्किट सिमुलेशन के लिए हाइब्रिड विश्लेषण में अंतर-बीजगणितीय समीकरणों का सूचकांक लक्षण वर्णन" (PDF). International Journal of Circuit Theory and Applications (in English): n/a. doi:10.1002/cta.577. S2CID 3875504. Archived from the original (PDF) on 16 December 2014. Retrieved 9 November 2022.

अग्रिम पठन



पुस्तकें

  • Hairer, E.; Wanner, G. (1996). साधारण विभेदक समीकरण II को हल करना: कठोर और विभेदक-बीजगणितीय समस्याएं (2nd revised ed.). Berlin: Springer-Verlag.
  • Ascher, Uri M.; Petzold, Linda R. (1998). साधारण विभेदक समीकरणों और विभेदक-बीजगणितीय समीकरणों के लिए कंप्यूटर विधियाँ. Philadelphia: SIAM. ISBN 978-0-89871-412-8.
  • Kunkel, Peter; Mehrmann, Volker Ludwig (2006). विभेदक-बीजगणितीय समीकरण: विश्लेषण और संख्यात्मक समाधान. Zürich, Switzerland: European Mathematical Society. ISBN 978-3-03719-017-3.
  • Kazuo Murota (2009). सिस्टम विश्लेषण के लिए मैट्रिसेस और मैट्रोइड्स. Springer Science & Business Media. ISBN 978-3-642-03994-2. (डीएई सूचकांक की गणना के लिए संरचनात्मक दृष्टिकोण को शामिल करता है।)
  • Matthias Gerdts (2012). ओडीई और डीएई का इष्टतम नियंत्रण. Walter de Gruyter. ISBN 978-3-11-024999-6.
  • Lamour, René; März, Roswitha; Tischendorf, Caren (2013). विभेदक-बीजगणितीय समीकरण: एक प्रोजेक्टर आधारित विश्लेषण. Heidelberg: Springer. ISBN 978-3-642-27554-8.

विभिन्न कागजात

बाहरी संबंध