लघुगणकीय अवकलन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Method of mathematical differentiation}}[[ गणना ]]में, | {{Short description|Method of mathematical differentiation}} | ||
{{For|व्युत्पादित|लघुगणकीय व्युत्पन्न}} | |||
{{Calculus}} | |||
[[ गणना ]]में, लघुगणकीय विभेदन या लघुगणक लेकर विभेदन एक ऐसी विधि है जिसका उपयोग किसी फलन के [[लघुगणकीय व्युत्पन्न]] को नियोजित करके व्युत्पन्न [[फ़ंक्शन (गणित)|फलन (गणित)]] {{math|''f''}} के लिए किया जाता है। ,<ref>{{cite book| title=कैलकुलस का रहस्योद्घाटन| pages=170| first=Steven G.|last=Krantz | publisher=McGraw-Hill Professional| year=2003 | isbn=0-07-139308-0}}</ref> | |||
<math display="block">(\ln f)' = \frac{f'}{f} \quad \implies \quad f' = f \cdot (\ln f)'.</math> | <math display="block">(\ln f)' = \frac{f'}{f} \quad \implies \quad f' = f \cdot (\ln f)'.</math> | ||
तकनीक | तकनीक प्रायः उन स्तिथियों में निष्पादित की जाती है जहां फलन के स्थान पर किसी फलन के [[लघुगणक]] को अलग करना आसान होता है। यह सामान्यतः पर उन स्तिथियों में होता है जहां रुचि का कार्य कई भागों के उत्पाद से बना होता है, ताकि एक लघुगणकीय परिवर्तन इसे अलग-अलग हिस्सों के योग में बदल दे (जिसे अलग करना बहुत आसान है)। यह तब भी उपयोगी हो सकता है जब इसे चर या फलन की शक्ति तक बढ़ाए गए फलन पर लागू किया जाता है। लघुगणक विभेदन उत्पादों को योगों में और विभाजनों को घटावों में बदलने के लिए [[श्रृंखला नियम]] के साथ-साथ लघुगणक के गुणों (विशेष रूप से, [[प्राकृतिक]] लघुगणक, या आधार [[ई (गणित)]] के लघुगणक) पर निर्भर करता है। <ref>{{cite book| title=गोल्डन डिफरेंशियल कैलकुलस| pages=282|author=N.P. Bali| publisher=Firewall Media | year=2005 | isbn=81-7008-152-1}}</ref><ref name="Bird">{{cite book|title=उच्च इंजीनियरिंग गणित| first=John|last=Bird|pages=324 | publisher=Newnes |year=2006 | isbn=0-7506-8152-7}}</ref> सिद्धांत को, कम से कम आंशिक रूप से, लगभग सभी भिन्न-भिन्न कार्यों के विभेदन में लागू किया जा सकता है, बशर्ते कि ये कार्य गैर-शून्य हों। | ||
==अवलोकन== | ==अवलोकन== | ||
विधि का उपयोग इसलिए किया जाता है क्योंकि लघुगणक के गुण विभेदित किए जाने वाले जटिल | विधि का उपयोग इसलिए किया जाता है क्योंकि लघुगणक के गुण विभेदित किए जाने वाले जटिल कार्यों को शीघ्रता से सरल बनाने के लिए मार्ग प्रदान करते हैं। <ref>{{cite book| title=कैलकुलस, एकल चर| first=Brian E.|last=Blank | pages=457| publisher=Springer| year=2006| isbn=1-931914-59-1}}</ref> दोनों पक्षों पर प्राकृतिक लघुगणक लेने के बाद और प्रारंभिक भेदभाव से पहले इन गुणों में क्रमभंग किया जा सकता है। सबसे अधिक उपयोग किये जाने वाले लघुगणक नियम निम्न हैं <ref name="Bird" /> | ||
