बीजगणितीय विविधता की घात: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Number used in algebraic geometry}} | {{Short description|Number used in algebraic geometry}} | ||
Line 13: | Line 14: | ||
V के लिए एक प्रक्षेप्य स्थान ''P<sup>n</sup>'' में एम्बेडेड और कुछ बीजगणितीय रूप से संवर्त क्षेत्र K पर परिभाषित किया गया है, V की डिग्री d सामान्य स्थिति में एक रैखिक उपस्थान L के साथ K पर परिभाषित V के प्रतिच्छेदन बिंदुओं की संख्या है जैसे कि | V के लिए एक प्रक्षेप्य स्थान ''P<sup>n</sup>'' में एम्बेडेड और कुछ बीजगणितीय रूप से संवर्त क्षेत्र K पर परिभाषित किया गया है, V की डिग्री d सामान्य स्थिति में एक रैखिक उपस्थान L के साथ K पर परिभाषित V के प्रतिच्छेदन बिंदुओं की संख्या है जैसे कि | ||
:<math>\dim(V) + \dim(L) = n. | :<math>\dim(V) + \dim(L) = n. | ||
</math> | |||
यहाँ dim(V) V का आयाम है, और L का कोडिमेशन उस आयाम के समान होगा। डिग्री d एक बाहरी मात्रा है, और V की संपत्ति के रूप में आंतरिक नहीं है। उदाहरण के लिए, प्रक्षेप्य रेखा में ''P<sup>n</sup>'' में डिग्री एन का एक (अनिवार्य रूप से अद्वितीय) एम्बेडिंग है। | यहाँ dim(V) V का आयाम है, और L का कोडिमेशन उस आयाम के समान होगा। डिग्री d एक बाहरी मात्रा है, और V की संपत्ति के रूप में आंतरिक नहीं है। उदाहरण के लिए, प्रक्षेप्य रेखा में ''P<sup>n</sup>'' में डिग्री एन का एक (अनिवार्य रूप से अद्वितीय) एम्बेडिंग है। | ||
==गुण== | ==गुण == | ||
हाइपरसरफेस F = 0 की डिग्री इसे परिभाषित करने वाले [[सजातीय बहुपद]] F के [[ एकपदीय ]] के समान है (माना जाता है कि यदि F में बार-बार कारक हैं, तो प्रतिच्छेदन सिद्धांत का उपयोग [[बहुलता (गणित)]] के साथ प्रतिच्छेदन की गणना करने के लिए किया जाता है, जैसा कि बेज़ाउट के प्रमेय में है) . | हाइपरसरफेस F = 0 की डिग्री इसे परिभाषित करने वाले [[सजातीय बहुपद]] F के [[ एकपदीय ]] के समान है (माना जाता है कि यदि F में बार-बार कारक हैं, तो प्रतिच्छेदन सिद्धांत का उपयोग [[बहुलता (गणित)]] के साथ प्रतिच्छेदन की गणना करने के लिए किया जाता है, जैसा कि बेज़ाउट के प्रमेय में है) . | ||
Revision as of 17:39, 12 July 2023
गणित में, आयाम n की एक एफ़िन या प्रोजेक्टिव विविधता की डिग्री सामान्य स्थिति में n हाइपरप्लेन के साथ विविधता के प्रतिच्छेदन बिंदुओं की संख्या है।[1] एक बीजगणितीय सेट के लिए, कई घटकों की संभावना के कारण, प्रतिच्छेदन बिंदुओं को उनके प्रतिच्छेदन बहुलता के साथ गिना जाना चाहिए। (अघुलनशील) विविधाओ के लिए, यदि कोई बहुलता को ध्यान में रखता है और, एफ़िन स्थिति में, अनंत पर बिंदु, सामान्य स्थिति की परिकल्पना को बहुत अशक्त स्थिति से प्रतिस्थापित किया जा सकता है कि विविधता के प्रतिच्छेदन का आयाम शून्य है (वह) है, इसमें अंकों की एक सीमित संख्या होती है)। यह बेज़ौट के प्रमेय का एक सामान्यीकरण है (प्रमाण के लिए, हिल्बर्ट श्रृंखला और हिल्बर्ट बहुपद § एक प्रक्षेप्य विविधता की डिग्री और बेज़ौट का प्रमेय देखें)।
