एकपदीय

From Vigyanwiki

गणित में, एकपदी,सामान्य का अर्थ है , एक बहुपद है जिसमें केवल एक शब्द है। एक एकपदी की दो परिभाषाओं का सामना करना पड़ सकता है:

  1. एकपद, जिसे शक्ति उत्पाद भी कहा जाता है, चर की शक्तियों का एक उत्पाद है जो गैर-नकारात्मक पूर्णांक घातांक के साथ है, या दूसरे शब्दों में, चर का एक उत्पाद, संभवतः पुनरुक्ति के साथ। उदाहरण के लिए, एकपद है| एकपद है, जो खाली उत्पाद और के बराबर है किसी भी चर के लिए . यदि केवल एक चर माना जाता है, इसका अर्थ यह है कि एकपद या तो या एक शक्ति का , साथ एक सकारात्मक पूर्णांक है। यदि कई चरों पर विचार किया जाता है, जैसे, तो प्रत्येक को एक घातांक दिया जा सकता है, जिससे कोई एकपदी रूप का हो साथ गैर-नकारात्मक पूर्णांक (ध्यान दें कि कोई घातांक संगत गुणक को बराबर कर देता है ).
  2. एकपदी एक अशून्य स्थिरांक से गुणा किए गए पहले अर्थ में एक एकपदी है, जिसे एकपदी का गुणांक कहा जाता है। पहले अर्थ में एकपदी दूसरे अर्थ में एकपदी का एक विशेष स्थिति है, जहां गुणांक है . उदाहरण के लिए, इस व्याख्या में तथा एकपदी हैं (दूसरे उदाहरण में, चर हैं और गुणांक एक सम्मिश्र संख्या है)।

लॉरेंट बहुपद और लॉरेंट श्रृंखला के संदर्भ में, एकपदी के घातांक ऋणात्मक हो सकते हैं, और प्यूसेक्स श्रृंखला के संदर्भ में, घातांक परिमेय संख्या हो सकते हैं।

चूंकि एकपदी शब्द, साथ ही साथ बहुपद शब्द, लैटिन शब्द बिनोमियम (द्विपद) से आता है, उपसर्ग द्वि- (लैटिन में दो) को बदलकर, एकपदी को सैद्धांतिक रूप से एकपदी कहा जाना चाहिए। एकपदी के हेप्लोलॉजी द्वारा एक सिंकोप (ध्वन्यात्मक) है।[1]


दो परिभाषाओं की तुलना

किसी भी परिभाषा के साथ, एकपद का समुच्चय सभी बहुपदों का एक उप-समुच्चय है जो गुणन के आश्रित बंद है।

इस धारणा में दोनों उपयोग पाए जा सकते हैं, और कई स्थितियों में भेद को आसानी से अनदेखा कर दिया जाता है, [2]उदाहरण के लिए पहले और दूसरे अर्थ के उदाहरण देखें[3] । अनौपचारिक विवेचनाओं में भेद शायद ही कभी महत्वपूर्ण होता है, और प्रवृत्ति व्यापक दूसरे अर्थ की ओर होती है। बहुपदों की संरचना का अध्ययन करते समय, निश्चित रूप से पहले अर्थ के साथ एक धारणा की आवश्यकता होती है। यह उदाहरण के लिए एक बहुपद अंगूठी के एकपदीय आधार या उस आधार के एकपदीय गण पर विचार करते समय की स्तिथि है। पहले अर्थ के पक्ष में एक विवेचना यह भी है कि इन मूल्यों को नामित करने के लिए कोई स्पष्ट अन्य धारणा उपलब्ध नहीं है (शक्ति उत्पाद शब्द उपयोग में है, विशेष रूप से जब पहले अर्थ के साथ एकपद का उपयोग किया जाता है, लेकिन यह स्थिरांक की अनुपस्थिति नहीं बनाता है या तो स्पष्ट है), जबकि बहुपद की धारणा स्पष्ट रूप से एकपद के दूसरे अर्थ के साथ मेल खाती है।

इस लेख का शेष भाग एकपद का पहला अर्थ मानता है।

एकपदीय आधार

एकपदीय के बारे में सबसे स्पष्ट तथ्य यह है कि कोई भी बहुपद उनका एक रैखिक संयोजन है, इसलिए वे सभी बहुपदों के सदिश स्थान का एक आधार बनाते हैं, जिसे एकपद आधार कहा जाता है - इसमें निरंतर निहित उपयोग का तथ्य अंक शास्त्र।