<math display="block">\ln(ab) = \ln(a) + \ln(b), \qquad | <math display="block">\ln(ab) = \ln(a) + \ln(b), \qquad | ||
\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b), \qquad | \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b), \qquad | ||
Line 11: | Line 15: | ||
===उच्च क्रम | ===उच्च क्रम व्युत्पन्न=== | ||
फा डि ब्रूनो के सूत्र का उपयोग करते हुए, | फा डि ब्रूनो के सूत्र का उपयोग करते हुए, n-वें क्रम का लघुगणकीय व्युत्पन्न निम्न है, | ||
<math display="block">\frac{d^n}{dx^n} \ln f(x) | <math display="block">\frac{d^n}{dx^n} \ln f(x) | ||
= \sum_{m_1+2m_2+\cdots+nm_n=n} \frac{n!}{m_1!\,m_2!\,\cdots\,m_n!} \cdot | = \sum_{m_1+2m_2+\cdots+nm_n=n} \frac{n!}{m_1!\,m_2!\,\cdots\,m_n!} \cdot | ||
Line 18: | Line 22: | ||
\prod_{j=1}^n \left(\frac{f^{(j)}(x)}{j!}\right)^{m_j}.</math> | \prod_{j=1}^n \left(\frac{f^{(j)}(x)}{j!}\right)^{m_j}.</math> | ||
इसका उपयोग करते हुए, पहले चार व्युत्पन्न हैं, | इसका उपयोग करते हुए, पहले चार व्युत्पन्न हैं, | ||
<math display="block">\begin{align} | |||
\frac{d^2}{dx^2} \ln f(x) &= \frac{f''(x)}{f(x)} - \left(\frac{f'(x)}{f(x)} \right)^2 \\[1ex] | |||
\frac{d^3}{dx^3} \ln f(x) &= \frac{f^{(3)}(x)}{f(x)} - 3 \frac{f'(x) f''(x)}{f(x)^2} + 2 \left(\frac{f'(x)}{f(x)} \right)^3 \\[1ex] | |||
\frac{d^4}{dx^4} \ln f(x) &= \frac{f^{(4)}(x)}{f(x)} - 4 \frac{f'(x) f^{(3)}(x)}{f(x)^2} - 3 \left(\frac{f''(x)}{f(x)}\right)^2 + 12 \frac{f'(x)^2 f''(x)}{f(x)^3} - 6 \left(\frac{f'(x)}{f(x)} \right)^4 | |||
\end{align}</math> | |||
==अनुप्रयोग== | ==अनुप्रयोग== | ||
===उत्पाद=== | ===उत्पाद=== | ||
एक प्राकृतिक लघुगणक दो | {{Main|उत्पाद नियम}} | ||
एक प्राकृतिक लघुगणक दो कार्यों के उत्पाद पर लागू किया जाता है | |||
<math display="block">f(x) = g(x) h(x)</math> | <math display="block">f(x) = g(x) h(x)</math> | ||
उत्पाद को योग में बदलने के लिए | उत्पाद को योग में बदलने के लिए | ||
<math display="block">\ln(f(x))=\ln(g(x)h(x)) = \ln(g(x)) + \ln(h(x)). </math> | <math display="block">\ln(f(x))=\ln(g(x)h(x)) = \ln(g(x)) + \ln(h(x)). </math> | ||
विभेदन नियमों में श्रृंखला नियम और योग नियम को लागू करके विभेदन करने से परिणाम प्राप्त होते हैं | |||
<math display="block">\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)} + \frac{h'(x)}{h(x)},</math> | <math display="block">\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)} + \frac{h'(x)}{h(x)},</math> | ||