डिग्री विविधता की आंतरिक संपत्ति नहीं है, क्योंकि यह किसी एफ़िन या प्रोजेक्टिव स्पेस में विविधता के विशिष्ट एम्बेडिंग पर निर्भर करती है।
हाइपरसरफेस की डिग्री उसके परिभाषित समीकरण की कुल डिग्री के समान होती है। बेज़ाउट के प्रमेय का एक सामान्यीकरण यह दावा करता है कि, यदि n प्रक्षेप्य हाइपरसर्फेस के एक प्रतिच्छेदन का कोडिमेशन n है, तो प्रतिच्छेदन की डिग्री हाइपरसर्फेस की डिग्री का उत्पाद है।
एक प्रक्षेप्य विविधता की डिग्री उसके समन्वय वलय की हिल्बर्ट श्रृंखला के अंश में से 1 पर मूल्यांकन है। यह इस प्रकार है कि, विविधता के समीकरणों को देखते हुए, इन समीकरणों के आदर्श के ग्रोबनेर आधार से डिग्री की गणना की जा सकती है।
परिभाषा
V के लिए एक प्रक्षेप्य स्थान Pn में एम्बेडेड और कुछ बीजगणितीय रूप से संवर्त क्षेत्र K पर परिभाषित किया गया है, V की डिग्री d सामान्य स्थिति में एक रैखिक उपस्थान L के साथ K पर परिभाषित V के प्रतिच्छेदन बिंदुओं की संख्या है जैसे कि
यहाँ dim(V) V का आयाम है, और L का कोडिमेशन उस आयाम के समान होगा। डिग्री d एक बाहरी मात्रा है, और V की संपत्ति के रूप में आंतरिक नहीं है। उदाहरण के लिए, प्रक्षेप्य रेखा में Pn में डिग्री एन का एक (अनिवार्य रूप से अद्वितीय) एम्बेडिंग है।
गुण
हाइपरसरफेस F = 0 की डिग्री इसे परिभाषित करने वाले सजातीय बहुपद F के एकपदीय के समान है (माना जाता है कि यदि F में बार-बार कारक हैं, तो प्रतिच्छेदन सिद्धांत का उपयोग बहुलता (गणित) के साथ प्रतिच्छेदन की गणना करने के लिए किया जाता है, जैसा कि बेज़ाउट के प्रमेय में है) .
अन्य दृष्टिकोण
अधिक परिष्कृत दृष्टिकोण के लिए, V के एम्बेडिंग को परिभाषित करने वाले विभाजकों की रैखिक प्रणाली को खंडों के स्थान द्वारा एम्बेडिंग को परिभाषित करने वाली लाइन बंडल या व्युत्क्रम शीफ से संबंधित किया जा सकता है। Pn पर टॉटोलॉजिकल लाइन बंडल वापस V की ओर खींचता है। डिग्री पहले चेर्न वर्ग को निर्धारित करती है। डिग्री की गणना Pn , या चाउ वलय के कोहोमोलॉजी वलय में भी की जा सकती है, जिसमें हाइपरप्लेन का वर्ग V के वर्ग को उचित संख्या में काटता है।
बेज़ाउट के प्रमेय का विस्तार
डिग्री का उपयोग Pn में n हाइपरसर्फेस के प्रतिच्छेदन के लिए अपेक्षित विधि से बेज़ाउट के प्रमेय को सामान्य बनाने के लिए किया जा सकता है।.
टिप्पणियाँ
- ↑ In the affine case, the general-position hypothesis implies that there is no intersection point at infinity.
[Category:Algebraic varieti