संख्या

उपाधि के एकपद की संख्या में चर बहुसंयोजनो की संख्या है के बीच चुने गए तत्व चर (चर को एक से अधिक बार चुना जा सकता है, लेकिन क्रम कोई मायने नहीं रखता), जो बहुसमूह गुणांक द्वारा दिया जाता है . यह व्यंजक द्विपद गुणांक के रूप में, बहुपद व्यंजक के रूप में भी दिया जा सकता है , या एक पोचममेर प्रतीक का उपयोग करना वैकल्पिक संकेतन :

बाद के रूप विशेष रूप से उपयोगी होते हैं जब कोई चर की संख्या को ठीक करता है और उपाधि को भिन्न -भिन्न होने देता है। इन व्यंजकों से कोई यह देखता है कि नियत n के लिए, उपाधि d के एकपदी की संख्या एक बहुपद व्यंजक है उपाधि का अग्रणी गुणांक के साथ .

उदाहरण के लिए, तीन चरों में एकपदी की संख्या () उपाधि d है ; ये संख्याएँ त्रिकोणीय संख्याओं का क्रम 1, 3, 6, 10, 15, ... बनाती हैं।

हिल्बर्ट श्रृंखला दी गई उपाधि के एकपदीय की संख्या को व्यक्त करने का एक सघन विधि है: उपाधि के एकपदी की संख्या में चर उपाधि का गुणांक है के औपचारिक शक्ति श्रृंखला विस्तार की

अधिक से अधिक उपाधि के एकपदीयों की संख्या d में n चर है . यह उपाधि एकपदी के बीच एक-से-एक पत्राचार से होता है में अधिक से अधिक उपाधि के चर और एकपदी में चर, जिसमें 1 अतिरिक्त चर का प्रतिस्थापन होता है।

बहु-सूचकांक संकेतन

बहु-सूचकांक संकेतन प्रायः सघन संकेतन के लिए उपयोगी होता है, विशेष रूप से जब दो या तीन से अधिक चर होते हैं। यदि उपयोग किए जा रहे चर एक अनुक्रमित परिवार बनाते हैं जैसे कोई समूह कर सकता है

तथा

तब एकपदी

संक्षिप्त रूप में लिखा जा सकता है

इस अंकन के साथ, दो एकपदी का उत्पाद केवल घातांक सदिशों के जोड़ का उपयोग करके व्यक्त किया जाता है:


डिग्री

एक एकपदी की उपाधि को चर के सभी घातांकों के योग के रूप में परिभाषित किया गया है, जिसमें घातांक के बिना दिखाई देने वाले चर के लिए 1 के अंतर्निहित घातांक सम्मिलित हैं; उदाहरण के लिए, पिछले खंड के उदाहरण में, डिग्री है. की उपाधि 1+1+2=4 है। शून्येतर स्थिरांक की उपाधि 0 है। उदाहरण के लिए, -7 की उपाधि 0 है।

एकपदी की उपाधि को कभी-कभी क्रम कहा जाता है, मुख्य रूप से श्रृंखला के संदर्भ में। इसे कुल उपाधि भी कहा जाता है जब इसे किसी एक चर में उपाधि से भिन्न करने की आवश्यकता होती है।

एकपदी उपाधि एक विभिन्न और बहुभिन्नरूपी बहुपदों के सिद्धांत के लिए मौलिक है। स्पष्ट रूप से, इसका उपयोग बहुपद की उपाधि और सजातीय बहुपद की धारणा को परिभाषित करने के लिए किया जाता है, साथ ही ग्रोबनेर आधार बनाने और कंप्यूटिंग में उपयोग किए जाने वाले वर्गीकृत एकपदी ऑर्डरिंग के लिए भी किया जाता है। स्पष्ट रूप से, इसका उपयोग टेलर श्रृंखला का अनुबंध को कई चरों में समूहित करने के लिए किया जाता है।

ज्यामिति

बीजगणितीय ज्यामिति में एकपदी समीकरणों द्वारा परिभाषित प्रकार α के कुछ समूह के लिए एकरूपता के विशेष गुण होते हैं। इसे बीजगणितीय समूहों की भाषा में एक बीजगणितीय टोरस की समूह क्रिया के अस्तित्व के संदर्भ में (समान रूप से विकर्ण मैट्रिक्स के गुणक समूह द्वारा) व्यक्त किया जा सकता है। इस क्षेत्र का अध्ययन टोरिक ज्यामिति के नाम से किया जाता है।

यह भी देखें


संदर्भ

  1. American Heritage Dictionary of the English Language, 1969.
  2. "Monomial", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  3. Cox, David; John Little; Donal O'Shea (1998). बीजगणितीय ज्यामिति का उपयोग करना. Springer Verlag. pp. 1. ISBN 0-387-98487-9.