और, पुनर्व्यवस्थित करने के बाद, | और, पुनर्व्यवस्थित करने के बाद, निम्न प्रतिफल मिलता है <ref>{{cite book | title=डिफरेंशियल कैलकुलस पर एक प्राथमिक ग्रंथ| first=Benjamin|last=Williamson | publisher=BiblioBazaar, LLC | year=2008 | pages=25–26 | isbn=978-0-559-47577-1}}</ref> | ||
<math display="block">f'(x) = f(x)\times \left\{\frac{g'(x)}{g(x)} + \frac{h'(x)}{h(x)}\right\} = | <math display="block">f'(x) = f(x)\times \left\{\frac{g'(x)}{g(x)} + \frac{h'(x)}{h(x)}\right\} = | ||
g(x) h(x) \times \left\{\frac{g'(x)}{g(x)} + \frac{h'(x)}{h(x)}\right\} = g'(x) h(x) + g(x) h'(x),</math> | g(x) h(x) \times \left\{\frac{g'(x)}{g(x)} + \frac{h'(x)}{h(x)}\right\} = g'(x) h(x) + g(x) h'(x),</math> | ||
जो | जो व्युत्पन्न के लिए उत्पाद नियम है। | ||
===उद्धरण=== | ===उद्धरण=== | ||
एक प्राकृतिक लघुगणक दो | {{Main|भागफल नियम}} | ||
एक प्राकृतिक लघुगणक दो कार्यों के भागफल पर लागू किया जाता है | |||
<math display="block">f(x) = \frac{g(x)}{h(x)}</math> | <math display="block">f(x) = \frac{g(x)}{h(x)}</math> | ||
भाग को घटाव में बदलना | भाग को घटाव में बदलना | ||
<math display="block">\ln(f(x)) = \ln\left(\frac{g(x)}{h(x)}\right) = \ln(g(x)) - \ln(h(x))</math> | <math display="block">\ln(f(x)) = \ln\left(\frac{g(x)}{h(x)}\right) = \ln(g(x)) - \ln(h(x))</math> | ||
विभेदन नियमों में श्रृंखला नियम और योग नियम को लागू करके विभेदन करने से परिणाम प्राप्त होते हैं | |||
<math display="block">\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)} - \frac{h'(x)}{h(x)},</math> | <math display="block">\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)} - \frac{h'(x)}{h(x)},</math> | ||
और, पुनर्व्यवस्थित करने के बाद, | और, पुनर्व्यवस्थित करने के बाद, निम्न प्रतिफल मिलती है | ||
<math display="block">f'(x) = f(x) \times \left\{\frac{g'(x)}{g(x)} - \frac{h'(x)}{h(x)}\right\} = | <math display="block">f'(x) = f(x) \times \left\{\frac{g'(x)}{g(x)} - \frac{h'(x)}{h(x)}\right\} = | ||
\frac{g(x)}{h(x)} \times \left\{\frac{g'(x)}{g(x)} - \frac{h'(x)}{h(x)}\right\} = \frac{g'(x) h(x) - g(x) h'(x)}{h(x)^2},</math> | \frac{g(x)}{h(x)} \times \left\{\frac{g'(x)}{g(x)} - \frac{h'(x)}{h(x)}\right\} = \frac{g'(x) h(x) - g(x) h'(x)}{h(x)^2},</math> | ||
Line 48: | Line 60: | ||
प्रपत्र के एक फलन के लिए | प्रपत्र के एक फलन के लिए | ||
<math display="block">f(x) = g(x)^{h(x)}</math> | <math display="block">f(x) = g(x)^{h(x)}</math> | ||
प्राकृतिक लघुगणक घातांक को उत्पाद में बदल देता है | प्राकृतिक लघुगणक घातांक को निम्न उत्पाद में बदल देता है | ||
<math display="block">\ln(f(x)) = \ln\left(g(x)^{h(x)}\right) = h(x) \ln(g(x))</math> | <math display="block">\ln(f(x)) = \ln\left(g(x)^{h(x)}\right) = h(x) \ln(g(x))</math> | ||
विभेदन नियमों में श्रृंखला नियम और योग नियम को लागू करके विभेदन करने से परिणाम प्राप्त होते हैं | |||
<math display="block">\frac{f'(x)}{f(x)} = h'(x) \ln(g(x)) + h(x) \frac{g'(x)}{g(x)},</math> | <math display="block">\frac{f'(x)}{f(x)} = h'(x) \ln(g(x)) + h(x) \frac{g'(x)}{g(x)},</math> | ||
और, पुनर्व्यवस्थित करने के बाद, | और, पुनर्व्यवस्थित करने के बाद, प्रतिफल मिलती है | ||
<math display="block">f'(x) = f(x)\times \left\{h'(x) \ln(g(x)) + h(x)\frac{g'(x)}{g(x)}\right\} = | <math display="block">f'(x) = f(x)\times \left\{h'(x) \ln(g(x)) + h(x)\frac{g'(x)}{g(x)}\right\} = | ||
g(x)^{h(x)} \times \left\{h'(x) \ln(g(x)) + h(x) \frac{g'(x)}{g(x)}\right\}.</math> | g(x)^{h(x)} \times \left\{h'(x) \ln(g(x)) + h(x) \frac{g'(x)}{g(x)}\right\}.</math> | ||
घातांकीय फलन के संदर्भ में f को फिर से लिखकर और श्रृंखला नियम लागू करके वही परिणाम प्राप्त किया जा सकता है। | घातांकीय फलन के संदर्भ में f को फिर से लिखकर और श्रृंखला नियम लागू करके वही परिणाम प्राप्त किया जा सकता है। | ||
====सामान्य | ====सामान्य स्तिथि==== | ||
गुणन | गुणन उत्कृष्ठ पाई संकेत पद्धति का उपयोग करते हुए, आइए | ||
<math display="block">f(x) = \prod_i (f_i(x))^{\alpha_i(x)}</math> | <math display="block">f(x) = \prod_i (f_i(x))^{\alpha_i(x)}</math> | ||
कार्यात्मक घातांक वाले | कार्यात्मक घातांक वाले कार्यों का एक सीमित उत्पाद बनें। | ||
प्राकृतिक लघुगणक के अनुप्रयोग का परिणाम ( | प्राकृतिक लघुगणक के अनुप्रयोग का परिणाम (उत्कृष्ठ सिग्मा संकेत पद्धति के साथ) होता है | ||
<math display="block">\ln (f(x)) = \sum_i\alpha_i(x) \cdot \ln(f_i(x)),</math> | <math display="block">\ln (f(x)) = \sum_i\alpha_i(x) \cdot \ln(f_i(x)),</math> | ||
और भेदभाव के बाद, | और भेदभाव के बाद, | ||
<math display="block">\frac{f'(x)}{f(x)} = \sum_i \left[\alpha_i'(x)\cdot \ln(f_i(x)) + \alpha_i(x) \cdot \frac{f_i'(x)}{f_i(x)}\right].</math> | <math display="block">\frac{f'(x)}{f(x)} = \sum_i \left[\alpha_i'(x)\cdot \ln(f_i(x)) + \alpha_i(x) \cdot \frac{f_i'(x)}{f_i(x)}\right].</math> | ||
मूल फलन का व्युत्पन्न प्राप्त करने के लिए पुनर्व्यवस्थित करें, | मूल फलन का व्युत्पन्न प्राप्त करने के लिए पुनर्व्यवस्थित करें, | ||
<math display="block">f'(x) = \overbrace{\prod_i (f_i(x))^{\alpha_i(x)}}^{f(x)} \times\overbrace{\sum_i\left\{\alpha_i'(x)\cdot \ln(f_i(x))+\alpha_i(x)\cdot \frac{f_i'(x)}{f_i(x)}\right\}}^{[\ln (f(x))]'}.</math> | <math display="block">f'(x) = \overbrace{\prod_i (f_i(x))^{\alpha_i(x)}}^{f(x)} \times\overbrace{\sum_i\left\{\alpha_i'(x)\cdot \ln(f_i(x))+\alpha_i(x)\cdot \frac{f_i'(x)}{f_i(x)}\right\}}^{[\ln (f(x))]'}.</math> | ||
==यह भी देखें== | ==यह भी देखें== | ||
* डार्बौक्स व्युत्पन्न | * {{annotated link|डार्बौक्स व्युत्पन्न}} | ||
* व्युत्पन्न का सामान्यीकरण | * {{annotated link|व्युत्पन्न का सामान्यीकरण}} | ||
* | * {{annotated link|लाई ग्रुप}} | ||
* | * {{annotated link|लघुगणक विषयों की सूची}} | ||
* {{annotated link|लघुगणकीय पहचानों की सूची}} | |||
* {{annotated link|मौरर-कार्टन फॉर्म}} | |||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{reflist}} | {{reflist}} | ||
{{Calculus topics}} | |||
[Category:Logarith] | |||
[[Category:Created On 09/07/2023]] | [[Category:Created On 09/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:अंतर कलन]] | |||
[[Category:लोगारित्म]] |
Revision as of 13:10, 11 September 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
गणना में, लघुगणकीय विभेदन या लघुगणक लेकर विभेदन एक ऐसी विधि है जिसका उपयोग किसी फलन के लघुगणकीय व्युत्पन्न को नियोजित करके व्युत्पन्न फलन (गणित) f के लिए किया जाता है। ,[1]
अवलोकन
विधि का उपयोग इसलिए किया जाता है क्योंकि लघुगणक के गुण विभेदित किए जाने वाले जटिल कार्यों को शीघ्रता से सरल बनाने के लिए मार्ग प्रदान करते हैं। [4] दोनों पक्षों पर प्राकृतिक लघुगणक लेने के बाद और प्रारंभिक भेदभाव से पहले इन गुणों में क्रमभंग किया जा सकता है। सबसे अधिक उपयोग किये जाने वाले लघुगणक नियम निम्न हैं [3]
उच्च क्रम व्युत्पन्न
फा डि ब्रूनो के सूत्र का उपयोग करते हुए, n-वें क्रम का लघुगणकीय व्युत्पन्न निम्न है,
अनुप्रयोग
उत्पाद
एक प्राकृतिक लघुगणक दो कार्यों के उत्पाद पर लागू किया जाता है
उद्धरण
एक प्राकृतिक लघुगणक दो कार्यों के भागफल पर लागू किया जाता है
क्रियात्मक घातांक
प्रपत्र के एक फलन के लिए
सामान्य स्तिथि
गुणन उत्कृष्ठ पाई संकेत पद्धति का उपयोग करते हुए, आइए
प्राकृतिक लघुगणक के अनुप्रयोग का परिणाम (उत्कृष्ठ सिग्मा संकेत पद्धति के साथ) होता है
यह भी देखें
- डार्बौक्स व्युत्पन्न
- व्युत्पन्न का सामान्यीकरण
- लाई ग्रुप
- लघुगणक विषयों की सूची
- लघुगणकीय पहचानों की सूची
- मौरर-कार्टन फॉर्म
टिप्पणियाँ
- ↑ Krantz, Steven G. (2003). कैलकुलस का रहस्योद्घाटन. McGraw-Hill Professional. p. 170. ISBN 0-07-139308-0.
- ↑ N.P. Bali (2005). गोल्डन डिफरेंशियल कैलकुलस. Firewall Media. p. 282. ISBN 81-7008-152-1.
- ↑ 3.0 3.1 Bird, John (2006). उच्च इंजीनियरिंग गणित. Newnes. p. 324. ISBN 0-7506-8152-7.
- ↑ Blank, Brian E. (2006). कैलकुलस, एकल चर. Springer. p. 457. ISBN 1-931914-59-1.
- ↑ Williamson, Benjamin (2008). डिफरेंशियल कैलकुलस पर एक प्राथमिक ग्रंथ. BiblioBazaar, LLC. pp. 25–26. ISBN 978-0-559-47577-1.
[Category:Logarith]